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ABSTRACT

Objective: When studying any specific rare disease, heterogeneity and scarcity of affected individuals has his-

torically hindered investigators from discerning on what to focus to understand and diagnose a disease. New

nongenomic methodologies must be developed that identify similarities in seemingly dissimilar conditions.

Materials and Methods: This observational study analyzes 1042 patients from the Undiagnosed Diseases Net-

work (2015-2019), a multicenter, nationwide research study using phenotypic data annotated by specialized staff

using Human Phenotype Ontology terms. We used Louvain community detection to cluster patients linked by

Jaccard pairwise similarity and 2 support vector classifier to assign new cases. We further validated the clus-

ters’ most representative comorbidities using a national claims database (67 million patients).

Results: Patients were divided into 2 groups: those with symptom onset before 18 years of age (n¼810) and at

18 years of age or older (n¼232) (average symptom onset age: 10 [interquartile range, 0-14] years). For 810 pe-

diatric patients, we identified 4 statistically significant clusters. Two clusters were characterized by growth dis-

orders, and developmental delay enriched for hypotonia presented a higher likelihood of diagnosis. Support

vector classifier showed 0.89 balanced accuracy (0.83 for Human Phenotype Ontology terms only) on test data.

Discussions: To set the framework for future discovery, we chose as our endpoint the successful grouping of

patients by phenotypic similarity and provide a classification tool to assign new patients to those clusters.

Conclusion: This study shows that despite the scarcity and heterogeneity of patients, we can still find common-

alities that can potentially be harnessed to uncover new insights and targets for therapy.
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INTRODUCTION

To date, investigators have identified more than 10 000 rare dis-

eases,1 most caused by genetic factors.2 Several rare diseases do not

show obvious symptoms at birth when such presentations often trig-

ger consideration of genetic etiologies.2 Thus, they are often un- or

misdiagnosed for long periods, leading to delayed treatment and

generally worse prognosis.3,4 For example, mucopolysaccharidosis

type I non-Hurler phenotype is a lysosomal storage disorder with an

estimated prevalence of 1:100 000. Because mucopolysaccharidosis

type I non-Hurler phenotype can affect many different organs and

tissues to varying degrees, the diagnostic odyssey is protracted with

the average age of diagnosis of 28 months.5 These delayed diagnos-

tic conclusions lead to unnecessary parental anxiety, patient suffer-

ing, complications, inappropriate treatments, and worsened
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prognosis. The Undiagnosed Diseases Network (UDN) was

launched in 20146–10 with the dual aim of reducing diagnostic

delays and improving understanding of rare diseases. Participants

are evaluated in clinical sites across the United States coordinated by

the Coordinating Center. As of May 2019, a total of 1042 patients

had been evaluated. As a measure of the UDN’s impact, at the time

of the analysis 239 (23%) of those previously undiagnosed patients

had now been diagnosed.

Of the many remaining challenges, we seek how to manage the

implicit scarcity and disproportionate heterogeneity of patients with

each rare disease to better define a clear diagnosis and understand-

ing of mechanism.11 Perhaps the greatest success in rare disease di-

agnosis has come from tackling each rare disease, one at time

accelerated by the development of next-generation sequencing 12,13

technologies and analytic pipelines. The emergence of large popula-

tion databases of exome and genome sequence data14,15 has contrib-

uted to rare disease diagnosis8,12 by providing robust estimates of

just how rare (or not) the variants found in these undiagnosed

patients are. However, the diagnostic yield of exome sequencing is

estimated around 25% to 30% in rare genetic diseases cohorts,16,17

thus leaving a number of patients without a diagnosis. Additionally,

genomic sequencing remains expensive, making it less widely avail-

able in developing countries with limited resources.18 Here, by con-

trast, we focus on the clinical presentation to leverage the patients’

phenotypic similarity for insight, thus creating a complementary ap-

proach. This is challenging because the UDN represents a relatively

large patient population of the undiagnosed but in absolute terms is

at least 1 or 2 orders of magnitude smaller than studies characteriz-

ing common diseases. This analysis of the UDN compares solved

and unsolved cases in both pediatric and adult populations. We also

present the resulting groups of patients through meaningful comor-

bidities and associated diagnoses demonstrating the effectiveness

and utility of our method. Finally, we provide a classification tool to

assign new cases to precomputed clusters, demonstrating how a cli-

nician could leverage the clusters to gain new insights into his

patients.

MATERIALS AND METHODS

We analyzed data from 1042 de-identified UDN patients who were

evaluated by clinical experts at the time of the analysis (May 2019).

The cohort analyzed included 810 pediatric patients (symptom onset

under 18 years of age) and 232 adult patients (onset 18 years of age

and older). The data analyzed consisted of general information in-

cluding age at onset, age at UDN evaluation, primary symptom

reported on application19 or assigned by clinical experts during re-

cord review,20 and Human Phenotype Ontology (HPO) terms that

were annotated using PhenoTips by clinicians (with no number re-

striction).21 UDN data are available to approved researchers only.

We integrated the UDN data into the UDN PIC-SURE platform.22

Analysis was performed using Python 3.5.2 leveraging the PIC-

SURE23 API on the High Performance Data Storage platform.

Open-source code is publicly available online (https://github.com/

hms-dbmi/UDN-gateway-clusters). The study was approved by the

central Institutional Review Board at the National Human Genome

Research Institute (registration number 00000014).

Descriptive analysis
We analyzed the pediatric and adult cohorts by age, race, ethnicity,

primary symptoms, and clinical site of evaluation, subcategorizing

each as diagnosed or undiagnosed. We observed the breakdown of

patients into the 23 top-level phenotypic groups determined by the

HPO ontology.24 Statistical difference between groups was com-

puted using the Mann-Whitney U test.25

Network generation and cluster detection
As illustrated in Figure 1A, the network of UDN patients was cre-

ated by computing the Jaccard similarity26 between patients using

explicitly annotated HPO (negative associations were discarded for

clustering). The HPO terms used were manually mapped by experts,

thus encompassing both leaf terms of the ontology (eg, hypoargini-

nemia) or higher-order terms (eg, seizures). We did not explicitly an-

notate parent terms of the expert mapped HPO terms. To compute

the pairwise Jaccard similarity, we first represented each patient as a

binary vector (1 denoting if a term has been positively annotated by

an expert, 0 if it was negatively or not annotated). We then com-

puted the Jaccard similarity JS for each pair of patients, where the

Jaccard similarity JS patient 1; patient 2ð Þ ¼ jpatient 1 \ patient 2j
jpatient 1 [ patient 2j.

Clusters were identified by the Louvain community detection

method,27 with 10-fold consensus clustering,28 python packages py-

thon-louvain29 and netneurotools,30 using resolution (3.0 for adult

and 1.2 for pediatric) as an algorithmic parameter to define the

granularity of cluster detection. Patients were assigned labels

according to their cluster membership. We performed cluster detec-

tion separately for the pediatric population and adult population.

Cluster analysis and phenotype enrichment analysis
We described the clusters by the following variables: number of

patients per cluster; female-to-male ratio; average number of HPO

terms per patient; odds ratio of the presence of a diagnosis, given

cluster inclusion; age (years) at onset of symptoms; and age (years)

at UDN evaluation (see regions 6 and 7 of Figure 1A). For each clus-

ter, we further represented the proportion of patients exhibiting the

5 most representative phenotypes as a heatmap. The significance of

distribution differences between all clusters was calculated with the

Kruskal-Wallis H test.25

Cluster diagnostic characterization and classification
We described how the known diagnosed conditions are distributed

among clusters. We then train 2 support vector classifiers (SVCs) on

the UDN dataset, one using pairwise Jaccard similarity and the other

using raw HPO binary vectors. The pairwise Jaccard similarity ma-

trix was computed calculating the similarity between the raw HPO

representation of test set patients and training set patients for each

pair of test/training patients. We trained our models on 90% of the

data with 10-fold stratified cross-validation for model selection and

tested on the remaining data. We then used the trained SVCs to as-

sign 8 rare diseases with reported HPO annotation—Rett syndrome,

Hurler syndrome, facioscapulohumeral muscular dystrophy, familial

dysautonomia, Hutchinson-Gilford progeria syndrome, spinocere-

bellar ataxia, epileptic encephalopathy (EE), and myofibrillar myop-

athy—to our computed clusters. (see Figure 1B).

Validation of cluster comorbidities in national claims

database
We repeated our method using a national claims database of 67 mil-

lion patients, containing individuals that filed a claim through a spe-

cific provider, thus encompassing patients with a common disease, a

rare disease, or even no disease. We mapped the 10 most representa-

tive phenotypes—as defined by HPO terms—of each cluster to Phe-
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WAS codes (PheCode)31 using an expert mapping manual—a docu-

ment containing correspondences between HPO and PheWAS—cre-

ated by Bastarache et al.32 We then mapped PheCodes to

International Classification of Diseases–Ninth Revision (ICD-9) or –

Tenth Revision (ICD-10) terms,33 using PheWAS catalog, version

2.31 There were 63 HPO terms that represented the 10 most repre-

sentative phenotypes for both adult and pediatric clusters because of

overlap. We mapped 950 ICD-10 and 458 ICD-9 terms to 59 HPO

terms (of the 63 HPO terms). For each cluster’s UDN phenotypes,

we selected the 10 comorbidities that were presented by the highest

proportion of patients within the cluster. We then searched the

claims database for patients that presented simultaneously these 10

comorbidities (we also performed complementary analysis searching

for patients presenting only 9, 8 or 7 of the 10 HPO terms). The in-

clusion criteria were patients with at least 1 ICD-9/10 code that

maps to a HPO term, at least 12 months of coverage with medical

information (from January 2008 to December 2019), and compara-

ble age of diagnosis. Comorbidities were defined as any 2 codes oc-

curring for a specific patient during the time of enrollment in the

database (without setting any time window). We used bootstrap

sampling for P value inference, comparing the counts with 1000 ran-

domly selected sets of 10 HPO terms (we found significant co-

occurrence of the 10 most representative comorbidities in 3 out of 4

mappable clusters, for both pediatric and adult clusters; results can

be found in Supplementary Appendix and Supplementary Figure 4).

RESULTS

Descriptive analysis
At the time of this study, 1042 patient records were present in the

PIC-SURE UDN database (Table 1). We divided them into pediatric

onset of symptoms (78%) and adult onset of symptoms (22%).

Nearly a quarter of patients were labeled as “diagnosed.” Of these

Figure 1. (A) Workflow for the clustering and phenotype enrichment analysis per cluster of the Undiagnosed Diseases Network. (B) Workflow for the training of

support vector classifier (SVC) and assignment of new patients. (A) (1) Patients were represented as binary vectors (1 if the phenotype was present, 0 if absent).

(2) All patient vectors were aggregated in one matrix representing the whole network. (3) The pairwise Jaccard similarity was computed for every pair of patients

and represented a similarity matrix. Similarities ranged from 0 to 1. (4) A network of patients was created, the nodes representing patients of the Undiagnosed

Diseases Network, the edges being proportional to the similarity between the 2 nodes that they linked. Patients with a 0 score for similarity were not linked. (5)

The Louvain community detection algorithm was performed on the network, and clusters were detected. (6) The list of the 5 phenotypes that were presented by

the highest proportion of patients within the cluster was extracted and referred to as the list of best phenotypes. (7) The proportion of patients presenting the list

of best phenotypes was represented as a heatmap. (B) (1) An SVC is trained on the patients labeled with their cluster number. (2) New patients represented with

their Human Phenotype Ontology annotations are assigned to clusters with the trained SVC.
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239 diagnosed patients, 45 had adult-onset symptoms (19%) and

194 had pediatric-onset symptoms (81%). The female-to-male ratio

was 1.04 (532:510). Average age at UDN evaluation was 20 (inter-

quartile range [IQR], 5-31) years. Average age at symptom onset

was 10 (IQR, 0-14) years. The diagnosed pediatric population was

significantly younger at symptom onset (P¼ .002) and UDN evalua-

tion (P¼ .004) as compared with the undiagnosed pediatric popula-

tion: 2 (IQR, 0-1) years vs 3 (IQR, 0-3) years for symptom onset

and 11 (IQR, 4-14) years versus 12 (IQR, 4-17) years for UDN eval-

uation. The majority (81%) of the population was White. Primary

symptoms (self-reported) were mainly neurological (48%) and mus-

culoskeletal (12%). Patients were almost evenly distributed among

the evaluation sites (12% per site).

A total of 3965 unique HPO terms—of 15 247 available terms in

the ontology (26%)34—were annotated as “positive” or “negative”

in the UDN database. The total number of nonunique HPO terms in

Table 1. Analysis of the UDN database as of May 6, 2019, depicting age, race, ethnicity, primary symptoms, and clinical sites of evaluation

Attribute

Adult

Diagnosed

Adult

Undiagnosed

Pediatric

Diagnosed

Pediatric

Undiagnosed All

Mann-Whitney

U P Value

Female-to-male

ratio

— 22:23 102:85 113:81 295:321 532:510 (Fisher) Adult: .51

Pediatric: .013

Age At symptom onset, y 36 (26-44) 38 (26-50) 2 (0-1) 3 (0-3) 10 (0-14) Adult: .19

Pediatric: P<.001

At UDN evaluation, y 45 (33-57) 47 (36-58) 11 (4-14) 12 (4-17) 20 (5-31) Adult: .24

Pediatric: <.001

Race White 36 (16) 156 (67) 149 (18) 498 (61) 839 (81) /

Asian 5 (2) 7 (3) 17 (2) 34 (4) 63 (6)

American Indian or Alaska Native 0 (0) 0 (0) 0 (0) 3 (<1) 3 (<1)

Black or African American 2 (1) 14 (6) 11 (1) 21 (3) 48 (5)

Native Hawaiian Pacific Islander 0 (0) 0 (0) 0 (0) 2 (<1) 2 (<1)

Other 2 (1) 10 (4) 17 (2) 58 (7) 87 (8)

Ethnicity Not Hispanic or Latino 33 (14) 152 (66) 132 (16) 452 (56) 769 (74) /

Hispanic or Latino 1 (<1) 12 (5) 40 (5) 103 (13) 156 (15)

Unknown/not reported ethnicity 11 (5) 23 (10) 22 (3) 61 (8) 117 (11)

Primary symptom Neurology 22 (9) 92 (40) 100 (12) 283 (35) 497 (49) Adult: .08

Pediatric: .33

Musculoskeletal 7 (3) 13 (6) 27 (3) 81 (10) 128 (12)

Allergies and disorders

of the immune system

2 (1) 17 (7) 6 (1) 31 (4) 56 (5)

Cardiology and vascular

conditions

5 (2) 13 (6) 7 (1) 20 (2) 45 (4)

Gastroenterology 0 (0) 2 (1) 6 (1) 29 (4) 37 (4)

Rheumatology 2 (1) 10 (4) 0 (0) 22 (3) 34 (3)

Endocrinology 0 (0) 4 (2) 6 (1) 12 (1) 22 (2)

Pulmonology 0 (0) 4 (2) 4 (<1) 11 (1) 19 (2)

Hematology 1 (<1) 4 (2) 1 (<1) 9 (1) 15 (1)

Nephrology 2 (1) 4 (2) 3 (<1) 6 (1) 15 (1)

Ophthalmology 0 (0) 1 (<1) 1 (<1) 10 (1) 12 (1)

Dermatology 3 (1) 3 (1) 2 (<1) 1 (<1) 9 (1)

Dentistry and craniofacial 0 (0) 0 (0) 1 (<1) 6 (1) 7 (1)

Psychiatry 0 (0) 1 (<1) 2 (<1) 3 (<1) 6 (1)

Gynecology and

reproductive medicine

0 (0) 0 (0) 1 (<1) 1 (<1) 2 (<1)

Infectious diseases 0 (0) 1 (<1) 0 (0) 0 (0) 1 (<1)

Urology 0 (0) 0 (0) 0 (0) 1 (<1) 1 (<1)

Oncology 0 (0) 1 (<1) 0 (0) 0 (0) 1 (<1)

Other 1 (<1) 11 (5) 22 (3) 71 (9) 105 (10)

Clinical site of

evaluation

Baylor 5 (2) 21 (9) 36 (4) 103 (13) 165 (16) Adult: .5

Pediatric:.26

Duke 3 (1) 5 (2) 43 (5) 68 (8) 119 (11)

Harvard affiliate 11 (5) 18 (8) 24 (3) 65 (8) 118 (11)

NIH 6 (3) 88 (38) 8 (1) 135 (17) 237 (23)

Stanford 5 (2) 32 (14) 17 (2) 96 (12) 150 (14)

UCLA 3 (1) 12 (5) 38 (5) 69 (9) 122 (12)

Vanderbilt 12 (5) 11 (5) 28 (3) 79 (10) 130 (13)

WUSTL 0 (0) 0 (0) 0 (0) 1 (<1) 1 (<1)

Values are n, mean (interquartile range), or n (%). Statistical significance was computed using the Mann-Whitney U test (Fisher exact test for female-to-male

ratio).

NIH, National Institutes of Health; UCLA, University of California, Los Angeles; UDN: Undiagnosed Diseases Network; WUSTL, Washington University in St

Louis.
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the UDN database was 26 082 (23 881 positive and 2201 negative),

including explicitly annotated parent terms. The average number of

HPO terms per patient was 25 (95% confidence interval [CI], 24.0-

26.1), including 23 positive (95% CI, 21.9-23.9) and 2 negative

(95% CI, 1.8-2.4), with a maximum of 135 terms for a single pa-

tient (127 positive and 47 negative) (Supplementary Table 1, Supple-

mentary Figure 1). Patients presented mostly abnormalities of the

nervous system (92%), the skeletal system (74%), the head or neck

(64%), and the musculature (64%) (Figure 2, Supplementary Table

2, and Supplementary Figure 2).

Network and clusters
We provide the adult analysis in supplementary materials. The pedi-

atric network we constructed was formed by 810 nodes (represent-

ing patients) with 157 869 weighted edges (representing the

similarity between patients). Louvain community detection identi-

fied 4 clusters and 7 outliers (groups of <5 patients) (Table 2 and

Figure 3). Outliers were discarded. A total of 798 (99%) pediatric-

onset patients were classified within groups of more than 5 patients.

Cluster phenotype and disease enrichment analysis
Cluster 1 was marked by growth disorders in infancy, specifically

short stature (50%), microcephaly (36%), short foot (28%), failure

to thrive (27%), and decreased body weight (23%). Notably, this

cluster showed a significantly increased probability of diagnosis

(odds ratio, 1.7; 95% CI, 1.2-2.2) and was most likely benefit from

a UDN-type evaluation. Cluster 2 showed characteristic neurodeve-

lopmental symptoms enriched for hypotonia and microcephaly in in-

fancy, specifically global developmental delay (73%), seizures

(47%), generalized hypotonia (31%), microcephaly (21%), and ab-

sent speech (19%). Similar to cluster 1, this group bore a signifi-

cantly increased probability of diagnosis (odds ratio, 1.9; 95% CI,

1.4-2.7) and thus likely benefits from a UDN-type evaluation. Clus-

ter 3 featured a constellation of asthma (24%), gastroesophageal re-

flux (17%), anxiety (17%), headache (17%), and abdominal pain

(16%). Finally, cluster 4 was characterized by neurological symp-

toms during childhood, specifically dysarthria (29%), developmen-

tal regression (21%), gait disturbance (21%), delayed language and

speech development (20%), and ataxia (24%).

Of note, each pediatric cluster significantly differed from others

by the number of HPO terms per patient (P< .001), age at onset of

disease (P< .001), and age at UDN evaluation (P< .001).

Cluster diagnostic characterization and classification
The pediatric network presented 133 OMIM-annotated35 diagnoses

(see Supplementary Table 5). Cluster 1 consisted mainly of growth

disorders, including neurodevelopmental disorders (5 of the 5 diag-

nosed in the database), Bainbridges-Ropers syndrome (2 of 2), or

Schaaf-Yang syndrome (2 of 2). Cluster 2 exhibited neurological

and retardation diseases, such as epilepsy (3 of 5), EE (9 of 10), Rett

syndrome (3 of 4), congenital disorder of glycosylation (3 of 4), and

hypotonia (2 of 3).

Cluster 3 comprises a set of disorders with more heterogeneous

manifestation, such as chronic infantile neurologic cutaneous articular

syndrome (1 of 1), Marfan syndrome (1 of 1), and Ehlers-Danlos syn-

drome (1 of 1). Finally, cluster 4 was characterized by neuromuscular

disorders, such as spastic paraplegia (2 of 2), ataxia (2 of 2), and Hun-

tington’s disease (2 of 2). Some diseases were found across several

Figure 2. Percentage of patients in Undiagnosed Diseases Network PIC-SURE database presenting at least 1 symptom from top-level phenotypic category in Hu-

man Phenotype Ontology. There are 23 types of top-level phenotypic abnormalities in which Human Phenotype Ontology terms can be classified. A single pheno-

type may be classified within several categories. Each patient was counted within a category if they presented at least 1 symptom classified in the category (as of

May 6, 2019).
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clusters, notably mental retardation (3 in cluster 1, 6 in cluster 2, 1 in

cluster 4) or Bethlem myopathy (1 in each of clusters 2, 3, and 4).

The SVC trained on pairwise distances (regularization C¼0.5,

balanced class weights, 10-fold cross-validated balanced accuracy:

0.88) reached 0.89 balanced accuracy on the test set (stratified, 80

patients). The SVC trained on the raw HPO binary vector represen-

tation (regularization C¼1.9, balanced class weights, 10-fold cross-

validated balanced accuracy: 0.82) reached 0.83 balanced accuracy

on the test set. Both models classified Hurler syndrome in pediatric

cluster 1; EE, Rett syndrome, familial dysautonomia, and faciosca-

pulohumeral muscular dystrophy in cluster 2; myofibrillar myopa-

thy and Hutchinson-Gilford progeria syndrome in cluster 3; and

spinocerebellar ataxia in cluster 4.

DISCUSSION

This report marks the first extensive analysis of the UDN database.

It is also the first time in which the data of individuals with many

rare diseases have been analyzed as a single population to find hid-

den links between seemingly disparate conditions. Overall, we dis-

covered pediatric-onset clusters of patients and further determined

that these groups were meaningful from a clinical point of view, us-

ing both comorbidities and available diagnoses. Finally, we provided

a classification tool (SVC) to enable researchers and clinicians to as-

sign previously unseen cases to the clusters we have presented.

The utility of our method is 2-fold. From a clinical perspective,

it could be used to complement a practitioner’s observation, by

Table 2. Analysis of clusters according to the number of included patients, their female-to-male ratio, the average number of HPO terms per

patient in the cluster, the odds ratio of being diagnosed, the average age at onset of the disease (years), and the average age at UDN evalua-

tion (years) for pediatric patients (as of May 6, 2019)

Pediatric

Cluster C1P Cluster C2P Cluster C3P Cluster C4P Kruskal-Wallis P Value

Patients per cluster 218 279 198 103 —

Female-to-male ratio 12:10 8:10 10:10 12:10 —

Average of HPO terms per patient 36.1 (33.3-38.9) 20.6 (19.2-22.0) 21.1 (18.9-23.3) 17.9 (16.0-19.7) <.001

Odds ratio diagnosed (95% CI) 1.7 (1.2-2.4) 1.9 (1.4-2.7) 0.7 (0.4-1.0) 1.4 (0.9-2.2) —

Average age at onset (95% CI), y 0.7 (0.4-1.0) 0.8 (0.5-1.1) 5.2 (4.4-6.0) 4.8 (3.8-5.8) <.001

Average age at UDN evaluation (95% CI), y 9.0 (7.7-10.3) 8.4 (7.5-9.3) 18.3 (16.4-20.1) 16.0 (13.5-18.5) <.001

CI: confidence interval; HPO: Human Phenotype Ontology; UDN: Undiagnosed Diseases Network.

Figure 3. Heatmap of most representative phenotypes for each cluster in the Undiagnosed Diseases Network for networks. The 5 most representative phenotypes

for every cluster were extracted. All phenotypes were concatenated in a list referred to as “best phenotypes.” The proportion of patients presenting these pheno-

types in every cluster is represented in the heatmap: the darker the shade is, the higher the proportion of patients presenting this cluster-specific phenotype is,

ranging from 0% to 50% for adult onset and 0% to 75% for pediatric onset. The cluster sizes are shown next to their name.
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assigning a new patient with annotated HPO terms to a cluster and

investigating existing diagnoses in the cluster. The assignment can

be performed using the pretrained SVC model (available on github)

with any patient with annotated HPO terms, and thus could serve to

assign new patients of the same database or utilize another database

to uncover new insights. It can also be done using the pairwise dis-

tance to training data patients in the UDN database, for authorized

investigators. From a research point of view, this grouping could

point toward potential shared molecular pathways and justify pool-

ing of samples to answer specific questions: a major drawback of

rare diseases studies is the lack of available biopsies or material. Al-

though the clusters presented are of higher order (thus encompassing

numerous diseases), this method can be pursued with higher resolu-

tion of the Louvain clustering method, enabling an analysis of clus-

ters on a smaller level. Of note, the richness of annotation of patient

phenotypes in the UDN database allows clusters to be characterized

by symptoms that would not be otherwise considered as primary

symptoms.

The rationale behind separating the analysis between adult and

pediatric patients was to ensure Louvain detection would not group

patients using phenotypes that are strongly correlated with age (eg,

create a cluster of arthritic patients).

The main comorbidities found in the clusters had been previ-

ously reported as co-occurring and were then confirmed by the clus-

tering of patients with the same diagnoses (in most cases). An

overwhelming majority of patients in the database present neurolog-

ical symptoms, consistent with the prevalence in rare diseases of

neurological manifestations.36 Cluster 1 can be associated with a

number of growth abnormalities syndromes,37 with co-occurrence

of short stature, small hands or feet, and failure to thrive, or rare dis-

orders38–40 with short stature and microcephaly; this was consistent

with the prevalence of neurodevelopmental diagnoses in the cluster.

Cluster 2 presents developmental delay and epilepsy—often found

as comorbidities41,42—as well as hypotonia and additional comor-

bidities normally seen in several EE.43,44 Once again, the grouping

of patients with EE and Rett syndrome was coherent. Cluster 3 is

more heterogeneous but can be linked to anxiety disorder symp-

toms.45–47 Cluster 4 presents comorbidities linked to neuromuscular

defects consistent with known diseases such as cerebellar ataxia48–50

or spastic paraplegia,51–53 linked to the found neuromuscular disor-

ders such as ataxia or Huntington’s disease. Some diseases—such as

mental retardation—were found across clusters, which could be jus-

tified by their heterogeneous manifestations. Overall, cluster 3 is

characterized by general symptoms, which can be explained by the

heterogeneity of phenotypes presented by the patients within the

cluster (with diagnoses such as familial cold autoinflammatory syn-

drome or factor V deficiency). This cluster might hence benefit from

larger granularity to uncover subgroups of diseases.

The assignment of rare diseases represented as “standard

patients” confirmed the designation of our clusters: Hurler syn-

drome was found in the growth disorder cluster, EE and Rett in the

neurodevelopmental cluster, SA in the neuromuscular disorder clus-

ter. The assignment of myofibrillar myopathy and Hutchinson-

Gilford progeria syndrome points toward the fact that subgroups

might be present in cluster 3 (eg, cardiovascular phenotypes); addi-

tionally, it corresponds to patients with diseases with very diverse

manifestations.

To expose any underlying shared genetic structures between

these rare diseases, we developed a computational algorithm to

parse for trends in comorbidity that were higher than expected from

random chance and found significant co-occurrences. This is

supported by the hypothesis that genes disrupted in Mendelian dis-

eases are likely to be disrupted in complex diseases,54,55 thus

explaining that comorbidities that co-occur within a rare disease

database are likely to co-occur in a national database that is com-

posed of mostly complex traits. Of note, our results were robust

when comparing selection of up to 7, 8 or 9 among the best HPO

terms and combinations of the randomly selected HPO terms

(P< .024 for clusters 2, 3, and 4), meaning that even combinations

of the most representative terms are overrepresented as compared

with chance.

We have successfully unearthed clusters that might be further ex-

plored by clinicians or rare disease investigators and families of

those who are affected. Our methods can be similarly deployed on

other datasets, additionally to methods put forward by other investi-

gators, such as using multiple, repeated measurements of the same

patient’s status over time56–58 or statistical innovations to improve

the accuracy of small sample sizes.56,57

Ultimately, we have shown that despite the scarcity and hetero-

geneity of patients with diseases that are by definition rare, we can

still pinpoint commonalities and potentially harness them to find

common pathways or complement a clinicians’ diagnosis.

Limitations
A preliminary limitation—inherent to the data—is that the UDN

database consists mainly of a White population, potentially restrict-

ing the application of the described clusters for other ethnicities.

This could be circumvented by using a database that does not con-

tain this bias.

A first limitation is that patients in the network were represented

using only the presence or absence of phenotype, linked to the infor-

mation provided. Thus, we could not capture the subtleness of any

phenotypic manifestation, such as intensity or frequency of occur-

rence. In addition, we considered a negative phenotype as equivalent

to no information on the presence or absence of a phenotype,

thereby discarding it: this can also lead to inaccurate pairing.

The choice of the optimal number of clusters—and thus resolu-

tion in this case—remains an open question in unsupervised learn-

ing.59 However, because the Louvain resolution only determines

granularity, changing the resolution would simply break larger

clusters into smaller ones, thus not influencing the validity of

interpretation.

Of note, the number of diagnosed cases reported is likely under-

estimated: if a diagnosis is highly likely but uncertain, it will not be

flagged as solved in the database.

Finally, our validation studies using the national claims database

are subject to several limitations, mainly the scarcity of available

correspondence between HPO and PheCodes or ICD-9/10 codes. In-

deed, mapping is hindered by the differing objectives of its termino-

ontological resources. In this case, HPO centers on phenotypes and

PheCodes, ICD-9/10 focuses on diagnoses. At best, this results in in-

exact matches. At worst, one cannot map at all.32 Further work

could be pursued by conducting our analysis in a similar manner us-

ing similarity with ICD-9/10 code instead of HPO codes.

Although phenotypic clustering might point toward a shared

mechanism or etiology, we did not perform an analysis to confirm

this hypothesis ourselves: this research would benefit from a subse-

quent analysis of the genomic data of patients within a cluster. Addi-

tionally, our study would also benefit from an external validation

group to observe if the assignment of new patients to our clusters is

consistent with the associated comorbidities and diagnoses.
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CONCLUSION

We provide a description of the UDN database and a meaningful

grouping of its members: patients who exhibit a broad range of

rare—and in the majority of cases—undiagnosed diseases. We offer

these findings to practitioners and researchers in the rare disease and

related fields to explore more deeply, perhaps by integrating geno-

mic or metabolomic data. Such large-scale methods may yield new

insights for what is now collectively a large group of patients, who

individually cannot garner the necessary resources and attention to

their conditions and make significant inroads in early diagnosis.
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