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Abstract

To address the large gap between time scales that can be easily reached by molecular sim-

ulations and those required to understand protein dynamics, we present a rapid self-consis-

tent approximation of the side chain free energy at every integration step. In analogy with

the adiabatic Born-Oppenheimer approximation for electronic structure, the protein back-

bone dynamics are simulated as preceding according to the dictates of the free energy of an

instantaneously-equilibrated side chain potential. The side chain free energy is computed

on the fly, allowing the protein backbone dynamics to traverse a greatly smoothed energetic

landscape. This computation results in extremely rapid equilibration and sampling of the

Boltzmann distribution. Our method, termed Upside, employs a reduced model involving the

three backbone atoms, along with the carbonyl oxygen and amide proton, and a single (ori-

ented) side chain bead having multiple locations reflecting the conformational diversity of

the side chain’s rotameric states. We also introduce a novel, maximum-likelihood method to

parameterize the side chain interactions using protein structures. We demonstrate state-of-

the-art accuracy for predicting χ1 rotamer states while consuming only milliseconds of CPU

time. Our method enables rapidly equilibrating coarse-grained simulations that can nonethe-

less contain significant molecular detail. We also show that the resulting free energies of the

side chains are sufficiently accurate for de novo folding of some proteins.

Author summary

To address the large gap between time scales that can be easily reached by molecular simu-

lations and those required to understand protein dynamics, we propose a new methodol-

ogy that computes a self-consistent approximation of the side chain free energy at every

integration step. As a result, the method largely eliminates side chain friction, a factor that

greatly slows all atom approaches. With this speed-up, our method is capable of folding

some proteins in CPU-hours. We also demonstrate state-of-the-art accuracy for
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predicting χ1 rotamer states with a 100-fold speedup. Because conformational space can

be rapidly explored with our inexpensive method, it is an excellent starting point for

studying protein dynamics involving large conformational transitions.

Introduction

Two major challenges must be overcome in order to accurately simulate protein dynamics.

The first is the necessity of balancing the large and competing sources of energy and entropy

whose sum determines both the thermodynamics and the native conformation of the protein.

The second challenge involves the intensive sampling required to obtain a Boltzmann ensem-

ble of conformations. The sampling challenge is addressed here by integrating out the side

chain degrees of freedom to produce a coarse-grained configuration defined just in terms of

the backbone N, Cα, and C atoms. Consequently, backbone motions evolve on a smoother free

energy surface with greatly reduced side chain rattling (molecular friction) compared to that

for standard all-atom molecular dynamics simulations.

The uncertainty in the position of coarse-grain interactions heightens the difficulty of accu-

rately parameterizing a coarse-grained model. We do not follow the customary process of

matching the energies of the coarse-grained model to approximate the already inexact energies

of atomistic force fields or try to interpret raw statistics for the distribution of interatomic dis-

tances in the Protein Data Bank (PDB) [1] along with a reference state [2]. Instead, our side

chain interaction energies are determined as those that best reproduce the side chain confor-

mations observed in the PDB, given the native-state backbone configurations. That is, we

search for an energy function that assigns on average the highest probability to the native χ1

rotamer.

This maximum-likelihood approach has key advantages: 1. It directly provides an interpre-

tation of the structural information as a sample from the statistical mechanical ensemble of

side chain packing, and 2. it can be evaluated quickly since we show that approximating the

Boltzmann distribution for the side chains in a fixed backbone configuration does not require

laborious Monte Carlo sampling of the χ angles in the side chain.

Using our side chain ensembles, we are able to predict χ1 rotamer configurations with simi-

lar accuracy as SCWRL4 [3] and OSCAR [4] [5], yet our predictions take less than 1% of the

computational time. We are also exceed the speed of the rapid side chain packing algorithm

RASP [6] by more than an order of magnitude. The accuracy of our side chain rotamer predic-

tions validates that our side chain interaction potential captures much of the important physics

of side chain interactions, suggesting suitability for molecular dynamics.

Methods

Upside model

The strategy in our Upside model is to perform dynamics simulations for just the N, Cα, and C

atoms that define the backbone trace, while still including sufficient structural detail (side

chain structures and free energies, etc.) necessary to compute realistic forces. Fig 1 presents an

overview of the six step computational cycle used for molecular (Langevin) dynamics simula-

tions. While the overarching goal of our work is extremely rapid molecular dynamics, our new

interaction model gives very accurate and rapid predictions of side chain χ1 angles. The inclu-

sion of the side chain free energy, rather than the side chains themselves, greatly smooths the

potential governing the dynamics of the backbone trace, especially because of the reduction of
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steric rattling. The parameters used in the energy calculation are trained to maximize the prob-

ability of the average side chain having the native χ1. The major computational steps are:

Step 1. The loop begins (upper left corner) with each residue in the protein being represented

with 3 backbone atoms, the N, Cα and C. Based on the position of these atoms, the car-

bonyl oxygen, O, and amide proton, H, are deterministically placed.

Step 2. Each side chain, represented by a single oriented bead, is assigned an initial probability

for being in 1–6 states, depending on the residue type (Fig 2) and the average fre-

quency observed in the PDB. The state of the bead is defined by its position and an ori-

entation, (x,y,z,v), where v is a unit vector relative to the peptide plane. The position

and orientation of the bead define the interaction graph (Fig 3).

Step 3. The pair-wise state probabilities of all side chains are simultaneously and rapidly cal-

culated using belief propagation to produce the lowest system free energy satisfying

Eq 7.

Step 4. Forces on the 3 backbone atoms, as well as on the O, H and side chain beads are calcu-

lated from the derivative of the free energy.

Fig 1. Six step inner loop of Upside calculation. The side chain potential enters into the integration step simply as a complicated, many-body energy function

that may be treated with standard techniques of molecular simulations.

https://doi.org/10.1371/journal.pcbi.1006342.g001
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Step 5. Forces on the O, H and beads are “pulled back” and added to the forces on the 3 back-

bone atoms by reversing the placement process via Eq 16.

Step 6. Langevin dynamics (implicit solvent with friction) are run on the 3 backbone atoms

using the forces calculated in Steps 4 and 5.

Below we describe the steps in detail.

Side chain free energy evaluation

One can consider a representation of the protein in terms of the coordinates ({bi}, {χi}) where

bi represents the positions of the backbone N, Cα, and C atoms on the i-th residue and χi repre-

sents the side chain χ-angles on the i-th residue. Because bond lengths and angles are relatively

constant, the positions of the atoms can be reconstructed with high accuracy from the ({bi},
{χi}) coordinates (Step 1). Given a potential energy V({bi}, {χi}), we calculate the free energy as

Fig 2. Error in the position as a function of the number of side chain states, resulting from a decomposition of

rotamer states into coarse-grained states. The table summarizes the number of states chosen for each amino acid

type. The relative uncertainty is the positional uncertainty for each number of states divided by the accuracy at three

states. One, three, or six rotamer states are used, depending on the residue type. For residues without a rotatable χ2,

such as valine, only three states are needed. The time to compute the pairwise interactions and solve for the free energy

scales roughly as the number of coarse rotamer states squared, so the use of fewer coarse states is preferred. Ile, Leu and

Lys are the three residues with rotatable χ2 where only 3 states are assigned.

https://doi.org/10.1371/journal.pcbi.1006342.g002

Fig 3. Fragment of protein G with associated interaction graph (Rcutoff = 7Å). A pair of residues is assigned a

connection whenever their side chain beads are within Rcutoff for any side chain states.

https://doi.org/10.1371/journal.pcbi.1006342.g003
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a function of the backbone configuration, from the logarithm of the partition function

�V ðfbigÞ ¼ � log
Z

dw1 � � � wN e
� Vðfbig;fwigÞ: ð1Þ

Natural energy units are used with kBT = 1. An intermediate step of this derivation requires a

discrete approximation f~w ig for our χ-angles and a discrete approximation �V ðfbig; f~w igÞ for

the potential.

Rather than directly calculate Eq 1, we define an intermediate discrete approximation to �V
where the side chain bead positions and orientations are defined to be in up to six discrete

positions that are amenable to approximation techniques (Step 2). This discretization process

is accomplished using a discrete coarse-graining function g which maps the continuous side

chain rotamers χi: ~w i ¼ gðwiÞ, where ~w i is a state label (~w i 2 f1; . . . ; 6g as each side chain is rep-

resented by a bead located at one of up to 6 positions). The coarse-grain potential ~V is defined

so that

e� ~V ðfbig;f~w igÞ �

Z

dw1 � � � wN

Y

i

d~w igðwiÞ

 !

e� Vðfbig;fwigÞ: ð2Þ

In principle, any coarse-grain function for the side chains may be used. The discrete form ~V of

the potential provides an accurate approximation as the distribution of χ-angles is sharply

peaked (in the true potential V) within each discrete state ~w. Fig 4 provides an example of a

function while Subsection Optimized mapping to coarse states shows how the optimized

function g is derived.

We make the following assumptions on the form of ~V . First, we assume an explicit function

yiðbi; ~w iÞ exists for the side chain coordinates based only on the backbone coordinates and side

chain state for residue i. We may relax the requirement to consider a single residue’s backbone

position, but it is required that yi depend on only a single side chain state ~w i. These directed

coordinates are approximately the side chain centers of mass with direction given by the

Cβ−Cγ bond vector.

Fig 4. Example of optimized coarse states for arginine overlaid on the PDB distribution of the rotamer angles χ1

and χ2. Each of the six coarse states contains only a single fine state that has high probability, so that the variance of

dihedral angles within each coarse state is small.

https://doi.org/10.1371/journal.pcbi.1006342.g004
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The ~V are expressed as the sum of a backbone term involving dihedral angle preferences,

side chain-backbone interactions (including hydrogen bonding), and pairwise interactions

involving the side chains,

~V ðfbig; f~w igÞ ¼ VbackboneðfbkgÞþ
X

i

Vð1Þi ðfbkg; ~w i; yiðbi; ~w iÞÞþ

X

i;j

V ð2Þij ðyiðbi; ~w iÞ; yjðbj; ~w jÞÞ;

ð3Þ

The pair interaction Vð2Þij ðyi; yjÞ ¼ 0 for the side chain is taken to vanish beyond a cutoff Rcutoff.

The dependence of the potential on the backbone is completely general, but the potential is

assumed to contain at most a pairwise dependence on the discrete rotamer states ~w i. Explicit

parameterizations for yi and ~V are defined in the Subsection Bead locations and interactions

using the principle of maximum likelihood.

One can simulate the Boltzmann ensemble for ~V using molecular dynamics for the back-

bone {bi} and Monte Carlo moves for the side chain states f~w ig. But the strong steric interac-

tions are likely to lead to slow equilibration and dynamics for both the side chains and

backbone. Because we are predominantly interested in backbone motions, we return to the

free energy �V in Eq 1, now summing over discrete side chain states instead of integrating over

continuous side chain angles,

e� �V ðfbigÞ �
X

~w1 ;...;~wN

e� ~V ðfbig;f~w igÞ: ð4Þ

The potential �V ðfbigÞ represents a further coarse-graining of the system by completely replac-

ing the influence of the side chains with a potential describing their adiabatic free energy for a

given fixed backbone conformation. Because �V depends only on the (continuous) backbone

coordinates, this choice of �V enables running standard molecular dynamics simulations

instead of a hybrid of Monte Carlo and molecular dynamics.

Importantly, the potential �V ðfbigÞ is a much smoother function of the backbone coordi-

nates than the original V({bi}, {χi}) because the replacement of the side chain degrees of free-

dom with the approximate free energy of the side chains greatly reduces steric rattling and

molecular friction. The reduction of the ruggedness of the energy landscape enhances diffu-

sion within conformational basins but preserves the overall structure and barriers that define

the conformational ensemble.

Approximating the side chain free energies

The benefits of running dynamics with our coarse grained �V could enter at great cost because

using even with three coarse-grained states per side chain, there are over 3N ~w-states in Eq 4.

However, the vast majority of those 3N states have steric clashes or other large energies and,

therefore, contribute little to the side chain free energy. In this section, we describe how we

take advantage of this potentially huge reduction in relevant states to calculate an approximate

side chain free energy.

To approximate the free energy of the side chains �V , we express the problem in the lan-

guage of Ising models so that we can apply standard techniques developed in that context. For
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a fixed backbone configuration {bi},

~V ðfbig; f~w igÞ ¼ �vðf~w igÞ

¼
X

i

vð1Þi ð~w iÞ þ
X

i;j
neighbors

vð2Þij ð~w i; ~w jÞ; ð5Þ

where the potentials �v are written in lowercase to indicate suppression of the dependence on

the fixed backbone coordinates {bi} in order to focus on the side chain contribution. Notice

that with the backbone positions fixed, each single-residue potential vð1Þi is simply a vector with

as many components as the number of possible states for ~w i (e.g. length-6 vectors). Similarly,

each of the pair potentials vð2Þij is a small 6x6 matrix of potential energies to cover a maximum

of 36 possibilities. These single and pair potentials are calculated only once before evaluating

the free energy as described in Subsection Bead locations and interactions. Moreover, the

pair summation in Eq 5 only applies for residues pairs i and j that are neighbors spatially. A

pair of residues (i, j) are neighbors if inter-residue distance jyið~w iÞ � yjð~w jÞj is less than a cutoff

Rcutoff for any of their possible discrete states ð~w i; ~w jÞ. In this work, we use Rcutoff = 7 Å for side

chain-side chain interactions and Rcutoff = 5 Å for side chain-backbone interactions.

The potential ~V may be visualized as an energy function on a graph with one discrete site

per amino acid. The graph has a connection between any two residues that are within the cut-

off separation Rcutoff (Fig 3). The structure of this graph varies dynamically over the course of a

simulation because the definition of neighboring residues depends on the backbone configura-

tion {bi}. The potential varies smoothly as the backbone moves so long as the pairwise potential

functions are continuous in the backbone coordinates. The potential ~V is continuous despite

the changing connections of the graph because the strength of the potential for each interac-

tion approaches zero at Rcutoff just before the connection is eliminated from the graph. Prob-

lems such as this, with discrete potentials on an arbitrary graph, are extensively studied in both

statistical mechanics (as variants of the Ising model) and machine learning (as undirected

graphical models or Markov random fields) [7]. Below we adopt some well studied approxima-

tions from these fields to provide accurate and tractable methods for computing our coarse-

grain potential �V .

Two approximations [7] are invoked to compute the free energy according to

�V ¼ GSC ¼ � log
X

~w1 ;...;~wN

e� vðf~w igÞ: ð6Þ

The first approximation is to express the free energy GSC in terms of the entropy and average

energy of the Boltzmann ensemble where the entropy has been replaced by a mutual informa-

tion approximation that ignores 3-residue and higher correlations,

GSC ¼ h�vi � S

� h�vi � Sapprox;
ð7Þ

where h�vi and Sapprox are defined in Eqs 8 and 9. We express the average energy and approxi-

mate entropy using the single-residue probabilities pið~w iÞ that residue i is in state ~w i in the

Boltzmann ensemble of �v and similarly for the joint probabilities pijð~w i; ~w jÞ. Using pi and pij,

Accurate calculation of side chain packing and free energy with applications to MD
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the approximate energy and entropy are

h�vi ¼
X

i

X

~w i

pið~w iÞv
ð1Þ

i ð~w iÞþ

X

i;j
neighbors

X

~w i;~w j

pijð~w i; ~w jÞv
ð2Þ

ij ð~w i; ~w jÞ
ð8Þ

Sapprox ¼
X

i

X

~w i

pið~w iÞð� log pið~w iÞÞ�

X

i;j
neighbors

X

~w i ;~w j

pijð~w i; ~w jÞlog
pijð~w i; ~w jÞ

pið~w iÞ; pjð~w jÞ
:

ð9Þ

We intend to minimize the approximate free energy in Eq 7 over all putative Boltzmann

probability distributions for the side chain states f~w ig (Step 3). Notice that only the single side

chain probabilities pi and joint side chain probabilities pij are required to compute the average

energy and approximate entropy; we do not need the more complicated full joint probability

distribution of the f~w ig states for all side chains. In addition to the mutual information approx-

imation of the entropy, we assume that any pair probability pij represents possible pair proba-

bilities from a Boltzmann distribution, so that the only task is to minimize the free energy with

respect to the pair probabilities. The only constraints imposed are that they must satisfy the

obvious consistency conditions for probabilities,

pjð~w jÞ ¼
X

~w i

pijð~w iÞ ¼
X

~wk

pjkð~wkÞ ð10Þ

X

~w i ;~w j

pijð~w i; ~w jÞ ¼ 1 ð11Þ

pijð~w i; ~w jÞ ¼ pjið~w j; ~w iÞ: ð12Þ

However, the use of only conditions in Eqs 10–12 is insufficient to ensure that a joint probabil-

ity distribution exists for all the variables consistent with the choices of pi and pij. As an explicit

example,

p12 ¼ p23 ¼

1=3 0 0

0 1=3 0

0 0 1=3

0

B
@

1

C
A ð13Þ

p13 ¼

1=9 1=9 1=9

1=9 1=9 1=9

1=9 1=9 1=9

0

B
@

1

C
A ð14Þ

obeys conditions Eqs 10–12 but is not representable by any probability distribution for the

three residues. This aspect is a result of residue 1 being completely correlated to residue 2, and

residue 2 being completely correlated to residue 3, but residues 1 and 3 being independent,

which is mathematically impossible.

The issues of the approximation of the entropy and non-representability are potential

concerns. However, we expect that they typically are not a large source of error given the
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comparable accuracy in predicting side chain rotamers as models employing full side chains.

One limitation of these approximations is that the model cannot consider fully correlated side

chain distributions. This limitation could be an issue for an allosteric switch which couples

many side chain rearrangements with no accompanying backbone motion. As we represent

the side chain with up to 6 possibly conformations, we are likely to capture a significant frac-

tion of the conformation entropy for all but the longest side chains. Even then, each rotamer

only contributes about 0.15 kcal/mol [8].

Accepting the two approximations for entropy and representability, the free energy

becomes

GSC � min
fpig;fpijg

ðh�vi � SapproxÞ: ð15Þ

Thus, we now have a tractable approximation to free energy of the side chain. We can mini-

mize that free energy using a self-consistent iteration technique called belief propagation (see

Subsection Belief propagation). The iteration typically converges rapidly, often in 10-20 steps,

to produce an approximation of the side chain free energy.

Molecular dynamics simulations using the side chain free energy

In Upside, molecular dynamics simulations require calculations of the forces on the three back-

bone atoms (Step 4). The forces on all atoms are obtained from the derivatives of the potential

computed according to � d �V
dbi

. The forces on the O, H and bead are “pulled back” onto the three

backbone atoms using the chain rule (Step 5). We take advantage of several terms being zero

because the pair probabilities minimize the free energy,

dGSC

dbk
¼
@GSC

@bk
þ
X

i

@GSC

@pi

@pi

@bk
þ
X

i;j
neighbors

@GSC

@pij

@pij

@bk

¼
@GSC

@bk
¼
@h�vi
@bk
¼

@�v
@bk

� �

¼
X

i

X

~w i

pið~w iÞ
@vð1Þi

@bk
ð~w iÞþ

X

i;j
neighbors

X

~w i ;~w j

pijð~w i; ~w jÞ
@vð2Þij

@bk
ð~w i; ~w jÞ

ð16Þ

where @GSC

@pi
¼ @GSC

@pij
¼ 0 because pi and pij are chosen to minimize GSC. The remaining simplifica-

tions occur because the partial derivative of Sapprox with respect to the backbone coordinates bk
is zero (even though the total derivative

dSapprox
dbk

is nonzero). While the underlying side chain

interactions are pairwise additive and vanish outside the cutoff radius Rcutoff, the free energy in

Eq 7 is a many-body potential that can interact over arbitrary distances.

Since the approximate free energy due to the side chains is not a convex function of the

probabilities, local minima may arise and impair the self-consistent iteration from finding the

global minimum. To reduce the danger posed by the presence of local minima, calculations

are begun from a carefully initialized state (see Subsection Belief propagation for details).

Other self-consistent approximations exist for the side group free energy, such as tree-

reweighted belief propagation [9], that are typically less accurate but always converge to the

global minimum of their approximate free energy. Another limitation of the present

Accurate calculation of side chain packing and free energy with applications to MD

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006342 December 27, 2018 9 / 25

https://doi.org/10.1371/journal.pcbi.1006342


approximation scheme arises when a bi-stable or multi-stable energy landscape is possible for

the rotamer states. If well-separated and equally important minima are present for a single

backbone configuration in the rotamer free energy surface, the probabilities only converge to a

single minimum and thus underestimate the entropy of the side chains. While this does not

appear to occur near the native well, we have not extensively searched for special backbone

configurations that would result in bi-stable rotamer energies. The characterization of such

problematic configurations, likely near free energy barriers, is left to future work.

Bead locations and interactions

Paralleling the necessity of coarse-graining the rotamer states, side chain atoms themselves

also require coarse-graining in order to obtain an inexpensive side chain model (Step 2). This

reduction in the number of degrees of freedom is further justified since the atomic positions of

the side chains are uncertain due to the discretization and aggregation of the rotamer states,

meaning that there is little value in assigning precise positions for all atoms. We instead use a

single oriented bead (3 spatial and 2 orientation coordinates) to represent each side chain

(note that the direction is independent of the positions of the side chain atoms, e.g. in aromatic

residues it could be the unit vector normal to the ring). The locations and directions of the side

chain beads are updated during the optimization of the potential. The improvement in predic-

tion accuracy from using optimized side chain positions rather than the static positions (e.g.,

side chain center-of-mass for different rotameric states) is surprisingly substantial.

We use a combination of isotropic and directional interactions for each pair of interacting

side chain or backbone (Fig 5). The isotropic interactions are primarily responsible for enforc-

ing excluded volume, while the directional interactions typically reflect specific chemical inter-

actions such as from polar groups or aromatic rings. Concretely, each interaction pair is

described by positions y1 and y2 and directions n1 and n2. The separation r12 = |y1 − y2| and dis-

placement unit vector n12 = (y1 − y2)/r12 are calculated. The form of the interaction is given by

V ¼ kðVradialðr12Þþ

ang
1
ð� n1 � n12Þangðn2 � n12ÞVangularðr12ÞÞ;

ð17Þ

where Vradial, ang1, ang2, and Vangular are smooth curves represented by cubic splines for

increased flexibility (62 parameters total), rather than fixed functional forms such as a van der

Waals 6-12 potential.

For side chain-side chain interactions, the κ prefactor is 1. But for side chain-backbone

interactions, κ depends on the hydrogen bonding state of the backbone residue. This distinc-

tion reflects the observation that the presence of one hydrogen bond inhibits the formation of

another due to competition for the single lone pair of electrons on the carbonyl oxygen that is

available for hydrogen bonding. Specifically, the interaction between an amide proton or oxy-

gen is given a hydrogen bond confidence score f, which is a number typically close to 0 for

non-hydrogen bonded and 1 for hydrogen bonded residues. We set κ = 1 − f so that the inter-

action is only turned on for hydrogens or oxygens that are not already participating in a back-

bone-backbone hydrogen bond. The physical motivation is that the directional interaction

primarily describes the effects of the dipole interactions, and the sum of the C = O and N–H

dipoles have a vanishing dipole moment. While it is theoretically possible for the algorithm to

carefully balance hydrogen and oxygen interactions that themselves cancel out on hydrogen

bonded pairs, it is much easier to achieve a physically reasonable model if we enforce the zero-

ing of directional interactions with already hydrogen bonded pairs. The hydrogen bond dis-

tance and angular criteria are detailed in Subsection Simulation details.
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The side chain-backbone interactions are needed to describe helix capping, where a side

chain atom forms a hydrogen bond with an otherwise unsatisfied donor or acceptor at the end

of helix. We have observed that a proper description of these capping effects is required to

avoid helix fraying and inordinately long helices. Harper and Rose [10] have observed that N-

terminal capping of a helix by side chains is more likely to be observed than is C-terminal cap-

ping by the side chain. This finding is consistent with our maximum-likelihood training

(below), where side chain-amide hydrogen interactions are fit with stronger potentials (i.e.,

Fig 5. Coordinates and potentials used for side chain interactions. Top. For each residue, a reference backbone structure is aligned to the N, Cα, and C atomic

coordinates. This alignment creates a reference frame to establish the position and direction of the side chain bead. The two side chain beads x1 and x2 for a pair of

residues establishes three coordinates, the distance r and angles θ1 and θ2. Bottom. Example of distance-dependent potential, unif(r12), after training, between the

side chain and backbone residues. These interactions cutoff at 5 Å while the side chain-side chain interactions cutoff at 7 Å. The thin lines describe the Vradial of

oxygen (red) and hydrogen (blue), and the thick lines describe Vradial + Vangular for the same interactions.

https://doi.org/10.1371/journal.pcbi.1006342.g005
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with higher confidence) than side chain-oxygen interactions. Harper and Rose also noted that

hydrophobic residues play a strong role in helix capping by covering the exposed protein back-

bone at the ends of helices. To provide our model with the freedom to describe this effect, an

additional side chain-backbone interaction is added with three beads, which could represent

the possible hydrophobic character of the backbone. The location of the three beads are initial-

ized from the reference position of N, Cα, and C and are optimized with the rest of the parame-

ters. For this interaction, κ = 1.

We have chosen to use 1- and 2-body potentials and have not employed 3- or 4-body poten-

tials, in part due to difficulty of parameterizing the vast number of additional parameters.

Similarly, higher order side chain entropy corrections would lead to a large increase in the

computational cost of calculating the free energy, reducing the sampling ability and applicabil-

ity to dynamics simulations. An alternative approach for introducing many-body effects and

still maintaining the computational tractability, is to allow the pair interactions to depend on

discrete parameters, such as the rotomer index used in the present study.

Maximum-likelihood training

The side chain model is trained by the maximum-likelihood principle. Specifically, we deter-

mine the set of parameters that maximizes the log probability of the true side chain states ~wp in

the Boltzmann ensemble of all possible side chain states ~w for the fixed backbone positions Xp

for each protein p.

pð~wpÞ ¼
e� Vð~wpÞ
P

~w
e� Vð~wÞ

ð18Þ

� log pð~wpÞ ¼ Vð~wpÞ þ log
X

~w

e� Vð~wÞ
 !

ð19Þ

¼ Vð~wpÞ � GSC ð20Þ

¼ Egap: ð21Þ

The evaluation of Egap requires the evaluation of the free energy of the side chains, a quantity

that is intractable to calculate exactly. Fortunately, our side chain energy Eq 15 approximates

the true side chain free energy GSC that appears in Eq 20. Furthermore, the expression for the

parametric derivative Eq 16 allows for gradient descent optimization to minimize the average

gap energy.

Training set

The side chain packing interaction is trained using a large, non-redundant collection of crystal

structures from the PDB with 50–500 residues and resolution less than 2.2 Å. From a training

set of protein structures, we extract the sequences sp, backbone trace positions Xp, and true

coarse-grained side chain states ~wp for each protein p. The proteins are further filtered using

PISCES [11] so that all pairs of proteins have sequence similarity less than 30%. Non-globular

structures in the dataset are removed, as we suspect that the side chain packing of these struc-

tures is more strongly influenced by other chains in the crystal structures. We define non-glob-

ular structures as outliers in the linear relationship between log(Nres) and log(Rg); the outliers
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are identified using the RANSAC algorithm [12]. After filtering, 6255 chains remained, con-

taining approximately 1.4 million residues.

Belief propagation

This subsection contains a brief description of the equations used to implement belief propaga-

tion for the side chain free energies. Given 1-residue energies við~w iÞ and 2-residue energies

vijð~w i; ~w jÞ, we seek probabilities pið~w iÞ and pijð~w i; ~w jÞ to minimize the free energy in Eq 15.

It is helpful to first understand the intuition behind the belief propagation process. We seek

a consistent set of 1- and 2-side chain probabilities for the residues compatible with the inter-

action potential Eq 5. The probability of each residue state ~w i for residue i is determined by

two factors. The first factor is the 1-residue energy við~w iÞ that would determine the probabili-

ties exactly in the absence of interactions. The second factor is consistency with the side chain

states of the residues in contact with residue i, where consistency is determined by the poten-

tials vijð~w i; ~w jÞ. Belief propagation optimizes these factors to minimize the approximate free

energy Eq 15 as derived in reference [13]. The iteration is described more formally below,

including a damping term λ to suppress oscillations during the self-consistent iteration.

For 1-residue beliefs, we define br
i ð~w iÞ to be the round r “belief” that the i-th residue is in

state ~w i. For the 2-residue beliefs, we have two beliefs for each pair of interacting residues (i.e.

any pair of residues that interact in any rotamer states). Define brijð~w jÞ to be the round r belief

for the residue pair (i,j) that residue j is in state ~w j. The belief br
jið~w iÞ is defined similarly.

To initialize the algorithm at round 0, we take

b0

i ð~w iÞ ¼ e� við~w iÞ ð22Þ

b0

jið~w iÞ ¼
X

~w j

e� vijð~w i ;~w jÞb0

j ð~w jÞ: ð23Þ

We compute the round r + 1 beliefs from the round r beliefs according to the following equa-

tions.

brþ1

ji ð~w iÞ ¼
X

~w j

e� vijð~w i ;~w jÞ
br
j ð~w jÞ

brijð~w jÞ
ð24Þ

brþ1

i ð~w iÞ ¼ lbr
i ð~w iÞ þ ð1 � lÞ

e� við~w iÞ
Q

jb
rþ1
ji ð~w iÞ

P
~w i
e� við~w iÞ

Q
jb

rþ1
ji ð~w iÞ

ð25Þ

The products in Eq 25 should be understood as taken only over residues j that interact with res-

idue i. The damping constant λ suppresses oscillatory behavior that hinders convergence (λ =

0.4 is used in the present work). The equations are iterated until jbrþ1
i ð~w iÞ � br

i ð~w iÞj < 0:001 for

all residues i and states ~w i.

From the converged beliefs bið~w iÞ and bijð~w jÞ, we can compute the marginal probabilities

pið~w iÞ ¼ bið~w iÞ ð26Þ

pijð~w i; ~w jÞ ¼

bið~w iÞ
bjið~w iÞ

e� vijð~w i ;~w jÞ bjð~w jÞbijð~w jÞ
P

~w i ;~w j

bið~w iÞ
bjið~w iÞ

e� vijð~w i ;~w jÞ bjð~w jÞ
bijð~w jÞ

: ð27Þ

The free energy of the model is obtained by using the marginal probabilities above in Eq 15.
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Simulation details

The simulations are run with Upside. The replica exchange temperatures are 0.500, 0.532,

0.566, 0.600, 0.636, 0.672, 0.709, 0.748, 0.787, 0.828, 0.869, 0.912, 0.955, and 1.000. The Rama-

chandran potential uses the NDRD TCB coil library [14]. The backbone hydrogen bond inter-

action uses both distance and angle criteria to determine hydrogen bonds. The H-O bond

distance interaction starts at approximately 1.4 Å and ends at 2.5 Å. Both the N-H-O and

H-O-C criteria half-heights are at approximately 47 degrees off of co-linear.

We use Verlet integration with a time step of 0.009 units. We use the random number gen-

erator Random123 [15] to implement the Langevin dynamics with a thermalization time scale

of 0.135 time units. The thermalization time scale (related to Langevin friction) is chosen to

maximize the effective diffusion rate of chains while effectively controlling simulation temper-

ature. As Langevin dynamics with any friction coefficient produces the same Boltzmann

ensemble, we chose to maximize equilibration of our system rather than attempt to match a

solvent viscosity.

The cutoff radius for side chain-side chain interactions is 7Å, and the cutoff radius for side

chain-backbone interactions is 5Å. The distance splines are zero-derivative-clamped cubic

splines with a knot spacing of 0.5Å. The angular splines have a knot spacing of 0.167 in cosθ,

which ranges over [−1, 1].

Optimization details

The Adam optimizer [16], a popular algorithm to optimize noisy objective functions, is used

to minimize the energy gap. This optimizer is convenient because it automatically adjusts the

gradient descent step size for each parameter according to the typical scale of the gradient in

that dimension. This rescaling is important because spline coefficients at large radii tend to

have much larger gradient magnitudes than parameters at small radii.

We use the following settings for the Adam optimizer: minibatch size of 256 proteins, α =

0.03, β1 = 0.90, β2 = 0.96, � = 10−6. Positivity constraints on the angular coefficients are

enforced by a exponential transform. The regularization integrals over all space are approxi-

mated by sums at the knot locations of the radial and angular splines.

A regularization penalty is added to the maximum-likelihood optimization that encourages

smoothness of the potential. This penalty also reduces the validation error of the training. The

regularization penalties chosen are
X

i

ð2cunifi � cunifi� 1
� cunifiþ1

Þ
2

ð28Þ

X

i

ðcdiri Þ
2

ð29Þ

X

i

ðcunif
0
� ð5 kBTÞÞ

2
ð30Þ

The penalty Eq 28 encourages a small second derivative for the isotropic (unif) term, while the

penalty Eq 29 minimizes the size of the directional interactions. Finally, the penalty Eq 30

ensures a strong steric core for interactions.

The derivative calculations needed for regularization and coordinate transforms are han-

dled with the Tensorflow framework [17].
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Optimized mapping to coarse states

The χ-angles for the side chains are partitioned into discrete states in an optimized manner

(Fig 4). The NDRD rotamer library [18] provides a set of approximate discrete states for each

residue type according to their frequencies of occurrence in a non-redundant set of high reso-

lution protein structures in the PDB. However, the number of rotamer states in the NDRD

library can be quite large. For instance, naively using all 81 rotamers for each arginine means

that computing the pair interaction vi, j for two arginines would require computing 812 = 6561

energy values. Consequently, instead of using all possible rotamer states, several NDRD rota-

mer states are combined into 3–6 coarse-grained rotamer states for the sake of manageable

computational cost.

We choose to aggregate the rotamer states of the side chain to minimize the positional

uncertainty of side chain atoms in each state. A search over all possible aggregations is con-

ducted to find the aggregation that provides the smallest possible error. More formally, the

NDRD rotamer library [18] is used to define the atomic positions xfijð�;cÞ, where i is the atom

(such as Cβ), j is the coordinate (x, y, or z), and f is the fine-grained rotamer state. Each rotamer

state has a probability pf(ϕ, ψ) specified in the NDRD library from frequencies in the PDB for

each fine-grained rotamer state as a function of the backbone dihedral angles (ϕ, ψ). Each fine-

grained state f may belong to exactly one coarse-grained state c (i.e. the c states form a partition

of the f states). Given the choice of a coarse-grained state c, an average is performed over the

fine-grained atomic positions, and sum is taken over the probabilities of all fine-grained states

f grouped into c according to the prescription,

qcð�;cÞ ¼
X

f2c

pf ð�;cÞ ð31Þ

ycijð�;cÞ ¼
1

qcð�;cÞ

X

f2c

pf
ijð�;cÞ x

f
ijð�;cÞ; ð32Þ

where qc is the coarse-grained probability and ycij is the coarse-grained atomic position.

The error incurred by coarse-graining is defined as the variance of the atom positions

within each coarse-grained state, weighted by the frequency of occurrence of the coarse-

grained state in the PDB. Specifically, the error σ2(ϕ, ψ) is defined as,

s2ð�;cÞ ¼
X

f

pf ð�;cÞ

Natom

X

ij

ðxfijð�;cÞ � ycðf Þij ð�;cÞÞ
2
; ð33Þ

where Natom is the number of atoms in the side chain and c(f) is the coarse-grained state c that

contains the fine-grained state f. The error depends implicitly on the state decomposition c(f)
and measures the deviation of the atoms within each state. This error favors the fine-grained

states f that occur with higher frequency in the PDB.

The division of fine-grained states into coarse-grained states is restricted for simplicity to

be independent of the Ramachandran angles for the residue,

s2 ¼

Z

pRamað�;cÞ s2ð�;cÞ d� dc; ð34Þ

where pRama(ϕ, ψ) is the frequency of each Ramachandran angle taken from the PDB coil

library. Note that this error term depends implicitly on the decomposition c(f) and weights for

the (ϕ, ψ) pairs according to their frequencies in the coil library.
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An optimal coarse-grained representation of the side chain rotamer states is obtained by

minimizing σ2 for each residue type over all partitions c(f). We force the coarse-graining c(f) to

obey a few conditions, essentially to make sure that c(f) is easily interpretable in terms of χ1

and χ2 as well as limiting the number of possibilities that must be checked by the brute-force

minimization. In particular, the mapping from coarse states back to χ1 rotamer states is unam-

biguous because no single coarse state contains two different χ1 rotamer states. We impose the

following conditions:

1. c(f) depends only on the χ1 and χ2 rotamer states of f (i.e. if f1 and f2 states differ only in

their χ3 or χ4 states, then c(f1) = c(f2)).

2. Each coarse state c must contain only a single χ1 state but may contain multiple distinct χ2

states for that χ1 state.

3. Each coarse state c must contain a contiguous range of χ2 values. This greatly reduces the

number of possible coarse-grainings for residues with non-rotameric χ2 angles like asparagine.

We optimize the decomposition of the coarse-grained state c(f) by completely enumerating

all possible decompositions into coarse-grained states that satisfy the three conditions above

and contain no more than six coarse states.

Backbone parameters

The backbone atoms interact with a soft-sphere repulsion at approximately 3 Å interatomic dis-

tance. The equilibrium distances of the N–Cα, Cα–C, and C–N bonds are 1.453 Å, 1.526 Å, and

1.300 Å, respectively. The backbone angles are restrained at their ideal values (109.5˚ and 120˚).

Results

Packing accuracy

The accuracy of the results are computed in two ways. The first measure computes the accu-

racy of the one-residue probabilities at predicting the χ1 states of the protein. This quantity is

the traditional accuracy measure for side chain packing algorithms. The second measure is the

quality of the ensemble, obtained by computing the difference (Egap) between the free energy

of the side chain system and the potential energy of the crystallographic rotamer configuration

(Eq 20). For a highly accurate side chain ensemble, we would expect that the crystal configura-

tion would be a high probability state in the ensemble and thus the Egap would be small. This

energy gap is minimized by the maximum-likelihood training. The two accuracy measures are

typically linearly related for the side chain models we consider.

To compare to modern side chain prediction methods, we benchmark against SCWRL4 [3]

on its training and validation set of side chains conformations (Fig 6), as well as the RASP algo-

rithm [6] for rapid side chain packing (Fig 7). Since the Upside model lacks full side chains, we

use the most likely χ1 rotamer state according to the 1-residue marginal distributions pið~w iÞ.

As per SCWRL4’s validation procedure, the lowest confidence side chains are excluded (bot-

tom 25th percentile in electron density). To avoid biasing the comparison toward Upside, the

SCWRL4 training set is split so that 20% of the proteins are withheld for measuring accuracy,

while the rest are used for maximum-likelihood training. The accuracy metric chosen is to cal-

culate the fraction of side chains for which the Upside or SCWRL4 predicted χ1 rotamer state

agrees with the crystallographic conformation. The residues alanine, glycine, and proline are

excluded from the comparison.

Comparison of χ1 prediction accuracy for Upside and SCWRL4, ordered by Upside accuracy.

The “PDB χ1 frequency” line represents the accuracy of the NDRD rotamer library without any
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interactions; this library is used in both Upside and SCWRL4. Upside is accurate, predicting the

correct χ1 rotamer 91.0% of the time using 10 Å cutoffs, which is better than SCWRL4 [3] or

RASP [6]’s values of 89.5 and 86.5%, respectively (Figs 6 and 7). Additionally, Upside predicts

side chains 16 times faster than the speed-optimized RASP and 300 times faster than accuracy-

optimized SCWRL4. This very fast calculation enables Upside’s side chain model to be viable in

the inner loop of molecular dynamics simulations, as discussed in the next section.

We examined the importance of various interactions in Upside by recalculating the change

in accuracy upon their removal. For example in Table 1, we calculated the decrease in perfor-

mance after retraining our parameters on the PDB-based test set after removing one or more

energy terms. One can see that using only repulsive interactions causes a 3.8% drop in side

chain prediction accuracy compared to the full model, which quantifies the importance of the

attractive interactions.

Molecular dynamics simulations

To test the suitability of adapting the side chain packing model to study protein dynamics,

Langiven dynamics folding simulations were run on small, fast-folding proteins (Table 2)

using a standard Verlet algorithm that obeys detailed balance and conserves energy. The

Fig 6. Comparison of χ1 prediction accuracy for Upside and SCWRL4, ordered by Upside accuracy. The “PDB χ1

frequency” line represents the accuracy of the NDRD rotamer library without any interactions; this library is used in

both Upside and SCWRL4.

https://doi.org/10.1371/journal.pcbi.1006342.g006

Accurate calculation of side chain packing and free energy with applications to MD

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006342 December 27, 2018 17 / 25

https://doi.org/10.1371/journal.pcbi.1006342.g006
https://doi.org/10.1371/journal.pcbi.1006342


parameters obtained from the maximum-likelihood training are optimized for side chain

packing for a set of fixed, native backbones, which is not the situation during the simulations

where the backbone moves. In the limit that the model is flexible enough to describe the true

side chain interactions and there are unlimited training data, the maximum-likelihood method

should recover the true side chain interactions. Even without having the true form of the side

chain interaction, the maximum-likelihood parameters assign high probability to the observed

rotamer states, thereby providing evidence that it includes a significant portion of the underly-

ing physics, and thus may be viable for use in molecular dynamics simulations.

Since the maximum likely-hood training was conducted on proteins with fixed backbones,

to create a reasonable model for dynamics, a basic Ramachandran potential, backbone springs

and sterics, and a hydrogen bond energy, are added to the side chain model (see Subsection

Simulation details). The Ramachandran nearest-neighbor dependent potential is derived

Fig 7. Comparison of the accuracy of predicting side chains as well as cpu running time. For all programs, time spent reading the

protein structure and writing the results is excluded from the running time to focus on the cost of solving for the side chain

positions. For Upside (10 Å cutoff), all side chain interactions with backbone or other side chains are cutoff at 10 Å.

https://doi.org/10.1371/journal.pcbi.1006342.g007
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from a coil library [14] as a statistical potential. The hydrogen bond enthalpy is varied to find

the maximum accuracy. Note that because alanine and glycine have no side chain rotamer

states, and hence no training to match the native χ-angles is feasible, the ALA-ALA, ALA-GLY,

and GLY-GLY potentials are completely determined by the regularization. Interactions of

ALA and GLY with other residue types are optimized, however, as rotamer states of the other

residues provide information on the ALA-X and GLY-X interactions.

The hydrogen bond term does not play an explicit role in the packing optimization as the

backbone and associated hydrogen bonds remain fixed during side chain placement. Hence,

this term is not trained during the maximum likelihood procedure for the side chain positions.

To assign an energy to the hydrogen bond term, it was manually varied for the best simulation

accuracy. This term is the only parameter manually optimized for simulation accuracy.

Simulations were run on four small proteins. We obtained commendable results on three,

alpha3D, BBA and a homeo domain, but not on a WW domain. We manually scanned

through different hydrogen bond strengths to find an optimal for folding accuracy (Fig 8). For

the three successful proteins, sub-3 Å structures were obtained in under two cpu-days (lowest

Cα-RMSD, Fig 9). Although performance depended on hydrogen bond strength, a single value

of -1.8 units produced near-optimal results across the three proteins. The removal of side

chain-backbone hydrogen bonds had a surprisingly small and sometimes even a positive effect

Table 1. Accuracy of predicting χ1 for the SCWRL4 data set.

Energy terms used Accuracy change (%) ΔEgap (kBT)

10Å cutoffs +0.7 -0.028

Full model 0.0 0.000

No H/O interactions -0.6 0.013

No N,Cα,C beads -2.3 0.040

ϕ, ψ-independent V(χ) -3.3 0.004

Isotropic only -3.5 0.080

Repulsive only -3.8 0.060

Side chain—side chain only -3.8 0.067

Side chain—backbone only -6.1 0.125

No interactions -13.7 0.435

The significance of various components of the model reflect the decrease in accuracy for their removal and retraining

on the entire training set. The parameters are separately optimized for each row of the table so that each Egap

represents the best achievable for the indicated functional form. Training was redone for each energy function and

the ensuing accuracy was reevaluated. Results shown are for 20% of the SCWRL4 data set withheld for testing

purposes. Note that these predictions are based on single-chain structures, so they differ slightly in accuracy from the

predictions on all-chain structures reported in Fig 6.

https://doi.org/10.1371/journal.pcbi.1006342.t001

Table 2. Sequences of proteins for molecular dynamics simulations.

Name PDB ID Length Sequence

alpha3d 2a3d 73 MGSWAEFKQRLAAIKTRLQALGGSEAELAA

FEKEIAAFESELQAYKGKGNPEVEALRKEA

AAIRDELQAYRHN

BBL 2wxc 47 GSQNNDALSPAIRRLLAEWNLDASAIKGTG

VGGRLTREDVEKHLAKA

homeodomain 2p6j 52 MKQWSENVEEKLKEFVKRHQRITQEELHQY

AQRLGLNEEAIRQFFEEFEQRK

https://doi.org/10.1371/journal.pcbi.1006342.t002
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on accuracy. Evidently for these proteins, helix capping signals are not important. More pro-

teins and better training procedures are needed to investigate the generality of this finding.

Overall, these results demonstrate that our model has the capability of folding proteins on the

cpu-day time-scale. In the companion paper, we investigate the models potential for folding

proteins when the energy function is trained for this purpose.

Discussion

We have demonstrated a fast, principled method to coarse-grain discrete side chain states and

create a smooth backbone potential. This procedure results in a considerable decrease in

Fig 8. Accuracy of MD simulations for three proteins at variable backbone hydrogen bond strength. Results with and without side chain-

backbone interactions are presented.

https://doi.org/10.1371/journal.pcbi.1006342.g008
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computational time as it removes the side chain rattling and friction normally associated with a

polypeptide chain moving in a condensed state. This tracking and instantaneous equilibration

of the side chains is analogous to the instantaneously-equilibrated electronic degrees of freedom

with respect to the nuclear motions employed in the adiabatic Born-Oppenheimer approxima-

tion [19]. Motions are calculated only for three heavy backbone atoms, yet the model contains

considerable structural detail including hydrogen bonds involving both the backbone and side

chains. Further, we have presented both a maximum likelihood procedure to obtain a physi-

cally-reasonable potential from the side chain packing of X-ray structures and a tunable discre-

tization of the rotamer states. The resulting method is capable of rapid molecular dynamics of

protein structures with comendable accuracy considering the computational speed.

Upside is a coarse-grain model, and hence, certain details will be approximate especially for

the unfolded state. However, our side chain energies include a rotameric term reflecting the

intrinsic χ1 preference so we anticipate that our predicted χ1 distribution will be reasonable,

especially for side chains typically found on the surface.

Comparison to previous work

We highlight several works related to the major features of our model, including molecular

dynamics on three atoms but with a dynamic ensemble of side chains, optimized discretization

of the side chain states to best represent the protein interactions in the coarse-grained model, a

potential with optimized and state-dependent bead locations and orientations, training a pro-

tein interaction model for folding using side chain packing accuracy, and a side chain model

with an explicit side chain entropy.

A large body of work, exemplified by SCWRL4 [3], has studied the prediction of side chain

configurations by discrete rotamer states (Figs 6 and 7). SCWRL4 achieves approximately 90%

χ1 accuracy for predicting the most likely rotamer states by minimizing the energy that

Fig 9. Closest structure to native protein (lowest Cα-RMSD) at optimal hydrogen bonding strength, with and

without backbone-side chain hydrogen bonds. For alpha3D, BBA and homeodomain with backbone-side chain

hydrogen bonds, the optimal hydrogen bond strength and lowest Cα-RMSD are -2.0, -2.0 and -1.9 RT, and 3.6, 1.7 and

3 Å, respectively. Without these hydrogen bonds, the corresponding values are -2.0, -1.8 and -1.6 RT; and 2.7, 1.8, and

2.5 Å. Blue is the native structure and red is the simulation.

https://doi.org/10.1371/journal.pcbi.1006342.g009
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combines observed rotamer state frequencies and an atomic interaction model [3]. A variety

of algorithms have been developed to solve for the highest probability side chain states given

the pair interaction values [20, 21]. Kamisetty et al.[22] have worked on scoring protein inter-

action complexes using a self-consistent approximation to the side chain interactions. Earlier

simulation work by Koehl and Delarue [23] use 1-residue mean field techniques to approxi-

mate ensembles of side chain conformations but fail to account for the pairwise correlations of

the side chain rotamer states. All of these works use atomically-detailed descriptions of the

side chains paired with simple or molecular dynamics interaction terms. Their highly detailed

side chains with many χ-angles for each residue make it difficult to perform calculations suffi-

ciently fast for folding simulations, and the use of existing interactions (instead of a newly-

trained interaction model) makes it difficult to reduce detail to increase the computational

speed. There has also been extensive work in reconstructing backbone positions from side

chain beads [24] in lattice models, but these models do not perform a proper summation over

possible rotamer states.

RASP [6] is side chain modeling program designed to significantly improve the speed of

side chain packing while achieving comparable accuracy. The authors use careful selection of

the most important energy terms as well as employing clash-detection to guide the optimiza-

tion of the side chain conformations. A recent method, OSCAR-o [4], employs a genetic algo-

rithm for swapping low energy side chain conformations. Oscar utilizes a distance- and

orientational dependent energy function that is optimized for side chain packing accuracy [5],

similar to Upside’s side chain potential.

Kihara and coworkers [25] conducted a thorough study of side chain accuracy in different

environments. They found that OSCAR-o and the speed optimized OSCAR-star performed

better than the other methods including SCWRL4, RASP and Rosetta, having a mean predic-

tion accuracy of 88% versus 85, 85 and 83% accuracy, respectively, on their monomeric test

set. Since Upside’s accuracy is very similar to SCWRL4, we infer that Upside’s performance

does not quite match the OSCAR methods. However, the timing comparison presented indi-

cates that Upside should be 4 and 2.5 orders of magnitude faster than OSCAR-o and OSCAR-

star, respectively.

There have also been a large number of coarse-grained techniques that use a variety of non-

isotropic potentials for reduced side chain interactions. One of the most successful is the

coarse-grained united residue model (UNRES) [26]. The model also uses statistical frequencies

to determine the positions of the side chains but it emphasizes the parameterization of the

coarse-grained model from physics-based calculations instead of statistical information.

Though the potential form (Gay-Berne) used in UNRES is quite different from our work,

UNRES also uses non-isotropic side chain potentials [27].

Similar to our work, Dama, Sinitskiy, et al. [28] investigate mixed continuous-discrete

dynamics, where the states of molecules jump according to a discrete Hamiltonian. Their

method differs from our work in a number of important ways: the authors use discrete jumps

in state instead of a free energy summation over all states that we employ; they do not optimize

the rotamer states as we do; and they train parameters from force matching of molecular

dynamics trajectories rather than from the statistical analysis of experimental data as we

employ.

Combination of Upside with other methodologies

The reason that Upside is both faster and has similar accuracy than competing methods at side

chain packing is that Upside shifts the complexity of the χ1-prediction problem. Traditional

side chain prediction uses a detailed configuration space of all rotamers and side chain atoms
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but simple interaction forms with few parameters. Upside uses a coarse configuration space

with only a single directional bead per residue but a complex and well-optimized set of param-

eters consisting of over 10,000 jointly-optimized parameters (trained on approximately

500,000 residues). Upside demonstrates that χ1 rotamers can be predicted with state-of-the-art

accuracy without needing to examine fine-grained atomic packing. Additionally, the side

chains in Upside are represented as a Boltzmann ensemble whose 1-residue marginal probabil-

ities are used to predict χ1 instead of predicting χ1 using the lowest energy configuration. This

approach allows for the natural consideration of side chain entropy and conformational vari-

ability. Creating a Boltzmann ensemble over rotamer states also allows exact, continuous

forces to be defined for the approximate ensemble, enabling molecular dynamics using poten-

tial energies already validated to represent the physics of side chain packing.

A natural question is whether the strengths of SCWRL4 and this algorithm may be com-

bined. There are two reasons to believe that such a combination would be fruitful. The first

reason is that when Upside and SCWRL4 predict the same χ1 rotamer, the prediction is 95.4%

accurate, substantially more accurate than either program alone. This suggests Upside and

SCWRL4 provide independent information about the side chain conformations and hence,

combining both approaches should produce a substantially better packing model. The second

reason that Upside and SCWRL4 may be combined is that Upside provides probability func-

tions as its outputs, rather than just the minimum energy conformation as in SCWRL4. The

underlying SCWRL4 single-rotamer energies could be augmented with � llog pUpsideð~wÞ. For

an appropriately determined λ, this should incorporate some of Upside’s information directly

into SCWRL4, increasing SCWRL4’s accuracy. Alternatively, SCWRL4’s detailed but simple

energy function could be augmented by an Upside-style coarse-grained function, possibly with

additional maximum-likelihood tuning.

Conclusion

For side chain packing applications, Upside accurately and rapidly predicts of χ1 rotamer states

and their probabilities. Upside takes advantage of these two features for dynamics applications,

and it shows considerable promise as a route to accurate and inexpensive molecular simula-

tion. New training techniques are being developed to directly optimize the backbone accuracy

of the Upside model. In the companion paper, we present results using new training methods

that indicate that we are able to achieve dramatic improvements in the accuracy of de novo
folding while preserving the rapid folding properties for a variety of proteins. We expect that

our belief-propagated side chains will serve as an excellent basis for new methods in protein

simulations.

Source code for side chain packing and molecular simulations can be obtained from

https://github.com/sosnicklab/upside-md, and the results of this paper can be reproduced

using the version tagged sidechain_paper.
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