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a b s t r a c t

While numerous computational methods have been developed that use genome-scale models to
propose mutants for the purpose of metabolic engineering, they generally compare mutants based on
a single criteria (e.g., production rate at a mutant's maximum growth rate). As such, these approaches
remain limited in their ability to include multiple complex engineering constraints. To address this
shortcoming, we have developed feasible space and shadow price constraint (FaceCon and ShadowCon)
modules that can be added to existing mixed integer linear adaptive evolution metabolic engineering
algorithms, such as OptKnock and OptORF. These modules allow strain designs to be identified amongst
a set of multiple metabolic engineering algorithm solutions that are capable of high chemical production
while also satisfying additional design criteria. We describe the various module implementations and
their potential applications to the field of metabolic engineering. We then incorporated these modules
into the OptORF metabolic engineering algorithm. Using an Escherichia coli genome-scale model
(iJO1366), we generated different strain designs for the anaerobic production of ethanol from glucose,
thus demonstrating the tractability and potential utility of these modules in metabolic engineering
algorithms.
& 2014 The Authors. International Metabolic Engineering Society. This is an open access article under the

CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).

1. Background

Genome-scale models (GEMS) are powerful tools allowing for
the prediction of cellular growth, flux profiles, and mutant strain
phenotypes (Orth et al., 2010). Over the last decade, with the
development of new computational algorithms, GEMS have been
used to guide the design of strains for biochemical production,
such as biofuels and commodity chemicals (reviewed in Curran
and Alper (2012), Zomorrodi et al. (2012), and Lee et al. (2012)).
While GEMs are valuable tools, new computational algorithms are
still needed to evaluate them and apply them in new ways.

Many strain design algorithms exist that identify which net-
work modifications are needed to improve chemical production.
These modifications can involve reaction deletions (OptKnock),
metabolic or regulatory gene deletions (OptGene and OptORF),
reaction additions (OptStrain and SimOptStrain), or flux increases/
decreases (OptReg, OptForce, CosMos, FSEOF) (Zomorrodi et al.,
2012; Kim and Reed, 2010; Burgard et al., 2003; Pharkya et al.,
2004; Ranganathan et al., 2010; Patil et al., 2005; Pharkya and
Maranas, 2006; Cotten and Reed, 2013; Choi et al., 2010; Kim et al.,

2011). The bi-level optimization approaches used to identify these
modifications can be computationally expensive and recent efforts
have improved their run-time performances (Patil et al., 2005;
Kim et al., 2011; Ohno et al., 2013; Lun et al., 2009; Yang et al.,
2011). Many of these metabolic engineering algorithms focus on
improving the desired chemical production when the proposed
mutant is operating at its maximal growth rate. By coupling
chemical production to growth, selection for growth rate using a
chemostat or sequential batch cultures can enrich for strains with
increased chemical production (Fong et al., 2005). One such
algorithm, OptORF, is used extensively in this work (Kim and
Reed, 2010). The OptORF algorithm extends upon OptKnock by
using gene rather than reaction deletions as potential modifica-
tions. By accounting for gene and transcriptional regulatory net-
work information, OptORF proposes deleting or overexpressing
metabolic or regulatory genes (as opposed to reaction level
deletions proposed by OptKnock) to increase chemical production.
By doing this, OptORF avoids designs that would be impossible to
implement, due to genetic interactions between reactions or
regulatory effects.

While metabolic engineering methods have been successful
(Curran and Alper, 2012; Ranganathan et al., 2010; Fong et al.,
2005; Yim et al., 2011), most of these approaches cannot consider
the ramifications of undesirable suboptimal flux distributions
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(e.g. production with low productivity) (Patil et al., 2005; Feist et
al., 2010; Lin et al., 2005; Sánchez et al., 2005; Vadali et al., 2005),
or production phenotypes at or near stationary phase in batch
cultures. Additionally, these algorithms are limited in their ability
to tailor a strain's behavior to address more complex problems
(e.g., the co-utilization of multiple substrates (Gawand et al., 2013;
Lian et al., 2014; Trinh et al., 2008) or elimination of undesirable
by-products (Aristidou et al., 1994; Eiteman and Altman, 2006;
Jantama et al., 2008; Zha et al., 2009)). Consequently, while these
approaches are valuable in designing adaptive evolutionary strains
based on single criteria (e.g., high production at maximal growth
rates), they often lack the ability to efficiently propose strains
meeting multiple design criteria that are of interest to investiga-
tors. To address these problems in small networks, techniques
such as constrained minimal cut sets (Hädicke and Klamt, 2011)
can be used to allow researchers to meet additional design criteria
(e.g., elimination of undesired by-products) without affecting the
desired chemical production phenotype. Recent advances allow
enumeration of the smallest minimal cut sets in genome-scale
networks, from which constrained minimal cut sets can be
identified (von Kamp and Klamt, 2014). However, all minimal cut
sets can still not be enumerated for genome-scale networks, and
the smallest minimal cut sets identified first might not correspond
to constrained minimal cut sets meeting additional design criteria.
Additionally, strategies for finding constrained minimal cut sets
that consider transcriptional regulation, media selection or degree
of coupling between biomass and chemical production have not
been developed.

Previously, we developed the forced coupling algorithm
(FOCAL) to identify conditions (e.g., gene deletions or media
conditions) that ensure directional coupling between two fluxes
(flux through vx implies flux through vy) (Tervo and Reed, 2012).
By changing media conditions or deleting genes, FOCAL affects the
shape of the resulting feasible solution space. We also showed
how FOCAL can be modified to design a mutant strain that must
co-utilize xylose and glucose simultaneously in order to grow.
While these modifications were interesting, they did not work to
increase the overall productivity of the organism since no meta-
bolic engineering objective was included. Moreover, this approach
could only enforce directional coupling between fluxes which is
often an overly stringent condition for metabolic engineering
strain designs.

Recently, Ohno et al. (2013) used shadow prices from flux
balance analysis (FBA) solutions to guide a greedy algorithm for
increasing chemical productivity as reaction deletions are added.
Double deletion mutants with the top desired shadow prices
(which indicate the rate of change in growth divided by the rate
of change in chemical production) were used as “parent” strains to
find triple deletion knockouts with the best shadow prices. This
greedy search process, called FastPros, was repeated for up to 25
knockouts, and for each iterative screening step, any sets of
deletions which resulted in a non-negative shadow prices (indi-
cating coupling between growth and chemical production) were
stored as candidates for further analysis and excluded from further
screening. The authors then used OptKnock to maximize chemical
production using only the stored reaction knockouts found by
their FastPros process. Because they use a greedy algorithm, their
method does not guarantee that the set of knockouts with the
highest shadow prices are discovered. Additionally, since the
authors use OptKnock to propose strain designs, their approach
does not control or optimize the degree of coupling between
chemical production and cellular growth when mutants are
proposed.

Here, we have developed modules Feasible Space Constraint
(FaceCon) and Shadow Constraint (ShadowCon) modules for con-
trolling the shape an organism's feasible space. These modules

allow many additional types of design criteria to be considered
besides directional coupling. These modules can be easily added to
mixed integer linear adaptive evolution metabolic engineering
algorithms to incorporate additional design criteria, while retain-
ing the original objective of the method (e.g., coupling growth and
chemical production). Since there are often many possible solu-
tions to these strain design algorithms, embedding these modules
allows only the subset of those mutants to be found if the criteria
associated with these modules is met. Such filtering is needed as
models become larger and the computational cost (i.e., CPU time)
of generating numerous strain designs increases, due to the
combinatorial explosion associated with increasing numbers of
integer variables and integer cuts needed to find alternate solu-
tions. To date, the only type of filtering that can be done works to
prevent finding solutions that have large ranges of chemical
production at the maximum growth rate (Feist et al., 2010;
Tepper and Shlomi, 2010).

FaceCon modules are included as additional inner optimization
problems and ensure that any proposed mutant cannot operate
within a user-defined region (i.e., no feasible flux distribution can
exist within a user-defined region). By defining this excluded
region, various feasible space characteristics can be enforced.
Below we describe three FaceCon modules:

1. Coupling module: This module allows a researcher to enforce
different types of coupling (directional or weak) between a flux
of interest (vy) and another flux (vx) depending on the
formulation and parameter selection. This module can be used
to find mutants with directional coupling (i.e., flux through vx
implies flux through vy for all values of vx (Burgard et al.,
2004)) or weak coupling (where flux through vx implies flux for
vy only for some positive values of vx). Depending on how the
coupling module is implemented one can require mutants
having directional coupling, weak coupling, or either direc-
tional or weak coupling. The result of any of these implementa-
tions is that a defined portion of the vx axis is excluded from
the solution space of a proposed mutant.

2. Chemical level module: The chemical level module ensures
proposed mutants meet criteria associated with the production
level of a chemical of interest, vy (e.g., a desired product or
undesired by-product). This module finds mutants whose
solution space excludes solutions with vy below (or above) a
user-defined threshold (β) within a defined region (e.g., vy must
be greater than β when vx is greater than vmin).

3. Direct constraint module: This module is the most comprehen-
sive and with proper parameter selection can encompass the
functions of the two previous FaceCon modules. This module
allows the user to define a particular region that must be
excluded from the solution space of any proposed mutant;
thus, the researcher is able to directly influence the solution
space of any mutant proposed by a metabolic engineering
algorithm.

In the following sections, we detail the application, function
and relevant parameters for each of these FaceCon modules. We
then introduce the concept of shadow constraint (ShadowCon)
modules, which can be used to control the degree of coupling once
coupling between two fluxes occurs. To illustrate each module's
functionality and potential use, we have included the FaceCon and
ShadowCon modules as additional inner problems within the
OptORF algorithm, to find metabolic gene deletions that couple
growth and chemical production and that satisfy additional
module criteria. Additionally, to demonstrate the methods are
applicable on genome-scale networks we have applied them to
identify mutants for ethanol production using the Escherichia coli
model, iJO1366 (Orth et al., 2011). We demonstrate that when
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there are multiple solutions to metabolic engineering algorithms,
the addition of FaceCon and ShadowCon modules allows only
those mutants that meet additional criteria to be identified.

2. Methods

Most algorithms developed for metabolic engineering focus on
maximizing chemical production assuming maximum cellular
growth. We have developed FaceCon and ShadowCon modules
that can be integrated into existing mixed integer linear adaptive
evolution metabolic engineering algorithms which focus on dele-
tions (e.g., OptKnock, OptORF, and their tilted variants, as well as
RobustKnock) to allow for greater control over strain designs
(Fig. 1) and to filter out designs with undesirable suboptimal
behaviors. The resulting bi-level optimization problem is con-
verted into a mixed integer linear programming problem (MILP)
using duality theory. It is important to note that the modules and
the metabolic engineering algorithm are completely independent
subproblems (see Supplementary materials Fig. S5), which only
share the same feasible space (altered by deletions in the outer
problem) and integer variables. All continuous variables (e.g.,
fluxes) are unique to each subproblem. Interestingly, many of
these bi-level algorithms include a maximum growth subproblem
that determines chemical production capabilities at the maximum
growth rate. This subproblem itself can be considered a module of
the outer problem that selects gene deletions or reaction knock-
outs that constrain the maximum growth subproblem. Conse-
quently, the FaceCon modules could be run in isolation of the
maximum growth subproblem if chemical production is not of
concern. Additionally, because these modules and the metabolic
engineering algorithm share integer variables the combinatorial
complexity of the problem does not substantially increase with
addition of FaceCon or ShadowCon modules. Instead only addi-
tional linear constraints are added which should result in poly-
nomial time scaling as the problem size increases.

For simplicity, we describe only the direct constraint module
since the coupling and chemical level modules can be implemen-
ted using the same equations with different parameter values
(Fig. 2). Nonetheless, alternative formulations of the other FaceCon
modules are provided in Supplementary materials. While all
FaceCon modules are written as minimization problems, they
can easily be modified to maximization problems (e.g., if one
wishes to prevent by-product formation). Additionally, while all
modules are included with acceptance criteria written as con-
straints – thus, not meeting the acceptance criteria forces the
problem to be infeasible – such constraints can be reformulated as
penalties within the outer metabolic engineering objective, which
can be especially useful if finding a feasible solution is particularly
challenging.

2.1. Metabolic engineering algorithm

All modules were incorporated into a gene-deletion focused
OptORF (Kim and Reed, 2010) (i.e., no regulatory information was
considered) and the resulting MILP was written in the General
Algebraic Modeling System (GAMS) and solved using CPLEX.
A gene deletion penalty of one was used in the OptORF objective
and a maximum of 20 gene deletions was used. The standard
untilted inner objective function (maximize growth) was used,
unless noted otherwise. In cases where a tilted objective function
was used in OptORF (presented in Supplementary materials), the
inner objective function was maximize growth rate minus 0.001
times the chemical production rate. Each problem was run for ten
thousand seconds (except for the ShadowCon problems which
were allowed to run for up to twenty thousand seconds) or until a
global optimumwas found, whichever occurred first. For the small
illustrative network global solutions were found immediately.
Using the iJO1366 model, the solver used all the time allotted
when the objective for OptORF was tilted (with and without)
FaceCon or ShadowCon modules. Similarly, the untilted OptORF
required all the time permitted when FaceCon or ShadowCon

Fig. 1. Modules added as inner problems to extend existing metabolic engineering algorithms. Figure demonstrates how FaceCon and ShadowCon modules are implemented
within a metabolic engineering algorithm, in this example OptORF. All module variables (including fluxes) are completely independent of the metabolic engineering
variables, with the exception of reaction deletions which are shared across all subproblems. By being modular, these constraints can be added to most FBA-centric
approaches and can be mixed and matched to include additional strain design criteria.

Direct Constraint 
Module

Chemical Level
Module

Coupling Module

Directional 
Coupling

vx > vMin γ = γset

Parameters:
vx 
γ   

β  
m  

m > mset

 γ =  β = βset

 α = β = γ = 0

m > 0

m > 0

m > 0

vx > vMin

vx > vMin

vx > 0

α = αset

α = 0

 α = β = γ = 0

α   

- Minimal Chemical production Parameter
- Objective Constraint Parameter
- x-coordinate for Direct Constraint Module
- y-coordinate for Direct Constraint Module
- 1-D Domain Parameter (e.g., Biomass flux > 0)

Fig. 2. Hierarchy of FaceCon modules. The above Venn diagram depicts the set of
constraints and parameter values that are used in a given FaceCon module. As can
be seen, many modules are subsets of the more comprehensive direct constraint
module. The necessary direct constraint parameter values are provided to repro-
duce the functionality of each of the other FaceCon modules.
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modules were included. For untilted OptORF without additional
modules (stand-alone OptORF), the first six solutions found were
each found in �20–25 min; however the next four solutions all
took the time allotted. To improve computational performance, all
subunits except one were retained (i.e., they cannot be deleted)
and all isozymes but one were removed by fixing the relevant
binary variables to one and zero, respectively prior to solving (as
described previously (Hamilton and Reed, 2012)).

2.2. FaceCon modules

The direct constraint module is the most comprehensive of the
FaceCon modules, since with proper parameter selection it can be
used to formulate the coupling and direct chemical modules. In
the direct constraint module the ratio of ðvy�γÞ=ðvx�αÞ is mini-
mized (or maximized). As a result, to ensure the objective remains
positive, all fluxes, vj, are broken into their forward and reverse
components (Eq. (1)) and normalized by the variable t (Eqs.
(2) and (3)).

vj ¼ vj;f orward�vj;reverse ð1Þ

t ¼ 1
vx;direction�α

ð2Þ

v0j;direction ¼
vj;direction

vx;diretion�α
¼ vj;directiont ð3Þ

Using these transformations, the direct constraint module has
the following form:

min ðor maxÞ m¼ vy;direction�γ

vx;direction�α
¼ v0y;direction�γt ð4Þ

∑
jAR

Sijðv0j;f orward�v0j;reverseÞ ¼ 0; 8 iAM ð5Þ

v0x;direction ¼ 1þαt ð6Þ

v0x;directionZvmin
x t ð7Þ

Transformed domain constraints ð8Þ

v0j;f orwardrvUpperLimit
j t; 8 jAR ð9Þ

v0j;reverser�vLowerLimit
j t; 8 jAR ð10Þ

v0j;f orwardr0; 8 jAR : aj ¼ 0 ð11Þ

v0j;reverser0; 8 jAR : aj ¼ 0 ð12Þ

vmin
x Zα ð13Þ

where α and γ are parameters corresponding to the coordinates on
a vx–vy plane through which a line with the smallest (or largest)
calculable slope (m) is found that also goes through the feasible
space within a user-defined region (Eq. (7)). Eq. (5) enforces the
steady-state material balances in the transformed flux space. Here
Sij is the stoichiometric matrix where i and j refer to metabolites
and reactions, respectively. M and R are the set of all metabolites
and reactions within a model. Eq. (6) is a linear rearrangement of
Eqs. (2) and (3). Eq. (7) allows the user to define the region where
the feasible space constraints will be enforced (e.g., where vx is
greater than vmin). Thus, for the module to be feasible there must
be at least one non-trivial flux distribution within the user-defined
region. Additional optional transformed constraints Eq. (8) can be
included that specify the user-defined region (or domain) over
which the feasible space constraints apply (e.g., v0x;directionrvMax

x t,
such a constraint can be useful to define multiple excluded regions

with varying slopes, m). Eqs. (9)–(12) limit the flux of any reaction
to its bound or to zero if the reaction has been deleted by the
metabolic engineering algorithm (indicated by the binary variable
aj being zero). In order to prevent the module from being
infeasible or unbounded, t must be finite and positive and so vx
must be greater than α (Eq. (11)).

The direct constraint module is included in the metabolic
engineering algorithm as an inner problem (Fig. 1). The variables
in the direct constraint module are independent of the variables in
other inner problems (i.e., the optimal flux distributions for the
different inner problems are not necessarily the same). To ensure
the module satisfies additional design criteria, the minimum slope,
m, needs to be greater (or less than in the case of maximization)
than, mset, defined by the user. This criterion is enforced by either
including a constraint (Eq. (14)) in the outer problem of the
metabolic engineering algorithm or by modifying the outer
objective to favor mutants that satisfy this acceptance criterion.
To convert the resulting bi-level problem to a single level MILP, the
inner optimization problem(s) can be replaced by the set of their
primal and dual constraints and equating the primal and dual
objectives.

mZmset ; if min problem
mrmset ; if max problem

ð14Þ

2.3. ShadowCon module

In addition to feasible space constraints on the allowed feasible
region, constraints can also be applied to the initial slope where
coupling begins along the vx axis using the following formulation:

max vx ð15Þ

∑
jAR

Sijvj ¼ 0; 8 iAM ð16Þ

vjrvUpperLimit
j aj; jAR ð17Þ

vjZvLowerLimit
j aj; 8 jAR ð18Þ

Domain constraints ð19Þ

vy ¼ ε ð20Þ
Here, vx is maximized while satisfying steady-state mass balances
(Eq. (16)), flux lower and upper limits (Eqs. (17) and (18)), and an
additional constraint fixing vy (Eq. (20)) such that the optimal
solution to Eqs. (15)–(20) is positioned near the point where the
degree of coupling between vy and vx (i.e., how a change in vy will
affect the maximum value of vx) should be calculated.

While developed independently, the above optimization pro-
blem is similar to that used in FastPros (Ohno et al., 2013).
However, in contrast to FastPros the ShadowCon module is
included directly as an inner subproblem in the metabolic engi-
neering algorithm (Fig. 1). Using this inner subproblem, the degree
(or slope) of coupling for an OptORF proposed mutant can be
controlled. Moreover, because ShadowCon uses a mixed integer
formulation instead of a greedy algorithm, our approach will not
get stuck in local maxima or minima if strains with a large or small
shadow price are desired.

The bi-level problem, created by including a ShadowCon
module into a metabolic engineering algorithm (like OptORF or
OptKnock), is converted to a single level MILP, by replacing the
inner optimization problem(s) with their set of primal and dual
constraints and equating the primal and dual objectives. The dual
variable (or shadow price) corresponding to Eq. (20) is the partial
derivative representing how the maximum value for vx would
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change if the value for ε (or vy) changed. Using this relation,
we can relate the slope (m) for the line of coupling between vy and
vx as follows:

m¼ ∂vy
∂vx

¼ ∂vx
∂ϵ

∂ε
∂vy

� ��1

¼ 1
ushadow

ð21Þ

Thus, ushadow can be used as a proxy for the potential change in the
vy with respect to a change in vx. In order to ensure that the
optimal value for ushadow is unique (i.e., ushadow takes the value of
the inverse slope of the line of interest), it is critical to select a
value of ε such that the optimal solution ensures that Eq. (20) is
binding, which is guaranteed for any feasible solution, and that vy
is a basis variable. To accomplish this, it is sufficient to pick an ε
such that the new optimum does not fall upon a preexisting pivot
(i.e., if the solution is not degenerate, the dual solution is unique
(Sierksma, 2002)). See Supplementary materials for extended
explanation and example problem. For example, when both ε
and vy

LowerLimit are zero, ushadow becomes unbounded from above
and thus may underestimate the slope, m. This occurs because
Eqs. (18) and (20) are simultaneously binding for vy. Consequently,
their two shadow prices can both be increased in conjunction,
counteracting one another such that there is no net increase in the
objective. To avoid this problem we set the value for ε equal
to 0.001.

Once the primal and dual for the ShadowCon module have
been included in the metabolic engineering algorithm, acceptance
criteria constraints (limiting the value for m) can be included in
the outer problem (Eqs. (22) and (23)):

m4mmin-ushadowo 1
mmin

ð22Þ

mommax-ushadow4
1

mmax ð23Þ

where mmin and mmax are the minimum and maximum allowable
slopes, respectively. Additional optional constraints for the Sha-
dowCon module can be added to the outer problem to mimic
simple coupling conditions and further filter possible solutions:

vmin
x rvxrvmax

x ð24Þ

vOptx �vxZΔvmin
x ð25Þ

Here Eq. (24), makes use of user-defined parameters, vmin
x and vmax

x ,
to define a region where coupling between vx and vy must occur.
Alternatively, Eq. (25), can be added to require a minimum
distance Δvmin

x between the optimal OptORF solution and where
coupling actually begins.

3. Results and discussion

FaceCon modules are sub-problems, formulated such that their
resulting inner objective values can be used to test acceptance
criteria of mutants being evaluated by the strain design algorithm
(see Fig. 3). While the formulations for each module are distinct
they all share certain features. Firstly, all FaceCon modules check
that no feasible solution exists within a user-defined region (e.g.,
region where flux vx is greater than vmin). Consequently, FaceCon
modules create a mandatory feasible region (i.e., a region within
which a non-trivial feasible solution must exist for any mutants
proposed by the strain design algorithms). By evaluating these
regions, FaceCon modules allow researchers to find mutants that
meet additional criteria, which would not be possible using
existing metabolic engineering algorithms alone. Below we
describe the parameters and unique features of each FaceCon
module. A summary of all modules included in this paper and their
usage is provided in Table 1.

3.1. Coupling module

The coupling module (Fig. 3A) works to enforce directional or
weak coupling between two fluxes (vx and vy, where a non-zero vx
implies a non-zero vy). By altering the formulation and para-
meters, the coupling module can be used to identify mutants with
directional coupling (i.e., vx implies vy for all values of vx –

effectively FOCAL sans media selection constraints), weak coupling
(i.e., vx implies vy if vx is greater than a positive, user-defined
value, vmin, and vx does not imply vy for some non-zero value of vx
less than vmin), or either directional or weak coupling. Inclusion of
such modules results in mutants having an infeasible region
containing the vx-axis above vmin (for the directional coupling
case vmin is zero). A coupling module adds a mixed-integer linear
program (MILP) sub-problem to the strain design algorithm, and
finds the minimum ratio (m) of vy/vx within the user-defined
region (vx4vmin). To meet the acceptance criterion of this module,
m must be non-trivial. In addition, to only find mutants with weak
coupling (i.e., there also exists some vx40 where vy can be 0 and
thus the fluxes are not directionally coupled) another sub-problem
is added to ensure that vy can be zero for some values of vx less

vy 

vXvMin 

Weak Coupling
Feasible Region: 
Wild Type
Feasible Region: 
Mutant

Excluded Region

vy

vx

β

vMin

Chemical Level

vy 

vx

γ
Excluded Region

Direct Constraint

α

Module Solution

Excluded Region

(α,γ)

Feasible Region: 
Wild Type
Feasible Region: 
Mutant
Module Solution

Feasible Region: 
Wild Type
Feasible Region: 
Mutant
Module Solution

min m =      

s.t.

Formulation:

min vy-ß      
0

Formulation:

Formulation:

Fig. 3. Examples of FaceCon modules and their effects on a strain's feasible region.
The effects of the coupling (A), chemical level (B) and direct topology (C) modules
are shown to illustrate each module's intent and capabilities. Here the orange dot
indicates the optimal solution that would be found from including each module in
OptORF. The dashed lines and hatched regions indicate the excluded regions
imposed by the FaceCon modules.
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than vmin. A coupling module determines the line going through
the origin with the smallest slope that lives in the feasible space
where vx4vmin for a given mutant.

An illustrative example (Fig. 4A) is provided to demonstrate the
functionality of the coupling module to only find mutants with
weak coupling (we have previously shown examples of directional
coupling involving substrate co-utilization (Tervo and Reed,
2012)). In this example, OptORF is used to design a strain that
maximizes the production of Eex (v10) while maintaining a mini-
mum biomass production rate (vbio4μmin). In addition, two sub-
problems were added such that a proposed mutant found by
OptORF must have a weak coupling phenotype (coupling between
v10 and vbio occurs only for certain values of vbio). An optimization
sub-problem is added which minimizes the ratio of v10/vbio, when
vbio4vmin. (Note that by setting lower values for vmin a stronger
selection pressure for chemical production can be achieved since
more values of vbio must result in chemical production.) Then
another sub-problem is added to ensure that directional coupling
does not occur for some value of vbio within a defined range
(i.e., v10¼0 for δovbiooσ, where δ and σ are user-selected values
greater than 0 and less than vmin, respectively. Adding these
constraints guarantees that coupling will not occur for values of
vbiorδ). The inclusion of this second sub-problem guarantees that
there is at least one solution where v10 is 0 and cellular growth is
still possible, thus ensuring the weak coupling criteria is met. Such
solutions may be of value when coupling is desired but directional
coupling solutions are thought to be too deleterious to the cell's
fitness. The solution proposed when these two sub-problems are
included in OptORF involves knocking out fluxes v6 and v15, which
works to couple both Aex and Bex consumption to the production of
Eex while allowing Gex to be directed entirely to biomass produc-
tion. With these fluxes eliminated, simultaneous consumption of
Aex, Bex, and Gex will result in Eex production at the maximum
growth rate; however, consumption of Gex alone can still proceed
without any Eex production. The feasible region for this mutant
growing in the presence of Aex, Bex, and Gex is shown in Fig. 4A.

3.2. Chemical level module

The chemical level module works to find the minimum
(or maximum) flux value through a reaction of interest (vy,
e.g., chemical production) when flux through another reaction
(vx, e.g., growth) exceeds some threshold (vmin). When this module
is embedded in a strain design algorithm the resulting strain
proposed must have a value of vy greater (or less) than a user-
defined requirement, β, when vx is greater than vmin (Fig. 3B). This
type of module results in a rectangular excluded region of height,

β. Such a module can, for example, be useful in guaranteeing a
minimum amount of production at certain growth rates (and
hence a minimum productivity) or limiting the production of
undesired by-products. In the illustrative example, the chemical
level module was used in conjunction with OptORF to maximize
the production of Eex while guaranteeing that no undesired by-
product Iex was produced (Fig. 4B). To ensure a mutant with this
phenotype was proposed, the chemical level module was used to
calculate the maximal amount of flux through reaction, v12. Since
no by-product formation was desired, both vmin and β were set to
zero resulting in an excluded region across the entire vbio�v12
sub-space. With these additional criteria, OptORF proposed knock-
ing out fluxes v15 and v8, which prevents production of Iex and also
results in weak coupling between v10 and vbio. The feasible region
for the mutant is shown in Fig. 4B.

3.3. Direct constraint

The direct constraint module (Fig. 3C) is the most multifunc-
tional of the FaceCon modules described. This module creates a
line through the point (α,γ) with slope mset; all points below (or
above) the line must be excluded from the feasible region of any
proposed mutant. The module works by determining the line with
the smallest (or largest) slope (m) going through a point within the
user-defined region of the feasible vx�vy sub-space and the point,
(vx,vy)¼(α,γ) where α and γ are defined by the user. Once this slope
has been calculated, a proposal is accepted on the condition that m
is greater (or less) than a user-defined slope, mset.

To demonstrate how the direct constraint module works, an
illustrative example is provided in Fig. 4C. In this example, the
direct constraint module is applied to ensure that beyond a given
production of Eex there will be equivalent or greater production of
Iex, effectively forcing co-production of two compounds. This type
of module could be used when the proposed strain needs to
generate two products or co-utilize two substrates. To force such a
mutant to be proposed by OptORF, we defined a point on the
x-axis of the v10�v12 sub-space, (α,0), and used a slope acceptance
criterion of mset¼1. The resulting strain design is an interesting
triple knockout mutant (missing fluxes v5, v11, and v15) where
maximal cellular growth requires both Eex and Iex production. In
this case, deletion of v15 ensures that production of Eex generates
one or two molecules of C from Bex or Aex, respectively. The C
molecules produced can only be converted into biomass with Iex as
a by-product when v5 and v11 are deleted. Thus, an ideal strain is
created such that the cell's biological imperative is coupled to the
co-production of two chemicals. The feasible region for the mutant
is shown in Fig. 4C.

Table 1
Summary of modules and their usage.

Module
name

Description Parameters Potential usage

FaceCon
Coupling
module

Module allows researcher to enforce weak or directional coupling.
To enforce only weak coupling a second sub-problem is added

vmin, δa, σa Can be used to define the nature of coupling proposed by metabolic
engineering algorithms. Can be useful when proposals tend to generate
sickly mutants

Chemical
level
module

Module allows researchers to define minimal or maximal chemical
production limits, β, beyond a user defined point vmin

vmin, β Can be used to eliminate undesired by-products or to define minimal
chemical production criteria

Direct
constraint
module

Module allows researchers to create an exclusion region of their
own design, defined by the line going through the point (α,γ) with
the slope mset

vmin, α, γ,
mset

Can be used to propose co-production or co-utilization of metabolites.
All FaceCon modules are special cases of the direct constraint module

Other
ShadowCon
module

Module allows greater control over the degree of coupling once it
has initiated

mmin, mmax Can be used to vary the intensity of selective pressure on a reaction
when coupled to growth rate

a Parameters are only used when additional module sub-problems are required (e.g., when only weakly coupled mutants are desired).
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3.4. Application of FaceCon modules to a genome-scale E. coli model

To demonstrate the scalability of FaceCon modules to genome-
scale problems, we applied OptORF in conjunction with FaceCon
modules to design strains for anaerobic ethanol production from
glucose in E. coli using the iJO1366 model (Orth et al., 2011).
A maximum glucose uptake rate (GUR) of 10 mmol/gDW/h was
used. Fig. 5 shows the different strain designs and solution space
topologies that can be generated using FaceCon modules without
needing to exhaustively query the set of stand-alone OptORF
(OptORF without any FaceCon modules) solutions using integer
cuts. As a baseline, we first show a stand-alone OptORF strain
design's feasible region (Fig. 5A). While we did not use a tilted
objective function (Feist et al., 2010) for the solutions provided in
Figs. 5 and 6, this can easily be incorporated into OptORF with a
FaceCon module (see Figs. S6 and S7 in supplemental materials for
tilted solutions).

Since no tilt or maximin modification was added to OptORF
(Feist et al., 2010; Tepper and Shlomi, 2010), the double knockout
mutant (ΔtpiA ΔatpB) proposed by OptORF can have different
amounts of ethanol production at the maximum growth rate
(including no production), resulting in no coupling between
biomass and ethanol production (ethanol production ranges
between 0 and �18.5 mmol/gDW/h at the maximum growth
rate). This lack of coupling is because lactate can be produced as
an alternative to ethanol during maximum growth. All the knock-
outs that are shown in Fig. 5 secrete ethanol as a way to recycle
NADH and NADPH anaerobically. Under fermentation conditions
too many protons are generated internally and so ATP synthase
operates in reverse, translocating protons from inside to outside
the cell. Consequently, deleting ATP synthase (atpB), which
appears in all solutions in Figs. 5 and 6, forces the model to find
alternate ways of dissipating intracellular protons. Converting
pyruvate into ethanol or lactate consumes one cytoplasmic proton

Fig. 4. Illustrative examples of FaceCon modules. OptORF was used in conjunction with the FaceCon modules to create unique phenotypes that would be difficult to produce
by OptORF alone. (A) A coupling module was added to guarantee that weak coupling would occur but not directional coupling. The dashed line on the x-axis indicates where
the excluded region begins. (B) The chemical level module was added to prevent any production of the undesired compound Iex. The hatched region indicates the excluded
region imposed by the module. (C) The direct constraint module was added to force the co-production of Eex and Iex for large growth rates. For all panels, red arrows and x's
on the network map indicate a reaction knockout. Dotted vertical lines show the μmin and vmin values used in OptORF and FaceCon modules, respectively. (For interpretation
of the references to color in this figure, the reader is referred to the web version of this article.)
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per NADH recycled, while an alternative path for consuming
NADPH converts carbon dioxide into formate (using pyruvate
formate lyase, pyruvate synthase, and flavodoxin reductase) and
does not consume any cytoplasmic protons in the process. Conse-
quently, the atpB deletion blocks this formate production pathway
at the maximum growth rate and increases ethanol or lactate
production so that more intracellular protons are incorporated
into secreted products (ethanol or lactate). Deleting triose-
phosphate isomerase (tpi) pushes flux through the Entner–
Doudoroff pathway (instead of glycolysis), reducing ATP yields
from glucose and thereby enhancing ethanol production by redu-
cing maximum growth rates.

We next used a coupling module to generate a strain where
there is always directional coupling between ethanol and biomass
production (i.e., coupling module set strictly for directional cou-
pling). To accomplish this, the minimal slope of a line in the
feasible region going through the origin is calculated and a
positive slope is required for acceptance. The feasible region for
the resulting six gene deletion mutant is provided in Fig. 5B. This
mutant also includes the tpiA and atpB knockouts, but also has
deletions to remove alternative pathways for recycling NAD(P)H.

Gene KOs:  ∆gdhA, ∆glcA, ∆lldP, ∆atpB
FaceCon Parameters: 

v Et
O

H

vBiovBio

v Et
O

H

vBio

Gene KOs:  ∆tpiA, ∆atpB
FaceCon Parameters: 

v Et
O

H

vBio

Gene KOs:  ∆glcA, ∆lldP, ∆atpB, ∆pgi
FaceCon Parameters: 

v Et
O

H

Stand-alone OptORF OptORF w/ Coupling (Directional)

OptORF w/ Coupling (Weak) OptORF w/ Direct Constraint

Gene KOs:  ∆tesB, ∆mgsA, ∆glcA, ∆lldP, ∆atpB,  
∆tpiA

OptORF Solution
Mutant Feasible Space
Wild Type Feasible Space

OptORF Solution
Mutant Feasible Space
Wild Type Feasible Space

OptORF Solution
Mutant Feasible Space
Wild Type Feasible Space

OptORF Solution
Mutant Feasible Space
Wild Type Feasible Space

Fig. 5. Application of FaceCon to iJO1366. Parameters used in FaceCon modules for each case are provided above the mutant feasible regions. Dashed lines and hatched
regions indicate excluded regions imposed by the FaceCon modules. The module included in OptORF for each case was (A) no FaceCon modules, (B) coupling module (only
directional coupling), (C) coupling module (only weak coupling), and (D) direct topology module. OptORF without any modules (A) finds a lower chemical production
phenotype compared to (B) and (C) due to gene deletion penalties used in OptORF. Additionally, no tilt was applied to the OptORF algorithm resulting in a strain design
where there is no coupling between biomass and ethanol production. Alternate solutions exist, and replacing the glcA and lldP deletions with dld and ldhA deletions has a
negligible effect on the feasible regions shown in panels (B), (C), and (D).

Gene KOs:  ∆ptsH, ∆glcA, ∆lldP, ∆atpB OptORF Solution
Mutant Feasible Space
Wild Type Feasible Space

v Et
O

H

vBio

 m =              =187

Fig. 6. Application of ShadowCon module to iJO1366. The ShadowCon module
works to limit the slope of the line at the onset of coupling between ethanol and
biomass production. Using the dual variable, ushadow, associated with this line it is
possible to constrain the slope,m, between a user-specified upper (mmax) and lower
(mmin) bound (dashed lines).
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The glcA and lldP knockouts prevents lactate production (which
can also be accomplished by deleting the lactate dehydrogenases,
dld and ldhA – an alternative solution), while the mgsA knockout,
which codes for methylglyoxal synthase, prevents dihydroxyace-
tone from being converted to and secreted as (R)-1,2-propanediol.
The final knockout of tesB, a fatty-acid CoA thioesterase, prevents
flux through 3-hydroxyacyl-CoA dehydrogenase and acyl-CoA
dehydrogenase, and secretion of fatty acids (e.g., hexanoate) which
consumes reductant. At maximum growth, the model predicts that
some L-valine can be produced instead of ethanol and thus there
remains a range for ethanol production (between �10.2 and
�18.5 mmol/gDW/h).

While the fully coupled phenotype may be ideal (since any
growth requires ethanol production), the mutant requires numer-
ous deletions and may initially be sickly. To relax the design
criteria, we found a weakly coupled strain where growth and
ethanol production are coupled when vBio is greater than
0.075 h�1. The four gene knockout mutant proposed (Fig. 5C)
would be genetically simpler to construct and, while the selective
pressure is not as strong as for the directionally coupled mutant,
the ethanol production rates after adaptive evolution should be
nearly equivalent (between �10.4 and �18.4 mmol/gDW/h).
While this mutant also includes the atpB, glcA and lldP knockouts
from the directionally coupled case, interestingly, this mutant uses
the pgi (phosphoglucose isomerase) deletion (instead of tpi) to
favor the Entner–Duodoroff pathway over glycolysis.

To demonstrate use of a direct constraint module, we created
an excluded region where ethanol produced per unit additional
biomass must be greater than 500 mmol ethanol/gDW (calculated
from the point α¼0.15 h�1) for cells growing above 0.175 h�1.
Note, these parameters would ensure the designed mutant would
have a minimum substrate-specific productivity (Patil et al., 2005)
(calculated as ½msetðvmin

Bio ðvmin
Bio �αÞÞ=GUR�), of at least �0.22 mmo-

l ethanol/mmol glucose/h for growth rates above 0.175 h�1. Using
this module, the four gene knockouts proposed (Fig. 5D) by
OptORF achieved weak coupling between ethanol and biomass
production and met the stated criteria. Unlike the previous
solutions, this mutant would use glycolysis to achieve maximum
growth. In this case, deleting gdhA (encoding glutamate dehydro-
genase) forces glutamate to be produced using a less energy
efficient pathway (involving glutamine synthetase and glutamate
synthase, which consumes one additional ATP per glutamate
synthesized). This reduces the maximum growth rate, such that
the design criteria is satisfied. At the maximum growth rate,
ethanol production is predicted to be �17.4 mmol/gDW/h for this
mutant.

In the previous examples, we selected feasible space con-
straints that restrict the ethanol production-cellular growth sub-
space; however, feasible space constraints can be used on other
subspaces. We investigated the use of FaceCon modules for
eliminating undesirable by-products, such as, succinate, acetate,
and formate. A preliminary analysis indicated that under anaerobic
conditions some baseline level of succinate secretion is required
for cellular growth. Acetate secretion is not essential for growth
but one or more acetate producing enzymes are essential for
growth. Since there is no gene assigned to the acetate transport
reaction there is no genetic way to eliminate acetate secretion.
Consequently, we focused on finding a solution that could elim-
inate formate production at all growth rates and maximize ethanol
production at the maximum growth rate (see Supplemental
materials Fig. S7). This five gene deletion strategy knocks out
transporters for lactate (glcA and lldP – an alternate solution could
instead delete the lactate dehydrogenases, ldhA and dld) and
formate (focA and focB). In addition, deleting ppc (which encodes
for phosphoenolpyruvate carboxylase) increases flux through
malate synthase and malate dehydrogenase – generating more

NADH to produce oxaloacetate – and decreases the maximum
growth rate. As a result, the ppc deletion requires additional
ethanol production to balance the newly generated reductant.
The predicted ethanol production for this mutant at the maximum
growth rate is �17.8 mmol/gDW/h.

These examples show that FaceCon modules are both tractable
at the genome-scale and can aid OptORF in proposing interesting
mutants which meet multiple design criteria, with minimal
impacts on production of the chemical of interest. These solutions
would not be easily obtained using stand-alone OptORF. To find
the mutants that satisfy these additional design criteria (Fig. 5B–D)
using stand-alone OptORF would require numerous integer cuts
due to the large number of gene deletions required to produce
these phenotypes and the gene deletion penalty used by OptORF.
For example, using stand-alone OptORF with integer cuts took
�13.4 h to generate 10 alternate solutions (the last four solutions
alone took 11.1 h). None of the 10 proposed solutions satisfy the
design criteria of the FaceCon solutions shown in Fig. 5. In
contrast, using OptORF in conjunction with FaceCon modules,
desired solutions could be found directly, in a short amount of
time (�2.8 h). In addition, all of the OptORF with FaceCon
strategies have very similar levels of maximum ethanol production
(at the maximum growth rate) as the best solution found by stand-
alone OptORF.

Previous computational studies have identified strategies for
improving ethanol production in E. coli using constraint-based
models. Trinh et al. (2008) previously used elementary mode
analysis to design an eight gene deletion strain of E. coli (Δndh
Δzwf ΔfrdA ΔsfcA ΔmaeB ΔldhA ΔpoxB Δpta) with high ethanol
yields. The OptORF with FaceCon strategies suggested in Fig. 5B–D
required fewer mutations and are predicted to achieve higher
ethanol yields at maximum cell growth; however, the Trinh et al.
strains do guarantee a minimum yield 0.36 g ethanol/g glucose for
all growth rates. Previously, OptORF was applied to an earlier
metabolic model (iJR904) and eleven mutations were frequently
suggested to improve ethanol production (appearing in at least
10% of 200 suggested strategies): ptsH, pgi, pflAB, pflCD, tdcE, tpi,
pta, eutD, gdhA, gnd and nuoN (Kim and Reed, 2010). These genes
differ from those commonly found in OptORF with FaceCon
strategies, which include atpB, glcA, and lldP (or equivalently atpB,
dld, and ldhA). While differences in strain designs could be due to
differences in the metabolic networks, this work suggests new
strategies for improving ethanol production.

3.5. Shadow price constraint (ShadowCon) module

While various methods such as ‘tilting’ the objective function,
using a maximin problem, or adding FaceCon modules can ensure
that growth and chemical production are coupled, none of these
methods allow direct control over the ratio of Δvy/Δvx at the onset
of coupling between two fluxes, vx and vy, thus defining the
degree to which two fluxes are coupled. However, such a module
can be designed by taking advantage of shadow prices in the dual
of a flux balance analysis (FBA) problem. The FBA problem is
formulated by adding an equality constraint for vy equal to ε
(e.g., chemical production rate) to the standard set of FBA
constraints and then maximizing vx (e.g., biomass production). In
this case, the shadow price for the added equality constraint
(ushadow) indicates how vx changes for small changes in vy and is
the inverse of the coupling line's slope since the shadow price is
calculated near where coupling initially occurs on the x-axis
(within some user-defined ε). By setting criteria for the shadow
price associated with the added equality constraint, one can
effectively control the degree of coupling between the two fluxes
of interest (see Methods and Supplementary File 1 for additional
details). The shadow price constraints module (ShadowCon)
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includes the FBA problem (described above), its dual formulation
and additional constraints on the equality constraint's dual vari-
able. Addition of ShadowCon to a strain design algorithm, espe-
cially in conjunction with other FaceCon modules, allows for
greater control over the strength of the selective pressure for
producing a given chemical.

As a demonstration of how such a module works, we have
applied ShadowCon to iJO1366 (Fig. 6) requiring that the slope of
the initial coupling line, m, fall between 25 and 200 mmol/gDW.
This range was chosen to create a strong coupling between ethanol
and biomass production while also preventing strategies from
being proposed where no coupling exists. The resulting mutant
includes a new knockout, ptsH that encodes a component of the
PTS transport system. Deletion of ptsH, forces glucose to be
transported using either a proton symporter or ABC transporter,
both of which produce a cytoplasmic proton. The additional proton
reduces the growth rate and increases the maximum amount of
ethanol produced (a ΔatpBΔglcAΔlldP mutant also satisfies the
slope criteria but has a lower maximum ethanol production). In
order to evaluate the sensitivity of ethanol production (at the
maximum growth rate) to the coupling line's slope, we ran OptORF
with the ShadowCon module using increasingly more stringent
slope requirements. In this case, a tilted objective was used (see
methods for details) and the lower bound on the slope was
increased from 25 until the ShadowCon module prevented finding
an OptORF solution (see Table S1 in Supplementary materials). As
can be seen, the OptORF chemical production objective is even-
tually sensitive to increasing slope requirements; however, the
predicted production is still sufficiently high for a wide range of
slopes.

4. Conclusions

We have developed FaceCon and ShadowCon modules to extend
upon the capabilities of existing mixed integer linear adaptive
evolution metabolic engineering algorithms. Future work, could
involve incorporating these methods into other types of metabolic
engineering algorithms. Nonetheless, we show such modules are
applicable to genome-scale models as shown using the E. colimodel
iJO1366. Using these modules will allow greater control over the
knockout strategies proposed and allow for more efficient genera-
tion of phenotypes of interest, including complex phenotypes that
would be difficult, if not impossible, to find using existing metabolic
engineering algorithms alone. Moreover, using these approaches
could allow for parallelization of metabolic engineering algorithms
by starting multiple runs simultaneously with different FaceCon or
ShadowCon parameters. Such an approach would result in more
diverse and interesting solutions and could save additional time
over sequential approaches for multiple solutions which rely on
integer cuts. Using FaceCon and ShadowCon modules in conjunc-
tion with one another will allow researchers to define multiple
engineering design criteria that should be met by any strain
proposed. Through our illustrative and genome-scale examples,
we have touched upon a number of possible applications for
FaceCon modules such as by-product inhibition, coupling con-
straints, and co-production of metabolites. Another possible use
may include constraining chemical production with increasing
carbon uptake. Using these modular approaches, we hope to
provide algorithm flexibility so that researchers have fewer limita-
tions when using their strain design algorithm.
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