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Nasopharyngeal carcinoma (NPC) is an uncommon cancer, which has a distinctive ethnic and geographic distribution. Etiology
of NPC is considered to be related with a complex interaction of environmental and genetic factors as well as Epstein-Barr virus
infection. Since NPC is located in the silent painless area, the disease is usually therefore diagnosed at the advanced stages;
hence early detection of NPC is difficult. Furthermore, understanding in molecular pathogenesis is still lacking, pondering the
identification of effective prognostic and diagnostic biomarkers. Dysregulation of signaling molecules in intracellular signal
transduction, which regulate cell proliferation, apoptosis, and adhesion, underlines the basis of NPC pathogenesis. In this
paper, the molecular signaling pathways in the NPC are discussed for the holistic view of NPC development and progression.
The important insights toward NPC pathogenesis may offer strategies for identification of novel biomarkers for diagnosis and

prognosis.

1. Introduction

Nasopharyngeal carcinoma (NPC) is a squamous epithelial
cancer arising from the lateral wall surface of nasopharynx
[1]. Unlike other head and neck cancer, NPC shows a clear
regional and racial prevalence. The incidence of NPC is high
in the southern region of China, the Southeast Asia, Alaska,
and native Greenlanders [2—4]. The differences in geographic
and ethnic distribution reflect the multifactorial etiology
of NPC, including the Epstein-Barr virus (EBV) infection,
ethnics, genetic susceptibility, environmental factors, and
food consumption [5, 6].

According to the world health organization, NPC can
be classified into 3 subtypes of microscopic histological
patterns. These include (i) type I, keratinizing squamous cell
carcinoma that shows predominant features of producing
keratin proteins, (ii) type II, differentiated nonkeratinizing
carcinoma, and (iii) type III, nonkeratinizing carcinoma with
less differentiation. While the NPC type I is uncommon in
endemic areas, types II and III are more common and have
been shown to be closely related to EBV infection [7]. There

are lines of evidence showing that EBV plays a critical role
in transforming nasopharyngeal epithelial cells into invasive
cancer cells.

At present, treatment of NPC is usually via radiotherapy.
NPC is more sensitive to ionizing radiation than other
cancers. However, the treatment success mostly depends on
the tumor, node, and metastasis (TNM) stages classification
[8], which tend to be in the advanced stages at the point
of diagnosis because the primary anatomical site of cancer
growth is located in the silent painless area. The 5-year
survival rate of stages I and II NPC ranges from 72 to 90%.
However, the 5-year survival rate of stages IIT and IV NPC
are ~55% and 30%, respectively, mostly due to a relatively
high incidence of locoregional recurrence or metastasis
[9]. Moreover, NPC has a poor prognosis because of late
presentation of lesions, poor understanding of the molecular
mechanisms, no suitable markers for early detection, and
poor response to available therapies [10].

One elemental factor mediating the biological behaviors
of NPC including carcinogenesis is the alteration of intra-
cellular compartment signaling. Such signaling pathways are
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critical for cell survival, growth, and metastasis. However,
research on the molecular signaling pathways in NPC devel-
opment is in its infancy, when compared to other cancers
such as breast cancer, colorectal cancer, and squamous cell
carcinoma of neck and neck cancer. This paper explores
the subject of the molecular signaling pathways in the NPC
pathogenesis. The schematic representation of the pathways
discussed in this paper is shown in Figure 1. The better
understanding of the molecular signaling pathways in NPC
may provide a substantial opportunity for identification of
novel diagnostic and prognostic biomarkers and might also
improve individual treatment in patients with NPC.

2. Wnt Signaling Pathway

The Wnt signaling pathway is a protein network partic-
ipating in multiple developmental processes of embryo
and tissue homeostasis of adults [11]. The canonical Wnt
pathway occurs when Wnt proteins interact with cell-
surface receptors in the frizzled (Fz) family [12, 13],
thereby activating the dishevelled (DSH) family proteins
[14]. DSH is a key component of a membrane-associated
Wnt receptor complex, which inhibits a bundle of proteins
that includes axin, glycogen synthase kinase-33 (GSK-
3f3), and the adenomatous polyposis coli (APC) protein.
The axin/GSK-3p/APC complex normally phosphorylates -
catenin, leading to its ubiquitin-mediated proteolytic degra-
dation [15, 16]. Following the inhibition of the axin/GSK-
3B/APC complex by Wnt signaling, a pool of cytoplasmic f3-
catenin is stabilized and translocates into the nucleus, thereby
interacting with various transcription factors to promote
specific gene expression, causing cellular proliferation and
differentiation [11]. Furthermore, the cytoplasmic S-catenin
can also bind to the intracellular domain of E-cadherin to
maintain cellular adhesion in the normal cells [17, 18].
Dysregulation of the Wnt signaling pathway has been
found in many types of cancer including lung cancer, col-
orectal cancer, leukemia, and head and neck cancer [19-22].
Prolonged Wnt signaling activates DSH to phosphorylate
GSK-3p resulting in its inactivation, in turn leading to f3-
catenin accumulation [23]. There are a number of reports
suggesting the relevance of the Wnt signaling in the NPC
development. The upregulation of frizzled receptor family 7
(FZD7) and downregulation of axin-2 (AXIN2) have been
found in the NPC transcriptomics studies [24]. Moreover,
the expression of an endogenous Wnt inhibitory protein,
Whnt inhibitory factor (WIF), has been found to be decreased
in NPC [25-27]. The WIF expression has been shown to be
blocked via hypermethylation of its promoter in NPC cell
lines [28]. The WIF promoter methylation levels relate to
TNM stages [29]. These results indicate that abnormal Wnt
signaling is common event in the NPC development.
Prolonged activation of f3-catenin induces the accumu-
lation of intranuclear f-catenin in NPC cells [30], hinting
that nuclear S-catenin is one of significant components
of NPC development. GSK-3f can be inactivated by EBV
infection leading to an increase in the level of cytoplasmic
p-catenin in lymphocytes [31]. The downregulation of GSK-
3/ in NPC cells may be resulted from the upstream signaling
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pathways regulation such as Wnt or Akt pathways as well
[19, 32]. Moreover, the levels of phosphorylated GSK-3p
and intranuclear f-catenin have been shown to be higher
in NPC cells after EBV infection [30]. The expression of f3-
catenin has been associated with advanced stages of NPC
and inversely relates with the survival rate of patients [33].
It implies the important role of Wnt signaling pathway on
the dysregulation of $-catenin in NPC.

p-catenin is able to interact with transcription factors
and promotes gene expression which involves in the cancer
development. It can activate several downstream proliferative
signaling molecules such as c-Myc and cyclin D1 in cancer
[19, 34]. Cyclin D is accountable for cell cycle progression
through G1 phase. Overexpression of cyclin D1 allows cells
with damaged DNA or chromosome to proceed through S
phase without DNA damage repair, enhancing the risk of
cancer development [35, 36]. It has been shown that the
NPC cells exhibit overexpression of cyclin D1, which can
be comparable to the expression level in head and neck
squamous cell carcinomas (HNSCC:s). The level of cyclin D1
is related to the local disease recurrence and sensitivity to
the radiotherapy of head and neck cancer including NPC
[37, 38]. However, the cellular consequences of cyclin D1
upregulation in NPC have yet to be determined.

Furthermore, f-catenin can also interact with other
proteins that have been linked to NPC carcinogenesis
including (i) the interleukin-8 (IL-8), the molecule which
has been shown to be an angiogenic factor in NPC [39], (ii)
the tumor suppressor RAS association family 1A (RASSF1A),
in which downregulation causes abnormal mitotic spindles,
aneuploidy, and transformation of NPC cells [40], and
(iii) E-cadherin, forming a complex with cytoplasmic f3-
catenin to maintain cellular adhesion [17], mediating cell
communication and suppressing metastasis. Lower levels
of the cytoplasmic f-catenin in the NPC accelerate the
NPC progression and metastasis [18, 26]. Both mRNA and
protein levels of E-cadherin in metastatic NPC cells have
been shown to be lower comparing to the primary NPC
[41, 42] or noncancerous cells [43]. Although several reports
indicate the relationship of the Wnt signaling pathway and
[3-catenin activity in NPC development, however the detailed
interaction of individual factors in the Wnt pathway have not
been completely understood.

3. PI3K-Akt Signaling Pathway

The phosphoinositide 3-kinases (PI3K) are a group of
enzymes involved in diverse cellular functions including cell
growth, proliferation, differentiation, motility, survival, and
intracellular trafficking [44, 45]. Many of these functions
relate to the ability of class I PI3K to phosphorylate
and activate a serine/threonine protein kinase B (Akt), in
turn regulating cell proliferation and preventing apoptosis
[46]. Uncontrolled regulation of PI3K is therefore involved
directly in cancer. Hyperactivation of PI3K pathway through
various mechanisms is significant to the development of
NPC. One of such mechanisms might be upregulation of
PI3K catalytic subunit (PIK3CA) as it has been evident
in head and neck cancer [47]. The EBV-encoded latent
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FIGURE 1: Overview of the signaling pathways in the pathogenesis of nasopharyngeal carcinoma (NPC). Initiation of upstream signaling
proteins in the NPC development begins with LMP1. Subsequent induced activity of downstream proteins in several pathways such
as -catenin, NF-xB, and AP-1 leads to dysregulation of cell proliferation (cdk/cyclin protein), cell transformation (TERT), increase in
angiogenesis (IL-8) and metastasis (E-cadherin, MMPs), and inhibition of apoptosis (Bcl-2, p53). Green arrows and red blunt-end arrows

represent up- and downregulation, respectively.

membrane protein 1 (LMP1), a key effector of EBV-mediated
nasopharyngeal cell transformation [48-51], also directly
activates PI3K, leading to Akt phosphorylation and activa-
tion of several downstream signaling [52], which includes
the degradation of a cyclin-dependent kinase inhibitor p27,
resulting in progression of cell cycle [48]. c-Fos, which
encodes an oncogenic protein that binds to c-Jun protein
to form the transcription factor AP-1, an essential regulator
for cell proliferation and survival [53], is also upregulated
in NPC via Akt activity [54]. Alterations of the PI3K
gene at the genomic level, such as mutations and gene
amplification, have been found to be strongly related with
the distant metastasis, lymph node involvement, advanced
tumor stages, as well as worse prognosis [44]. In addition,
treatment of NPC cells with a PI3K inhibitor LY294002
results in inhibition of Akt activation, thereby hindering
cell proliferation and inducing cell apoptosis [55]. Another
potential mechanism of PI3K activation might be through
the reduction in the phosphatase and tensin homolog protein
(PTEN) [56]. Downregulation of PTEN has been observed in

more than half of NPC cases [57]. Interestingly, comparison
between the cancer cells and normal neighboring cells
demonstrates that NPC cells exhibit the high level of Akt
with the low level of PTEN expression [56]. The level of
PTEN downregulation in the NPC type I has been shown
to be greater than type II and III with poorly differentiated
cells [57]. The mechanism of PTEN downregulation in NPC
is still unclear but it might be as a result of the epigenetic
alterations to PTEN at transcription level. Hypermethylation
of PTEN promoter has been demonstrated in certain cancers
such as laryngeal and thyroid cancer [58]. Although a
number of gene promoter hypermethylation in NPC have
been identified, the PTEN promoter hypermethylation has
not been investigated [59]. On the other hand, nicotine,
one of the environmental factors for NPC carcinogenesis
[5], is recently found to stimulate PTEN degradation by
phosphorylation the C-terminal of PTEN protein in lung
cancer [60]. PTEN level has also been related with cancer
aggressiveness. Downregulation of PTEN is frequently found
in the stages III-1V of NPC, but usually not in the stages I-11



[57]. Altogether, these data suggest that the Akt activation
and/or PTEN inhibition lead to dysregulation of multiple
cellular functions and have been closely associated with the
NPC development and metastasis.

4. MAPK Pathway

The mitogen-activated protein kinase (MAPK) pathway is a
chain of proteins in the cell which communicates a signal
from a receptor on the surface of the cell to the nucleus
by phosphorylation of various transcription factors [61, 62].
The signals are transmitted through a cascade of kinases [63].
The MAPKs such as c-Jun N-terminal kinase (JNK) and
extracellular signal-related kinase (ERK) have been shown to
play an important role in cancer development [61].

JNKs are also known as stress-activated protein kinases
that are involved in cell survival and cell death. Normally,
prolonged activation of JNK results in cellular apoptosis
whereas transient activation leading to cellular survival and
proliferation [64, 65]. Downregulation of JNK has been
evident in cancer cells with tolerance for cell death [66].
Interestingly, unlike most cancers, NPC exhibits induced
regulation of JNK via LMP1-dependent route [67-70]. Pro-
longed JNK activation has been evident in NPC as well as oral
squamous cell carcinoma [71, 72]. Constitutive activation of
JNK in NPC has a significant effect in cancer development
including p53 inactivation via phosphorylation, activation of
DNA methyltransferase leading to reduction in E-cadherin
gene expression [68, 71]. However, the JNK overactivation
pattern and its role in NPC is still unclear.

ERKs are constitutively expressed MAP kinases that
function in a variety of cellular regulation leading to cell
growth and development [73]. Phosphorylation of ERK
proteins via the Ras/Mek/ERK pathway cascade induces
the activation of transcription factors NF-xB, AP-1, and
ETS [74], resulting in the downstream outputs including
the induction of c-Fos, cyclin D1, and c-Myc, which are
important in cellular proliferation and growth regulation
[75, 76]. Upregulation of ERK has been found in NPC
[77] as well as several types of cancer such as gastric
adenocarcinoma [78], hepatocarcinoma [79], and renal cell
carcinoma [80]. The mechanism of aberrant ERK activation
has been reported to be involved with abnormality of
upstream proteins in most types of cancer [81]. Up to 90% of
pancreatic cancer exhibits the RAS mutations and the BRAF
mutations have been found in 66% of melanoma. Moreover,
more than half of most carcinomas showed overexpression
of the epidermal growth factor receptors (EGFRs), resulting
in aberrant activation of the ERK signaling pathway [82].
In case of NPC, the upregulation of ERK can be mediated
through several mechanisms. For example, downregulation
of the Raf kinase inhibitory protein (RKIP), a protein that
inhibits the Raf protein activity and its downstream cascade
including ERK, has been observed in NPC cells and has also
been reported as a metastasis suppressor. RKIP has also been
associated with advanced clinical stages, poor prognosis, and
radio-resistant phenotypes in NPC cells [83], pointing to the
potential use of RKIP as a biomarker for NPC prognosis.
However, further investigations must be warranted in order
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to verify this claim. Another possible mechanism that might
activate ERK is through loss of dual-specificity phosphatase 6
(DUSP6), which has also been found in NPC cells and shown
to induce tumor formation and metastasis in vivo [84].
Moreover, LMP1-dependent mechanism has been proposed
to trigger ERK activation in NPC cells by direct stimulation
of RAS protein [23, 77]. Constitutively active ERK protein
has also been reported to phosphorylate and inactivate p27,
a cell cycle regulator protein, allowing the CDK2/cyclin E
complex to remain activated, hence enhancing cell entry to
the S phase [85]. On the other hand, LMP1 silences the
expression of RAS association domain-containing proteins
(RASSF) via hypermethylation leading to prolonged RAS
activation [40, 86]. Additionally, the high ERK expression has
been correlated with shorter overall survival rates and severe
disease development in NPC patients [87]. Collectively,
these data indicate that ERK pathway is involved in NPC
progression and individual players within pose as potential
molecular markers for NPC prognosis.

5. Apoptosis Pathway

Dysregulation of apoptotic signals is significantly involved in
development of various types of cancer including NPC. The
well-known case is the aberrant activation of an apoptotic-
regulated protein, B-cell lymphoma 2 (BCL-2). BCL-2 is a
human proto-oncoprotein located in the membranes of the
nuclear envelope, endoplasmic reticulum, and in the outer
membrane of mitochondria. Overexpressed BCL-2 protein
in NPC has been reported in a higher percentage than
other head and neck cancers [88]. The upregulation of Bcl-
2 mRNA has been found in several studies in NPC biopsies
[29, 89, 90], and might be linked to the EBV-dependent
mechanism [91]. BCL-2 expression in the EBV-positive NPC
cells has been shown to be higher than the EBV-negative
counterparts [88, 92]. It is noteworthy that the expression
of Bcl-2 in NPC can also be upregulated through the LMP1-
independent mechanism due to the fact that silencing of
LMP1 does not affect Bcl-2 expression [48]. Although Bcl-2
expression is not directly related to EBV infection, BCL-2 can
function synergistically with LMP1 to advance more rapid
cell growth than BCL-2 alone in NPC [93]. Upregulation of
BCL-2 has been closely related to aggressive traits in NPC
including lymph node involvement, metastasis, recurrence,
and poor survival rates in NPC patients [29, 89, 90, 92].
Furthermore, patients with the NPC stages III and IV,
which exhibited low levels of Bcl-2 expression, were shown
to have higher disease-free 5-year survival rate than those
with high Bcl-2 expression [94, 95]. These data imply the
critical role of BCL-2 in the NPC pathogenesis; however, the
exact molecular mechanism of Bcl-2/BCL-2 in NPC is still
unclear.

Tumor suppressor protein p53, which responses to DNA
damage, triggers activation of DNA repair proteins and
induces cell cycle arrest. It is evident that p53 is suppressed
in several types of cancer. Interestingly, p53 expression level
significantly increases in NPC and relates to the size of the
tumors [70]. Upregulation of p53 has been associated with
the EBV infection and high levels of LMP1 [91, 96, 97]. LMP1
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activates nuclear factor kappa-light-chain-enhancer of acti-
vated B cells (NF-«B) via the binding of tumor necrosis factor
receptor-associated factors (TRAFs) [52]. NPC exhibits the
overexpression of NF-xB [25, 98], resulting in activation
of components in the proliferative and survival pathways
including p53 protein [99]. The decrease of kinase activity
of cell division cycle 2/cyclin B (CDC2/cyclin B) complex,
which can also be regulated through the p53, and inducing
cell cycle arrest at G2/M phase has been found in NPC cells
[99]. Despite the high level of p53, it is not successful to
encourage NPC cells to undergo apoptosis [100]. The reasons
that might underline this phenomena include the presence of
mutated form of p63 and/or downregulation of p14 protein
[101]. p63, a homolog of p53, has a conserved DNA binding
domain similar to p53 protein and also induces cellular
apoptosis [102]. The mutated form of p63 binds the DNA
target, thereby blocking the p53 and fails to induce cellular
apoptosis due to the lack of N-terminal transactivating
domain [103]. Loss of pl4 protein expression due to
promoter hypermethylation [59] results in p53 degradation
via ubiquitin-mediated proteolysis, hence enhancing cell
survival [101]. The discrepancy between the high level of
p53 and the loss of pl4 leading to p53 degradation may
arise from the multifactorial etiology of NPC. The puzzle
of p53 overexpression in NPC has yet to be investigated.
Upregulation of p53 in NPC cells may be advantageous
to NPC development due to resistant to cellular apoptosis
by decreasing the activity of JNK pathway [70, 100, 104].
However, we cannot exclude other possibilities that this
could be limited to certain NPC cases.

Survivin is a member of the apoptotic inhibitors. The
antiapoptotic activity of this protein is mediated by the
microtubules in mitotic spindles and inhibition of cas-
pase activation. Upregulation of survivin, both mRNA and
protein, has been found in NPC, with higher percentages
especially in stages III and IV NPC [91, 105]. Survivin
expression and nuclear translocation are induced by EBV
infection via LMP1-mediated mechanism [91, 106]. Bind-
ing of intranuclear survivin to cyclin-dependent kinase 4
(CDK4) releases the inhibitory complex of p21 and pl6
leading to CDK4-dependent entry to the S phase protein
transcription and S phase progression in NPC [106, 107].
Overexpression of survivin is related to poor prognosis
whereas inhibition of survivin reduces NPC cell viability and
enhances sensitivity of NPC to radiotherapy [25, 108, 109].
These data suggest that survivin is a critical regulator in
NPC development and has potential prognostic implication
in NPC.

Telomerase is a reverse transcriptase that adds specific
DNA sequence at 3" end of telomere regions at the ends of
eukaryotic chromosomes. Since up to 100-200 nucleotides
at chromosome end are lost in every DNA replication cycle,
telomerase is an important enzyme that utilizes their own
RNA molecules as a template to elongate telomeres for
telomere length maintenance and prevent constant loss of
important DNA. Human telomerase reverse transcriptase
(TERT) is significant to transform normal nasopharyngeal
cells into NPC as its high activity has been reported
in most NPC as well as other head and neck cancers

[110]. Interestingly, constitutive expression of telomerase
can induce the alteration of the primary nasopharyngeal
epithelial cells into immortalized nasopharyngeal epithelial
cell lines [111], pointing towards the importance of TERT
in NPC transformation. Upregulation of TERT is induced
by EBV infection via LMP1-mediated mechanism. LMP1 has
been demonstrated to increase the c-myc expression and NF-
kB. Expression of TERT is regulated by the c-myc activity
and NF-«B mediates the translocation of TERT protein into
nucleus [112, 113].

6. EGFR Pathway

The epidermal growth factor receptors (EGFRs) are the
members of tyrosine kinase receptors. Similar to other head
and neck cancers, overexpression of EGFR in NPC is quite
frequent and has been reported to be as high as 80%
in primary NPC biopsies [114-117]. The high levels of
EGER expression have been detected in NPC patients with
advanced stages [115, 118]. Overexpression of EGFR results
in high activity of its downstream signaling cascades such as
RAS/ERK signaling, giving rise to irregular cell proliferation
[119]. EBV infection has been shown to stimulate the
endocytosis of EGFR and translocation into the nucleus [52].
While cytoplasmic EGFR binds to cyclins D1 and E to induce
the G1/S phase progression [120], intranuclear EGFR acts as
a transcription factor to promote the expression of cellular
proliferation components [52]. In contrast, the inhibition of
EGFR signaling does not totally inhibit NPC proliferation
[121], suggesting that other pathways might be also involved
in NPC development.

7. miRNA in NPC

Recently, a novel function of noncoding genes, microRNA
(miRNA), has emerged to play a role in regulation of
several cellular processes [122, 123]. miRNAs are 20-24
nucleotide-in length RNA molecules, which function in
the posttranscriptional regulation that represses protein
translation and/or induces RNA degradation via binding to
complementary sequences on the target mRNAs, resulting
in targeted gene silencing. Primary miRNAs are usually
transcribed from introns or noncoding regions and are
cleaved in the nucleus by Drosha enzyme to yield hairpin
precursor miRNAs (pre-miRNAs). Pre-miRNAs are then
translocated into the cytoplasm and are subsequently cleaved
by RNase III Dicer, giving rise to miRNA. These miRNA
fragments execute their regulatory role as element of the
RNA-induced silencing complex (RISC) [122, 124].

Up to 40 miRNAs have been reported to be expressed
in the different parts of EBV genome [125, 126]. The
main target of EBV miRNA is its oncogene LMP1 [127].
The overexpression of LMP1 protein may results in the
inhibition of cell proliferation and increase in apoptosis
[128]. Therefore, to prevent excessive LMP1 expression,
inhibition of LMP1 on NPC by miRNA results in NPC cells
resistant to the apoptosis. Regulation of LMP1 expression via
miRNA can be used to explain for the observed inconsistency
between LMP1 trasnscripts and protein expression [127].



Understanding the function of miRNAs may provide the
biomarkers of NPC development for screening high-risk
populations.

In addition to EBV-encoded miRNA, some cellular
miRNAs in NPC have also been reported to be differentially
expressed, leading to alterations in cellular gene expression
that affect various signaling pathways in cell proliferation
and apoptosis. A study of large-scale miRNA profiling in
NPC comparing to normal adjacent nasopharyngeal cells
revealed 35 miRNAs whose expression levels were notably
changed in NPC samples. For example, upregulation of
oncogenic miR17-92 and miR-155 and downregulation of
tumor suppressive miR-34 family, miR-143, and miR-145
have been demonstrated. Twenty-two significantly down-
regulated miRNAs are predicted for collectively targeted in
NPC pathogenesis and progression [129], including the Wnt
signaling pathway, cell cycle progression, and apoptotic and
survival pathways [129]. Consistently, downregulation of
miR-29¢ has been reported in primary NPC cells compared
to normal nasopharyngeal mucosa. Most of miR-29¢ tar-
geted genes encode extracellular matrix proteins including
laminin-y1. These proteins have been reported to be involved
in cancer cell metastasis [130]. The miRNA data suggest that
both viral and host cell miRNAs have significant functions
on the NPC development and progression.

8. Summary

In the pregenomic eras, highly integrated and complex
circuitry of molecular signaling in NPC pathogenesis was
only partially understood. Over the past decade, the knowl-
edge of the molecular mechanisms in NPC carcinogenesis
has been rapidly accumulated. Dysregulation and abnormal
protein expression of molecules in certain signaling path-
ways involved in cellular functions including proliferation,
adhesion, survival, and apoptosis has been demonstrated in
the NPC cells. Detailed information on the complex network
in signaling pathway leading to a coordinated pattern of
gene expression and regulation in NPC will undoubtedly
provide important clues to develop novel prognostic and
therapeutic strategies for this cancer. Refining molecular
markers into clinically relevant assays may assist in the
detection of NPC in asymptomatic patients, as well as
stage classification and monitoring disease progression and
treatments. Furthermore, selective regulation of particular
proteins targeting cancer cell proliferation, invasion, and
apoptosis is a hopeful prospect for future anticancer therapy
that slow disease progression and improve survival.
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