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To clarify the effects of sleep on cortical irritability in benign adult familial myoclonus epilepsy (BAFME), we ret-
rospectively compared epileptiform discharges of electroencephalographies (EEGs) between awake and sleep
periods in 5 patients (mean age: 49.6± 20.3 years). We also analyzed polysomnography (PSG) of 1 patient. Ep-
ileptiform discharges were significantlymore frequent during the awake period (1.3 ± 1.2/min) than those dur-
ing light sleep stages (0.02 ± 0.04/min) (P b 0.05). Regarding PSG analysis, epileptiform discharges were also
reduced during all sleep stages compared to those during awake periods. Our study suggests a relative reduction
in cortical irritability during sleep in BAFME.
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1. Introduction

Benign adult familial myoclonus epilepsy (BAFME) shows as a clear
autosomal dominant trait with high penetration and its major two
symptoms are cortical tremor mimicking essential tremor and infre-
quent generalized seizures. BAFME has been reported under various
designations in Japan from early 1990s [1,2], whereas familial cortical
myoclonic tremor with epilepsy (FCMTE) [3] and autosomal dominant
cortical tremor, myoclonus, and epilepsy (ADCME) [4] came from Eu-
rope after the new millennium. Despite different terminologies, Japa-
nese BAFME and European ADCME and FCMTE share the features of
yoclonus, and epilepsy;
cephalography; EMG,
ith epilepsy; nCPAP,

aphy; REM, rapid eye

University Graduate
yoto University School
, Japan.

n open access article under
core clinical symptoms and electrophysiologically proven cortical reflex
myoclonus [3]. As for a recent genetic study, a novel in-frame insertion/
deletion in the 2-adrenergic receptor subtype B was found to be associ-
ated with ADCME [5] and δ-catenin was proposed as the causal gene in
FCMTE [6]. Furthermore, abnormal expansions of TTTCA and TTTTA re-
peats were reported in Japanese BAFME [7].

Previous electroencephalography (EEG) studies in Japanese BAFME
showed generalized- spike and- wave complexes with photosensitivity
[2]. Additionally, we recently showed that the frequency of the posterior
dominant rhythm of BAFME was significantly slower than the age-
matched control subjects regardless of anti-seizure drug usage, which
suggests that Japanese patients with BAFME have mild diffuse brain
dysfunction [8]. These EEG findings mainly focused on the awake
period, but did not investigate the sleep period. Epileptiform discharges
and epileptic seizures usually increase during sleep [9], and thus sleep is
generally considered a precipitating factor of cortical irritability in
epilepsy. However, no studies have been conducted to address the
change in cortical irritability during sleep in BAFME. The present study
analyzed epileptiformdischarges in BAFME to determinewhether corti-
cal irritability as indicated by epileptiform discharges was modified by
sleep.
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Table 1
Patient profiles.

Age Cortical tremor
onset age

Generalized seizure
onset age

Anti-seizure drugs

Pt 1 73 50 62 Clonazepam
Pt 2 40 20 28 Clonazepam
Pt 3 30 19 24 Piracetam
Pt 4 35 27 35 None
Pt 5 70 48 48 Clonazepam, Levetiracetam
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2. Material and methods

2.1. Conventional EEG analysis

Weretrospectively analyzed 31EEGs of 12patientswith a clinical di-
agnosis of BAFME in whom EEGwas taken from 2008 to 2015 in our in-
stitute. Some of the patients were reported elsewhere for completely
different purposes [8,10–12]. The electroclinical diagnostic criteria of
BAFME are the same as in our recent studies [8,10–12], and the details
are described elsewhere [10]. In addition, 10 out of 12 patients showed
genetic abnormality [7], but remaining 2 patients did not undergo ge-
netic testing. As for medications, 2 patients had clonazepam, 1 patient
had piracetam, 1 patient had clonazepam and levetiracetam, and re-
maining 1 patient had none (Table 1).

Routine EEG with scalp electrodes was conventionally recorded ac-
cording to the International 10–20 system. Routine EEG was recorded
at least 30 min during daytime. Electrooculogram, electrocardiogram
and electromyogram (EMG) from wrist extensor muscle were also re-
corded. The bandpass filter was set to 0.53–120 Hz for visual inspection.
We checked 3 recording conditions and excluded the conventional EEGs
from further analysis if they were not suitable for this study. First, we
excluded 6 EEGs because they showed less than 5 epileptiform dis-
charges throughout the EEG recording. Second, we excluded 18 EEGs
because they showed an awake or sleep EEG of less than 10% of the
total EEG recording. Third, we excluded 1 EEG with abundant artifacts.
We finally analyzed 6 EEGs in 5 BAFME patients (5 women, age 49.6
± 20.3 years) (Table 1), and 4 out of 5 patients showed genetic abnor-
mality [7], but remaining 1 patient (Patient 5) did not undergo gene
analysis.
Fig. 1. EEG in a patient with BAFME (patient 4). Spikes were maximized in the posterior hemisp
(B).
Each sleep stage [awake: W, Stage I and II (light sleep); III and IV
(slow-wave sleep); and REM (rapid eye movement)] was defined by a
board-certified electroencephalographer (T.H) every 30 s based on the
standard sleep staging criteria established by Rechtschaffen and Kales
[13], although surface EMGwas recorded using thewrist extensormus-
cle instead of the chin muscle. After sleep staging, we counted the epi-
leptiform discharges for each sleep stage and compared the number
and frequency of epileptiform discharges for each sleep stage using
the Wilcoxon signed ranks test because only awake (31.3 ± 9.1 min)
and Stage I and II (light sleep) (19.2 ± 14.9 min) were observed. P b

0.05 was considered statistically significant.

2.2. Polysomnography (PSG) analysis

One BAFMEpatient (59-year-old female)was incidentally suspected
as having obstructive sleep apnea and underwent PSG before and after
nasal continuous positive airway pressure (nCPAP) therapy. The patient
also showed genetic abnormality [7]. Each sleep stage was also defined
based on standard sleep staging criteria [13]. We counted the epilepti-
form discharges during each awake and sleep stage and then compared
the number and frequency of epileptiform discharges during the awake
and sleep stages.

3. Results

3.1. Conventional EEG analysis

Five BAFME patients showed generalized spikesmaximal in the pos-
terior hemisphere during the awake period (42.6 ± 37.9/record) (Fig.
1A, Table 2), however, these epileptiformdischarges nearly disappeared
during light sleep (0.6 ± 1.3/record; p b 0.05) (Fig. 1B, Table 2). With
respect to the frequency recorded as number of events/min, epilepti-
form discharges also significantly decreased during light sleep (0.02
± 0.05) compared to the awake stages (1.3 ± 1.3; p b 0.05) (Table 2).

3.2. PSG analysis

PSG before nCPAP therapy showed severe obstructive sleep apnea
(apnea hypopnea index: 39.2). Sleep stages were classified into
Awake (105 min), Stage I and II (147 min), III and IV (0 min), and
here during the awake period (A); these spikes disappeared during the light sleep period

Image of Fig. 1


Table 2
Summary of the electroencephalography analysis.

Awake SI and II Awake SI and II Awake SI and II

Pt 1 40 19 81 0 2.03 0.00 

Pt 2 22 39 8 0 0.36 0.00 

Pt 3 42 28 33 3 0.78 0.11 

Pt 4 27 6 84 0 3.16 0.00 

Pt 5 26 4 7 0 0.27 0.00 

Mean 31.3 19.2 42.6 0.6 1.3 0.02 

SD 9.1 14.9 37.9 1.3 1.3 0.05 

*
*

Sleep staging (min)
Number of

epileptiform discharges

Frequency of epileptiform

discharges (number/min)

SI and II: sleep stage I and II.
* P b0.05 (Wilcoxon signed rank test).
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REM (27.5 min). There were frequent epileptiform discharges during
the awake period (106), however, the number of epileptiform dis-
charges clearly decreased during Stages I and II (5) and the REM stage
(2) (Table 3). The frequency of epileptiform discharges also showed
the same tendency: awake period: 1.01, Stage I and II: 0.03, and stage
REM: 0.07 (Table 3). PSG after nCPAP therapy showed a normalized
apnea hypopnea index (4.0). The sleep stages were classified into
Awake (88 min), Stage I and II (228 min), Stage III and IV (14 min),
and stage REM (0min). Some epileptiform discharges occurred during
the awake period (7), likely due to a reduction in cortical irritability
through nCPAP therapy [14], and no epileptiform discharges were ob-
served during Stage I, II, III, or IV (Table 3). The frequency of epileptiform
discharges (number/min) also showed the same tendency: awake pe-
riod: 0.08, Stage I and II: 0, and stage III and IV: 0 (Table 3).
4. Discussion

Our study showed a clear reduction in epileptiform discharges dur-
ing sleep regardless of sleep stage in patients with BAFME. This result
contrasted with our expectations because epileptiform discharges, as
known from a previous study, usually increase during the sleep period
in most focal and generalized epilepsies [9]. Notably, Unverricht-
Lundborg disease (ULD), which is a type of progressive myoclonus epi-
lepsy, showed a reduction in paroxysmal abnormalities during non-
REM and REM sleep [15]. Additionally, ULD showed generalized spikes
with predominance in the posterior region [16], which is consistent
with the distribution of generalized spikes in BAFME as shown in Fig.
1A. Taken all together, ULD and BAFME showed a similar pathological
mechanism of cortical irritability in terms of spatial distribution and
the response to state changes.
Table 3
Summary of the polysomnography analysis.

Number of epileptiform discharges during awake and sleep

Awake SI and II SIII and IV

PSG (pre nCPAP)
AHI: 39.2

106 5 –

PSG (post nCPAP)
AHI: 4.0

7 0 0

SI and II: stage I and II (light sleep), SIII and IV: sleep stage III and IV (slow wave sleep), REM:
PSG: Polysomnography, nCPAP: nasal continuous positive airway pressure therapy, AHI: apnea
There is a hypothesis regarding the reduction of epileptiform dis-
charges during the sleep period in BAFME. First, generalized epilepsy
usually showed diffuse epileptiform discharges with frontal predomi-
nance. Additionally, frontal lobe epilepsy also showed focal epileptiform
discharges in the frontal region, which often produces epileptic seizures
while asleep [9]. These findings were supported by emphasized high
gamma activity and neuronal synchrony during sleep in the frontal
lobe compared to other lobes [17]. In contrast, occipital lobe epilepsy
tended to occur while awake [18]. In addition, BAFME and ULD show
diffuse epileptiform discharges but its predominance was sometimes
in the occipital area, and both also could show fragmented occipital
spikes as well. Thus, BAFME and ULD may share the similar tendency
to occipital lobe epilepsy at least partly for the effects of sleep on the cor-
tical irritability of the brain.

BAFME was considered to have a benign clinical course, unlike pro-
gressive myoclonus epilepsy. However, we recently demonstrated an
increase in the amplitude of somatosensory evoked potential with age
[10], clinical anticipation [12] and its exaggeration by maternal trans-
mission [11], and a mild slowing of the posterior dominant rhythm of
EEG [8] in BAFME. Based on our recent observations, we now believe
that BAFME is not completely benign but has a slow progressive patho-
physiology that occurs with age. Therefore, the findings in this study
were consistent with our recent hypothesis because BAFME showed a
similar degree of cortical irritability in its spatial distribution and its re-
sponse to state change in ULD, which is one of the milder forms of pro-
gressive myoclonus epilepsy. The functional change during sleep
periods may provide novel insights into the pathophysiology of
BAFME. However, the pathogenesis of BAFME remains unknown, al-
though it was shown that abnormal expansion of TTTCA and TTTTA re-
peats in BAFME [7] and abnormal expansion of dodecamer repeats in
ULD.
period Frequency of epileptiform discharges during awake and sleep
period (number/min)

REM Awake SI and II SIII and IV REM

2 1.01 0.03 – 0.07

– 0.08 0 0 –

sleep stage REM (rapid eye movement).
hypopnea index.

Unlabelled image
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This study has a number of limitations. First, the number of studied
patients in conventional EEG analysis was relatively small. More than
half of the EEG data were eliminated because of the strict criteria of
this study. However, we showed statistically significant differences in
epileptiform discharges in this study. Second, only 1 patient underwent
a PSG study, and thus we could not show statistically significant differ-
ences between the slowwave sleep and REM periods, notably, epilepti-
form discharge consistently decreased during slowwave and REM sleep
as well as the light sleep periods. Third, sleep staging was performed
based on the information with conventional EEG recordings; however,
sleep staging in this study appears to be accurate because only the
awake and Stage I and II (light sleep) periods were observed. This likely
occurred because the routine EEG was recorded only during daytime.

5. Conclusion

Our retrospective EEG and PSG analysis showed a clear reduction of
the epileptiform discharges during sleep in BAFME,which suggests a re-
duction in cortical irritability during sleep in BAFME. SinceULD, a type of
progressive myoclonus epilepsy, also demonstrates a similar degree of
cortical irritability represented by epileptiform discharges, BAFME and
ULD may share a similar phenomenological mechanism.
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