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Targeting CD19 represents a promising strategy for the therapy of B-cell

malignancies. Although non-engineered CD19 antibodies are poorly effective

in mediating complement-dependent cytotoxicity (CDC), antibody-dependent

cell-mediated cytotoxicity (ADCC) or antibody-dependent cellular

phagocytosis (ADCP), these effector functions can be enhanced by Fc-

engineering. Here, we engineered a CD19 antibody with the aim to improve

effector cell-mediated killing and CDC activity by exchanging selected amino

acid residues in the Fc domain. Based on the clinically approved Fc-optimized

antibody tafasitamab, which triggers enhanced ADCC and ADCP due to two

amino acid exchanges in the Fc domain (S239D/I332E), we additionally added

the E345K amino acid exchange to favor antibody hexamerization on the target

cell surface resulting in improved CDC. The dual engineered CD19-DEK

antibody bound CD19 and Fcg receptors with similar characteristics as the

parental CD19-DE antibody. Both antibodies were similarly efficient in

mediating ADCC and ADCP but only the dual optimized antibody was able to

trigger complement deposition on target cells and effective CDC. Our data

provide evidence that from a technical perspective selected Fc-enhancing

mutations can be combined (S239D/I332E and E345K) allowing the

enhancement of ADCC, ADCP and CDC with isolated effector populations.

Interestingly, under more physiological conditions when the complement

system and FcR-positive effector cells are available as effector source, strong

complement deposition negatively impacts FcR engagement. Both effector

functions were simultaneously active only at selected antibody concentrations.
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Dual Fc-optimized antibodies may represent a strategy to further improve

CD19-directed cancer immunotherapy. In general, our results can help in

guiding optimal antibody engineering strategies to optimize antibodies’

effector functions.
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Introduction

Monoclonal antibodies and antibody-based immunotherapies

represent an efficient treatment option in cancer therapy and have

remarkably improved the therapeutic outcomes in hematological

malignancies (1, 2). For the treatment of B-cell lymphomas and

leukemias several monoclonal antibodies (e.g. rituximab,

tafasitamab) and other antibody-based therapies (e.g. bispecific

T-cell engager (BiTE), antibody drug conjugates) as well as

chimeric antigen receptor (CAR) T cells, are approved for

clinical use (3–5).

An attractive target antigen in B-lineage lymphoid

malignancies is represented by the cluster of differentiation

(CD) 19, a type I membrane protein of the immunoglobin

superfamily (4, 6, 7). CD19 shows a restricted expression profile

on B cells and is expressed from early to mature stages of B-cell

differentiation. Non-engineered CD19-IgG1 antibodies have

shown low therapeutic efficiency in preclinical models in

contrast to CD20 antibodies. Canonical CD19 antibodies only

inefficiently mediate programmed cell death or growth arrest and

are not potent in mediating complement-dependent cytotoxicity

(CDC), antibody-dependent cell-mediated cytotoxicity (ADCC)

or antibody-dependent cellular phagocytosis (ADCP) (4, 8–10).

To date different immunotherapeutic strategies for targeting

CD19 like the [CD3xCD19] BiTE blinatumumab, CAR T cells

(tisagenlecleucel, axicabtagen-ciloleucel and lisocabtagene

maraleucel) or loncastuximab tesirine, an antibody drug

conjugate, are clinically approved for the therapy of B-cell

malignancies (11–13).

In murine syngenic and xenograft models the relevance of

effector cell recruitment for the in vivo activity of antibodies was

demonstrated and also in patients the importance of efficient Fcg
receptor (FcgR) engagement was suggested in earlier clinical

observations (14–22), but also a series of studies was not able to

find this correlation in patients (19, 21). Based on these findings,

various strategies have been pursued to improve the therapeutic

efficacy of IgG1 antibodies, by engineering the fragment

crystallizable (Fc) domain. Fc glyco-engineering, by modifying

the glycosylation profile, represents an established strategy to

enhance antibody-dependent cell-mediated cytotoxicity
02
(ADCC) of therapeutic antibodies. This technology is used in

the clinically approved CD20 antibody obinutuzumab, the

antibody drug conjugate belantamab mafodotin as well as the

bispecific antibody amivantamab (23–25). Fc protein-

engineering, by exchanging selected amino acids in the CH2

and CH3 region, is an efficient alternative approach to increase

the affinity to FcgR expressed on effector cells leading to an

improved effector cell activation (26, 27). We previously showed

that an Fc protein-engineered CD19 antibody carrying the

amino acid substitutions S239D/I332E (DE-modification) in

the CH2 region displayed enhanced NK-cell mediated ADCC

and likewise enhanced ADCP by macrophages (28, 29).

Recently, tafasitamab, a DE-modified CD19 antibody

(MOR208 or Xmab®5574), was approved in combination with

lenalidomide for the treatment of relapsed and refractory

DLBCL (5, 30). Although this Fc-modified antibody showed

increased tumor cell cytotoxicity via ADCC and ADCP, it is not

capable of triggering complement activation (5, 28). The role of

complement in antibody therapy is still controversial (31). An

important role of the complement system has been suggested in

selected preclinical mouse models and clinical studies of CD20

antibody therapy (32). E.g. patients receiving rituximab show a

consumption of complement proteins and individual patients

benefit from plasma application as a source of complement (33,

34). Furthermore, an increased expression level of inhibitory

membrane-bound complement regulatory protein (mCRP)

CD59 has been associated with rituximab resistance in chronic

lymphocytic leukemia (CLL) patients (35). In contrast, several

mouse models demonstrated strong FcR dependence for the B

cell-depleting activity of CD19 or CD20 antibodies and full

activity in complement deficient mice (7, 22). Furthermore,

clinical trials with CD20 antibodies with augmented CDC

activity, such as ofatumumab have not shown superior

therapeutic activity compared to rituximab (36).

In summary, these observations may suggest that depending

on the respective clinical setting, specific disease biology and

target antigen characteristics both complement, and effector cell

recruitment could represent important effector functions in

antibody therapy. Therefore, enhancing these Fc-mediated

effector functions may be advantageous.
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The ability and efficacy of antibodies to activate the

complement system and to induce CDC is dependent on

various parameters , e .g . the antibody isotype, the

characteristics of the antigen and the epitope, the antigen

density as well as the intrinsic capacity of an antibody to form

hexamers on the cell surface of target cells (37, 38). Therefore,

only a minority of therapeutic antibodies directed against

selected target antigens, e.g. CD20 (e.g. rituximab or

ofatumumab), CD38 (e.g. daratumumab) and CD52 (e.g.

alemtuzumab) show potent complement activating capacity as

single agents (32, 39–42). Different Fc engineering strategies

have been described to improve C1q binding of monoclonal

antibodies to enhance CDC (26). For example, mixed-isotype

IgG1/IgG3 rituximab variants exhibit enhanced CDC activity

(43, 44). Also the exchange of selected amino acids in the Fc

domain (e.g. S267E, H268F, S324T) leads to improved CDC

activity by enhancing C1q binding, other amino acid exchanges

such as E345R or the addition of a C-terminal IgM tail piece

promotes on-target antibody hexamer assembly on the cell

surface which augmented CDC (43, 45, 46). De Jong and

colleagues showed that the amino acid exchanges E345K or

E340G (HexaBody mutations) in the CH3-domain lead to

enhanced on-target hexamer formation of antibodies on the

cell surface and hence efficient CDC of target cells (37). These

antibody variants exhibit no hexamerization or aggregation in

solution at physiological concentrations which prevents target-

independent complement activation and retain the regular

pharmacokinetics of IgG antibodies (37). Besides antibodies

directed against surface antigens on hematological tumors

such as CD19 or CD38, also an EGFR-directed antibody with

the HexaBody mutation (E345K or E340G) demonstrated

improved C1q fixation which leads to activation of the

classical complement pathway as monitored by C4b deposition

on the cell surface (47). Complement activation via the classical

pathway, besides the formation of the membrane-attack

complex which mediates direct target cell lysis, also may

increase the sensitivity of opsonized tumor cells (C3b and

C4b) for phagocytosis by myeloid cells (48, 49).

The simultaneous enhancement of FcgR-mediated effector

functions (like ADCC and ADCP) and complement-dependent

cytotoxicity (CDC) by amino acid alteration in the FC domain of

IgG antibodies is challenging, presumptively because the binding

site for C1q and the binding site for Fcg receptors overlap (50–

52). We recently showed that ADCC and CDC can be improved

simultaneously by combining Fc protein- and Fc glyco-

engineering. The double Fc-engineered CD19 and CD20

antibodies were generated by introducing the EFTAE

modification for enhancement of CDC, while ADCC was

enhanced by reducing the fucosylation level (53, 54).

Here, we were able to improve the activity of three effector

functions ADCC, ADCP and CDC of a CD19 antibody by dual

Fc-protein engineering. To achieve this, DE-mutations described

to increase ADCC and ADCP activity were combined with the
Frontiers in Immunology 03
E345K mutation favoring on-target antibody hexamerization

resulting in improved CDC activity. Our data provide evidence

that from a technical perspective selected Fc-enhancing

mutations can be combined (S239D/I332E and E345K)

allowing the enhancement of ADCC, ADCP and CDC when

isolated effector sources are analyzed. Interestingly, under

physiological conditions in whole blood when the complement

system and FcR-positive effector cells are available as effector

source, strong complement deposition negatively impacts FcR

engagement. Both effector functions were simultaneously active

only at selected antibody concentrations. Dual Fc-optimized

antibodies may represent a strategy to further improve CD19-

directed cancer immunotherapy and our results may help in

guiding optimal antibody engineering strategies to optimize

antibodies’ effector functions.
Material and methods

Cell culture/lines

SEM (55), Jurkat, CEM, MOLT-16 and Nalm-6 cells

(DSMZ) were cultured in RPMI 1640 Glutamax-I medium

(Thermo Fisher Scientific) supplemented with 10% fetal calf

serum (FCS; Thermo Fisher Scientific), 100 U/mL penicillin and

100 µg/mL streptomycin (Thermo Fisher Scientific) (R10+).

BHK-CD16a (FcgRIIIa V158) cells were cultured in R10+

medium supplemented with 10 mmol/l methotrexate (Sigma-

Aldrich) and 500 mg/ml geneticin (Thermo Fisher Scientific) as

described before (53, 54, 56). CHO-CD32a (FcgRIIa H131) cells

were cultivated in DMEM medium (Thermo Fisher Scientific)

supplemented with 10% FCS, 100 U/ml penicillin and 100 µg/ml

streptomycin (57). Medium was supplemented with 1% NEAA

(Thermo Fisher Scientific), 1% sodiumpyruvat (Thermo Fisher

Scientific) and 500 µg/ml geneticin. Chinese hamster ovary cells

(CHO-S, Thermo Fisher Scientific) were cultured in serum-free

CD-CHOmedium (Thermo Fisher Scientific) containing 1% HT

supplement (Thermo Fisher Scientific) and 2 mM GlutaMax

(Thermo Fisher Scientific). After transfection CHO-S cells were

cultured in CD OptiCHO medium (Thermo Fisher Scientific)

containing 1% HT supplement, 2 mM GlutaMax and 0.1%

Pluronic F-68 (Thermo Fisher Scientific).
Preparation of human effector cells and
source of complement

Human Serum and PBMC (peripheral blood mononuclear

cells) were prepared as described previously (53). Monocytes

were isolated through adherence of PBMC in monocyte

attachment medium (PromoCell) for 30 min at 37°C.

Monocytes were differentiated into macrophages in serum-free

X-vivo medium (Lonza) containing 50 U/mL penicillin and
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50 µg/mL streptomycin and 50 ng/mL recombinant macrophage

colony stimulating factor (MCSF; PeproTech) for 11 to 14 days.

Experiments were approved by the Ethics Committee of the

Christian-Albrechts-University of Kiel (Kiel, Germany), in

accordance with the Declaration of Helsinki.
Antibody generation

For generation of the dual engineered CD19 antibody

(CD19-DEK), the variable regions of the antibody tafasitamab

(MOR208) were used (58). The VH was excised from vector

pSectag2-CD19-HC-DE and was cloned into the vector

pSecTag2-HC-DEK, which contained the S239D/I332E and

the E345K amino acid exchanges (unpublished). The

generation of the expression vectors of the CD19-DE heavy

chain (HC) and the tafasitamab-based light chain (LC) has been

described previously (28, 59). Plasmid DNA was purified

endotoxin-free by Nucleo Bond 2000 EF (Macherey-Nagel)

and correct sequences were confirmed by Sanger sequencing.

Antibodies were produced in CHO-S cells by electroporation

using the MaxCyte (STX) large scale electroporation system,

following the manufacturer ’s recommendations. For

purification, Capture Select IgG-CH1-XL affinity matrix

(ThermoFisher) were used, followed by size exclusion

chromatography (ÄKTA pure, GE Healthcare/Cytiva).
SDS-PAGE analysis

One mg of the respective purified recombinant protein was

loaded on 12% Tris–acrylamide gels under reducing or on 4-15%

precast polyacrylamide gels (Mini-PROTEAN® TGX™,

BioRad) under non-reducing conditions and were stained with

Coomassie brilliant blue staining solution (Carl Roth GmbH).
Flow cytometry

Flow cytometry analysis was performed on a Navios flow

cytometer (Beckman Coulter) and analyzed with Kaluza

Analysis software (Beckman Coulter). 3-5 x 105 cells were

washed in PBS containing 1% BSA and 0.1% sodium azide

(PBA buffer). To analyze the binding of the antibodies, cells were

incubated on ice for 60 min with 50 µg/ml of the indicated

antibodies. For concentration dependent binding, cells were

treated with antibodies at varying concentrations for 1 h on

ice and then washed three times with 1 ml PBA buffer and

subsequently stained with a secondary anti-human-kappa-FITC

antibody (SouthernBiotech) on ice for 30 min.
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Antigen expression levels were quantified by determination

of antigen binding capacities of CD19-specific mouse Antibody

(#392502, Biolegend) using the QIFIKIT (Agilent DAKO)

according to the manufacturers’ protocols.

To analyze complement deposition, target cells were

incubated on ice with 10 µg/ml of the indicated antibodies for

15 min and subsequently incubated at 37°C with 25% v/v human

serum of healthy donors supplemented with 800 µg/ml

eculizumab for 10 min to prevent target cell lysis. Deposition

was measured with 50 µg/ml FITC conjugated rabbit anti-

human C1q, C3b/c and C4b/c antibodies (Agilent DAKO).
Cytotoxicity assays

Cytotoxicity assays were performed as described (53, 60). To

prevent target cell lysis via the complement system human

serum was supplemented with 50 µg/ml eculizumab.

Increasing concentrations of recombinant C1q protein

(Complement Technologies) was added to analyze if binding

of C1q may diminish the interaction of the Fc part of the

antibodies with Fcg receptors on effector cells. To inhibit

FcgR-mediated cytotoxicity 100 µg/ml of CD16 (FcgRIII) or

CD32a (FcgRIIa) specific blocking antibodies (recombinant

versions of clones 3G8 and IV.3) with silenced Fc domains

(L234A/L235A/G237A/P238S/H268A/A330S/P331S) were

added to the assays (61). 51Cr-release from triplicates was

measured in counts per minute (cpm). Percentage of cellular

cytotoxicity was calculated using the formula: % specific lysis =

(experimental cpm − basal cpm)/(maximal cpm − basal cpm) ×

100. The maximal 51Cr release was determined by adding Triton

X-100 (1% final concentration) to target cells and basal release

was measured in the absence of antibodies and effector cells.
Phagocytosis assays/live cell imaging

For the analysis of ADCP, 104 macrophages were seeded in a

96-well flat-bottom plate and allowed to adhere for 1 h at RT.

Target cells were labeled with the pH-sensitive red fluorescence

dye pHrodo (Thermo Fisher Scientific) following the

manufacturer’s protocols. 104 labelled cells were added to the

macrophages per well, resulting in an E:T ratio of 1:1, and

antibodies were applied to a final concentration of 10 µg/mL.

The assay was incubated for 4 h at 37°C in the IncuCyte high-

throughput fluorescence microscope system (Sartorius) and

fluorescence pictures of each well were created every 20

minutes. Phagocytosis was determined as the red object counts

per image (represent the phagocytosed B-ALL cells) over

time (62).
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Graphical and statistical analysis

Graphical and statistical analyses were performed using

GraphPad Prism 5 Software (GraphPad). P-values were

calculated with One- or Two-way ANOVA with Bonferroni

post-tests or with a two-tailed Mann-Whitney T-test and

significance (*) was accepted with P<0.05%.
Results

Generation of a dual Fc-optimized
CD19 antibody

To generate the dual Fc-optimized CD19-specific antibody

(CD19-DEK), the VL and VH sequences of the approved CD19

antibody tafasitamab were used. For enhanced Fcg receptor

(FcgRIIa and FcgRIIIa) binding and improved effector cell

recruitment, two amino acid exchanges (S239D and I332E)

were introduced in the CH2 domain of the Fc part

(Figure 1A) (64). The amino acid substitution E345K in the

CH3 domain has been described to favor Fc hexamerization of

the IgG antibodies on the target cell surface resulting in effective

C1q binding and complement activation (Figure 1A) (37). The

antibody was produced in CHO-S cells and purified by affinity

chromatography followed by size exclusion chromatography

(SEC). The SEC re-analysis of the purified protein showed a

single protein peak at the expected elution volume (Figure 1B).

To confirm the purity of CD19-DEK, SDS-PAGE followed by

Coomassie blue staining was performed. The two expected

bands of the HC and the LC at the calculated molecular

masses of approx. 50 kDa and 25 kDa using reducing

conditions and a molecular mass of approx. 150 kDa,

comparable with CD19-DE, were detected under non-reducing

conditions (Figure 1C). CD19-DEK showed a similar binding

capacity on target antigen positive cell lines SEM and Nalm-6

compared to CD19-DE, while no binding to CD19-negative cells

was detected (Figure 1D). Of note, similar target binding

capacity of a non-engineered CD19 antibody vs a CD19

antibody carrying the DE Fc mutation has been demonstrated

previously (8). Analysis of dose dependent binding on CD19-

positive Nalm-6 cells showed half-maximal binding in the low

nanomolar (nM) range (CD19-DEK: 0.32 nM; CD19-DE:

0.19 nM) (Figure 1E). The two Fc-optimized CD19 antibodies

also demonstrated comparable binding abilities to FcgRIIa and

FcgRIIIa (Figures 1D, F). As expected, no binding was observed

for a control antibody with a silent Fc part (Figure 1F).

In conclusion, combining the different Fc modifications of

CD19-DEK did not alter target antigen binding on CD19-

positive cell lines and introduction of the E345K amino acid

exchange has no negative impact on the optimized FcgR binding

ability (due to the DE-mutation).
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CD19-DEK induces effective ADCC and
ADCP of BCP-ALL cell lines

To examine if the dual-engineered CD19-DEK was able to

trigger Fc-mediated effector functions, like ADCC and ADCP,

similar effective as CD19-DE, we performed chromium release

assays and phagocytosis assays with the B-ALL cell lines Nalm-6

and SEM. Efficient tumor cell lysis was mediated in a

concentration dependent manner by CD19-DEK with PBMC

as effector cells (Figure 2A). The calculated EC50-values obtained

with CD19-DEK (SEM: 0.008 nM, Nalm-6: 0.005 nM) and

CD19-DE (SEM: 0.01 nM, Nalm-6: 0.007 nM) were

comparable. None of the control antibodies (ctrl-DE and ctrl-

DEK) induced ADCC, demonstrating antigen-specific tumor

cell lysis of the two Fc-engineered CD19 antibodies. The

ADCP activity of CD19-DEK was analyzed with SEM and

Nalm-6 cells as target cell lines and monocyte derived

macrophages from healthy donors (Figure 2B). The antibody

variant carrying the on-target hexamerization-enhancing

mutation was able to trigger efficient ADCP of different B-ALL

cell lines to a similar extent as CD19-DE (Figure 2B). As

expected, this effect was antigen specific because no

phagocytosis could be detected with the control antibodies

(ctrl-DE and ctrl-DEK) (Figure 2B). The tumor cell lysis and

the phagocytosis rate were higher for the SEM cell line compared

to the Nalm-6 cells. This effect could be explained by the CD19

expression levels on these cell lines. The quantification of the

target antigen on the two B-ALL cell lines showed a higher

CD19-specific antibody binding capacity (SABC) on SEM cells

(SABC= 66494) compared to Nalm-6 cells (SABC= 27208) and

B cells of healthy donors (SABC=14071) (Supplementary

Figure S1).

In conclusion, the CD19-DEK variant was able to mediate

ADCC and ADCP of B-ALL cell lines with different CD19

expression levels comparable to CD19-DE, which suggests that

introduction of the E345K amino acid exchange has no

significant negative impact on enhanced effector cell-mediated

killing of antibodies carrying the ADCC and ADCP enhancing

DE-mutations.
Dual engineered CD19 antibody triggers
complement deposition and
complement-dependent cytotoxicity of
CD19-positive cell lines

To analyze whether introduction of the E345K amino acid

exchange in the Fc domain already harboring the DE-mutations

results in improved complement activation, binding of C1q and

deposition of C3b/c and C4b/c on target cells was analyzed. SEM

cells were incubated with the respective antibodies and human

serum supplemented with the C5-specific antibody eculizumab
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FIGURE 1

Generation and binding characteristics of CD19-DEK. (A) Schematic illustration of a CD19-antibody with a dual engineered Fc part for improved
FcgR binding and effector cell recruitment (DE-variant: S239D/I332E, pink) and efficient recruitment of the complement system (C1q) via E345K
amino acid substitution (green) to favor antibody hexamerization on the target cell surface resulting in improved CDC. IgG model structure
based on pdb file provided by Dr. Mike Clark (63) and Hexamer model structure based on crystal structure of IgG1-b12 (1HZH) provided by Dr.
Rob de Jong was modified using Discovery Studio Visualizer (Biovia). (B) CD19-DEK and CD19-DE were analyzed by size exclusion
chromatography. (C) SDS-PAGE under reducing and non-reducing conditions and Coomassie blue staining validated the purity and molecular
mass of the dual-engineered CD19 antibody compared to CD19-DE. (D) Binding specificity of CD19-DEK and CD19-DE was tested via flow
cytometry on CD19-positive cell lines SEM and Nalm-6. The CD19-negative T-ALL cell line Jurkat was used as control. The binding capacity of
the optimized Fc part to FcgRIIa was investigated by flow cytometry on stably transfected cells. Data show representative results of three
independent experiments. (E) Concentration dependent binding of CD19-DEK and CD19-DE compared to isotype control antibodies (ctrl-DE
and crtl-DEK) was tested with the CD19-positive BCP-ALL cell line Nalm-6 via flow cytometry. (F) Concentration dependent binding of the
optimized Fc part of CD19-DEK and CD19-DE to FcgRIIIa was analyzed by flow cytometry on stably transfected BHK cell line (BHK-CD16a). A
control antibody with a silent Fc domain lacking FcgR binding (ctrl-FcKO) was used as a negative control. Mean values ± SEM of three
independent experiments, *P<0.05%, ns, not significant. Two-way ANOVA with Bonferroni post-test.
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to inhibit lysis of target cells (Figure 3A). Targeting with CD19-

DEK resulted in C1q binding and C3b/c and C4b/c deposition

on the target cell surface, whereas CD19-DE was not able to

trigger complement deposition on SEM cells (Figure 3A). To

evaluate induction of CDC triggered by the CD19 antibodies we

performed chromium release assays with human serum of

healthy donors and SEM or Nalm-6 cells as target cells. As

depicted in Figure 3B, CD19-DEK was able to mediate effective

CDC in both CD19-positive cell lines, while CD19-DE was

incapable of triggering complement-dependent cytotoxicity.

The concentration dependent tumor cell lysis of CD19-DEK

showed EC50 values in the nanomolar range with both CD19-

positive cell lines (SEM: 0.18 nM and Nalm-6: 0.14 nM). No

tumor cell lysis was detected with the control antibodies

indicating that CDC was induced in a strict target antigen-

dependent manner (Figure 3B). No CDC of CD19-negative cell

lines was triggered by CD19-DEK (Figure 3C).

To analyze Fc-mediated effector functions under more

physiological conditions, we analyzed the cytolytic capacity of

CD19-DEK using whole blood of healthy donors as effector

source. The dual-optimized CD19 antibody showed a significant

higher tumor cell lysis of the B-ALL cell line SEM compared to

CD19-DE, when FcgR-positive effector cells (ADCC) and the

complement system (CDC) were present as effector components
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(Figure 4A). The same tendency could be detected for the BCP-

ALL cell line Nalm-6 although statistical significance was not

reached (Figure 4A). The lysis of tumor cells mediated by CD19-

DE was reduced to background with an FcgRIII (CD16) blocking
antibody whereas the blockade of the FcgRIIa (CD32a) or of the
complement system by eculizumab had no significant effect on

the tumor cell killing of CD19-DE (Figure 4B). This suggested

that the killing triggered by CD19-DE was most likely due to

engagement of FcgRIIIa-positive effector cells such as NK cells.

Interestingly, in contrast the CD19-DEK-mediated tumor cell

lysis was almost completely blocked by addition of eculizumab

(Figure 4A). These data suggest a fully complement-dependent

effect of the dual-engineered CD19-antibody. To analyze if

binding of C1q may diminish the interaction of the Fc part of

CD19-DEK with Fcg receptors on effector cells, we performed

assays with increasing concentrations of recombinant C1q

protein and PBMC as effector cells. No significant impact of

C1q on the ADCC activity was found (Supplementary Figure

S2). These data suggest that binding of C1q to the Fc part of

CD19-DEK is not sufficient to block FcR engagement and that

probably deposition of other complement factors such as C3b/c

and C4b/c on the target cell surface may play a dominant role in

the reduction of tumor cell lysis mediated by CD19-DEK in

whole blood assays supplemented with eculizumab.
A

B

FIGURE 2

The dual Fc-optimized antibody CD19-DEK triggers FcgR-mediated effector functions comparable to CD19-DE. (A) Chromium release assays were
performed to analyze ADCC. CD19-positive tumor cell lines SEM and Nalm-6 were used as target cells and PBMC of healthy donors at an Effector :
Target (E:T) ratio of 40:1 were applied. The tumor cell lysis triggered by CD19-DEK and CD19-DE was compared to control antibodies (ctrl-DEK and
ctrl-DE). (B) The antibody-dependent cell-mediated phagocytosis (ADCP) was measured for 4 h by high-throughput fluorescence microscopy.
CD19-positive cell lines were labelled with a pH-sensitive red-fluorescent dye and were incubated at an E:T ratio of 1:1 with polarized M0
macrophages and 10 µg/ml of the indicated antibodies. Phagocytosis is depicted as the relative red object counts per image. Data represent mean
values ± SEM of three independent experiments, *P<0.05%, ns, not significant. CD19-DEK vs. CD19-DE, Two-way ANOVA with Bonferroni post-test.
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To investigate the relative contribution of CDC and ADCC

in whole blood in more detail, we performed chromium release

assays with increasing concentrations of the respective

antibodies using the B-ALL cell line SEM as target cells and

whole blood of healthy donors as effector source. Complement-

mediated killing was blocked with the C5-specific inhibitory

antibody eculizumab. As expected, efficient tumor cell lysis was

mediated in a concentration dependent manner by CD19-DEK

without the addition of eculizumab (Figure 4C). The tumor cell

lysis was completely blocked at a CD19-DEK concentration of

2µg/ml in the presence of eculizumab (Figures 4C, D). This

suggested a fully complement-dependent activity of the dual-

engineered CD19-antibody at high antibody concentrations. At

lower CD19-DEK concentrations (e.g. 0.016 µg/ml) tumor cell

lysis was not fully blocked by the addition of eculizumab. The

extent of tumor cell lysis of CD19-DEK in the presence or

absence eculizumab is significantly different at an antibody

concentration of 2 µg/ml, whereas no significant difference in

tumor cell lysis is observed at an antibody concentration of 0.016

µg/ml (Figure 4D). In addition, the extent of tumor cell lysis of

CD19-DEK and the parental CD19-DE antibody at a

concentration of 0.016 µg/ml were comparable (Figure 4D).
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These data suggest that at lower concentrations of CD19-DEK,

receptor occupancy is probably low and not sufficient to trigger

significant complement deposition. In this situation engagement

of Fc receptors is possible to trigger ADCC. Overall, the effector

cell killing capacity in these experiments was low and differed

between donors, most likely due to varying contents of NK cells.

Together, these data suggest that at high antibody

concentrations CDC is the dominant effector mechanism and

complement deposition completely prevents effector cell killing.

At very low antibody concentrations (0.016 µg/ml) tumor cell

lysis is mediated by ADCC only. In between, there are dose levels

allowing both ADCC and CDC to be active (Figure 4D). As

shown in Figure 4B, the tumor cell lysis of CD19-DE in whole

blood is most likely mediated by NK cells (FcgRIIIa).
Together our data showed that the dual-engineered CD19

antibody was able to trigger efficient ADCC and ADCP to the

same extent as CD19-DE and in addition triggers CDC when

isolated effector populations were applied. Our data from whole

blood show that optimizing several effector functions is more

complex and suggest that only selected effector functions may be

active at the same time depending on antibody concentration

and the availability of different effector sources.
A

B C

FIGURE 3

CD19-DEK efficiently triggers antibody-dependent complement deposition on target cells and CDC. (A) Antibody-dependent complement
deposition on CD19-positive B-ALL cell line SEM was analyzed via flow cytometry. Target cells were incubated with the respective antibodies (10
µg/ml) and 25% v/v human serum of healthy donors supplemented with eculizumab. Mean values ± SEM of three independent experiments are
presented, *P<0.05% CD19-DEK vs. CD19-DE, One-way ANOVA with Bonferroni post-test. (B) CDC of the tumor cell lines SEM and Nalm-6 was
performed in chromium release assays with increasing antibody concentrations and 25% v/v human serum of healthy donors. The tumor cell lysis
was tested for CD19-DEK and CD19-DE and was compared to the control antibodies ctrl-DEK and ctrl-DE. Mean values ± SEM of three
independent experiments are presented, *P<0.05% CD19-DEK vs. CD19-DE, Two-way ANOVA with Bonferroni post-test. (C) Target antigen specific
CDC was tested in chromium release assays with CD19-positive (Nalm-6, SEM) and CD19-negative (MOLT-16, CEM) tumor cells at an antibody
concentration of 50 µg/ml and 25% v/v human serum of healthy donors. The tumor cell lysis mediated by CD19-DEK was compared to CD19-DE.
Mean values ± SEM of three independent experiments are presented, * P<0.05%, ns, not significant. CD19-DEK vs. CD19-DE, two-tailed t-Test with
Mann-Whitney test.
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Discussion

In the current study we successfully generated a dual Fc-

engineered antibody CD19-DEK by combining the DE-

modification with the HexaBody mutation E345K. This led to

an enhancement of all Fc-mediated effector functions (ADCC,

ADCP and CDC) when isolated effector sources were analyzed.

Interestingly, the relative contribution of ADCC and CDC to the
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tumor cell killing activity in whole blood depended on

antibody concentration.
CD19 is an attractive target antigen for antibody therapy of

B-cell leukemias and lymphomas, as reflected by CD19’s

position among the top 10 targets of the first 100 approved

antibodies (2). Nevertheless, non-engineered CD19-IgG1

antibodies are poorly effective in mediating Fc-effector

functions like ADCC, ADCP and CDC. Reasons why CD19
A

B

DC

FIGURE 4

The dual-engineered antibody CD19-DEK showed improved cytotoxic activity compared to CD19-DE using whole blood as effector source.
(A, B) Chromium release assays with a concentration of 2 µg/ml of the respective antibodies and 25% v/v whole blood of healthy donors was
performed to analyze the combined anti-tumor effect of CD19-DEK via the complement system (CDC) and via recruitment of effector cells (ADCC).
For inhibition of tumor cell lysis via the complement system the blood was supplemented with 50µg/ml eculizumab. Mean values ± SEM of three
(SEM cells) or seven (Nalm-6 cells) independent experiments, *P<0.05% CD19-DEK vs. CD19-DE, One-way ANOVA with Bonferroni post-test. (B)
For inhibition of tumor cell lysis via FcgRIII (CD16) or FcgRIIa (CD32a) expressing effector cells the blood was preincubated with 100µg/ml specific
blockade antibodies with an silenced Fc-part, lacking FcgR binding. (C, D) Chromium release assays with the B-ALL cell line SEM and increasing
concentrations of the respective antibodies and 25% v/v whole blood of healthy donors was performed. For inhibition of tumor cell lysis via the
complement system the blood was supplemented with 50µg/ml eculizumab. Mean values ± SEM of three independent experiments, *P<0.05%, ns,
not significant. One- or Two-way ANOVA with Bonferroni post-test.
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antibodies are not as potent as for example non-engineered type

I CD20 antibodies are not fully understood and probably not

referable to antigen density on malignant B cells. Possible

reasons could be antibody characteristics like epitope location

and specificity or antigen characteristics like structure and size,

antigen membrane fluidity or the antigen’s plasma membrane

microdomain localization (65–68). Despite the fact that CD19

antibodies show poor effector functions, they can be converted

into efficient therapeutic agents through Fc engineering and the

associated improvement of antibody-mediated effector functions

(26, 69). The clinically approved antibody tafasitamab is an Fc-

protein engineered CD19 antibody with amino acid

substitutions S239D/I332E (DE-modification). The optimized

FcgR binding characteristics result in increased ADCC and

ADCP. Since tafasitamab is lacking CDC activity (28–30), its

therapeutic activity may be further enhanced by adding CDC as

an additional effector function.

To date, six Fc-optimized antibodies are approved for

clinical use in cancer. The afucosylated antibodies

obinutuzumab and mogamulizumab, the afucosylated

bispecific antibody amivantamab, the antibody drug conjugate

belantamab mafodotin and the Fc-protein engineered antibodies

tafasitamab and margetuximab are optimized for improved FcgR
binding resulting in enhanced ADCC and/or ADCP activity (24,

25, 27). Whereas to our knowledge no antibodies optimized for

complement activation are clinically approved to date, currently

two HexaBody molecules are in phase I and II clinical trials. The

HexaBody-CD38 derived from the clinically approved antibody

daratumumab showed potent anti-tumor activity in preclinical

models of hematological diseases such as multiple myeloma

(MM), B-cell malignancies and acute lymphoblastic leukemia

(ALL), and the DuoHexaBody-CD37 may represent a potential

therapeutic antibody for the treatment of certain B-cell

malignancies (70, 71). The two HexaBodies carry the E430G

amino acid alteration, which leads to an enhanced Fc-Fc

interaction after antigen binding on the cell surface and these

IgG hexamer formations increase the binding of hexavalent

complement component C1q and leads to a potent CDC

activity (37, 46, 70, 71). To our knowledge, dual optimized

antibody variants as described here are not in clinical

development to date.

Several in vivo observations suggested that both complement

activation and effector cell recruitment represent important

effector functions in antibody therapy of different

hematological malignancies. This has led to the presumption

that simultaneous enhancement of effector cell activation and

complement activation may be advantageous. For CD20

antibodies, it was shown that depending on the murine tumor

model the therapeutic efficiency of the antibodies exclusively

depends on complement activity or on FcgR-mediated effector

functions (14, 15, 32). Besides the variation in the relative

contribution of CDC and effector cell mediated functions in

murine models, also the tumor burden and the anatomic
Frontiers in Immunology 10
location, as well as the tumor microenvironment and the

immune status of patients can affect the therapeutic effect of

monoclonal antibodies (72, 73). In patients the responsiveness of

tumor cells to CDC or ADCC and ADCP may be regulated by

different tumor cell characteristics like target antigen density and

expression of regulatory antigens on the cell surface and may

ascertain which effector mechanism is available to the antibody.

Thus, the expression of inhibitory antigens on the cell surface

such as CD47 or human leukocyte antigens (HLA) restricted

effector mechanism like ADCC and ADCP, whereas an

increased expression of NK cell-activating danger signals like

NKG2D ligands can improve cellular cytotoxicity (74–76). The

expression of inhibitory mCRPs like CD46, CD55 and CD59 can

protect tumor cells from CDC (77, 78). Accordingly, in certain

situations different Fc-mediated effector mechanisms such as

CDC, ADCC and ADCPmay be necessary for an effective tumor

cell depletion, which suggests that dual Fc-engineered

antibodies, like the CD19-DEK in the current study, may

be beneficial.

We recently demonstrated that dual Fc-engineered CD19

and CD20 antibodies (glyco- and protein-engineered) are able to

enhance both ADCC and CDC activity (53, 54), but the applied

technologies compared to the approach described here differ

significantly. Glyco-engineering by producing afucosylated

antibody variants as applied in our previous studies exclusively

enhances FcgRIIIa affinity which mediates improved ADCC by

NK cells, while Fc protein-engineering such as DE-modification

increases the affinity of antibodies to different FcgR (FcgRIIIa,
FcgRIIa, FcgRI) which leads to enhanced ADCC by NK cells and

improved ADCP by macrophages (26). In addition, the affinity

to FcgRIIIa is significantly higher for DE-modified antibodies

compared to non-fucosylated variants (79). The EFTAE amino

acid modifications used in our previous studies led to a higher

binding affinity to the C1q molecule, resulting in antibodies with

potent CDC activity (45). The optimized C1q binding of

EFTAE-modified antibodies is independent of target antigen

binding which could potentially lead to target cell independent

complement activation in solution. Contrary to this, the E345K

or E430G amino acid substitutions do not result in enhanced

binding affinity to C1q but lead to enhanced Fc-Fc interaction of

IgGs only after antigen binding on the cell surface. These IgG

hexameric structures improve the binding of the hexavalent

complement component C1q and trigger efficient CDC (37, 46).

Therefore, the approach described here may be advantageous

compared to previously described approaches to improve

ADCC, ADCP and CDC simultaneously.

The simultaneous enhancement of Fc-mediated effector

functions like ADCC, ADCP and CDC by amino acid

substitutions of IgG antibodies is challenging, because the

binding sites for Fcg receptors and the complement

component C1q overlap (50–52) and C1q binding may

enhance the hexamerization of antibodies by stabilizing the

hexamer (80, 81). Therefore, introducing amino acid
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substitutions in the Fc domain may not necessarily improve both

effector functions. In the current study, we showed that by

introducing an amino acid exchange in the CH3 domain of

the dual Fc-engineered CD19-DEK antibody ADCC and ADCP

activity was not compromised and comparable to CD19-DE and

that the dual engineered antibody additionally mediated CDC of

target antigen positive tumor cells in vitro. From our data we

cannot exclude that the DE mutation may impact on-target

hexamerization. Further studies are needed to figure out whether

the DEK combination of amino acid exchanges is as efficient to

trigger CDC as a K amino acid exchange only variant.

Interestingly, at high CD19-DEK antibody concentrations

tumor cell lysis in whole blood, when both complement and

effector cells are available, was completely complement

dependent. At low antibody concentrations tumor cell killing

was strictly FcR-dependent. Only at selected antibody

concentrations both effector functions contributed to tumor

cell killing. Since addition of isolated C1q did not significantly

inhibit the ADCC activity of CD19-DEK, these data suggest that

strong complement deposition reduce the capacity of an

antibody to recruit Fc receptors. Wang and colleges described

that NK-cell mediated ADCC of rituximab-coated target cells

was inhibited by C3b deposition and the depletion of C3

complement component enhances the ability of antibody-

coated target cells to activate human NK cells (82, 83). On the

other hand, C3b or C4b opsonized tumor cells may be sensitized

for phagocytic activity of macrophages and myeloid cells by

engagement of complement receptors (49). Furthermore,

complement activation and thereby release of anaphylatoxins

may attract FcR-positive effector cells, enlarging the pool of

available effector cells. This may further boost complex adaptive

immune responses mediated by antibody variants optimized for

FcgRIIa and FcgRIIIa binding (84).

In comparison to these types of in vitro observations, the in

vivo situation may even be more complex. In this situation

compartment effects and availability of effector cell populations

and bioavailability of complement factors in selected tissues

may have a significant impact which effector mechanism is

available at a defined anatomical site (85, 86). Therefore, the

competition of FcgR mediated effector functions and the

complement system may not be as relevant in the in vivo

situation compared to our in vitro observations in whole blood

depending on the biological features and location of the

respective tumor (78). Addressing these complex aspects in

vivo is challenging because murine models may not perfectly

reflect the human situation in terms of Fc receptor binding

especially when dealing with engineered human Fc domains.

Although, meanwhile complex transgenic mouse models

engineered to express all human FcgR on the respective

effector cell populations or stem cell humanized mouse

models are available (87, 88), in particular the contribution
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of the complement system and CDC may be difficult to

investigate in small animal models (43, 89). A variety of

parameters, such as target antigen density, expression of

complement inhibitory molecules, target cell location and

other factors affect susceptibil ity of target cells to

complement lysis. Therefore, it might not be surprising that

for example the in vivo activity of rituximab in different mouse

models has been demonstrated to be strictly dependent on

complement activation or absolutely independent (14, 32, 43,

89). Accordingly, the complex therapeutic effects of dual Fc-

engineered antibodies, like CD19-DEK, could probably best

evaluated in clinical trials or non-human primates.

In conclusion, our data provide evidence that from a

technical perspective selected Fc-enhancing mutations can be

combined (S239D/I332E and E345K) allowing the enhancement

of ADCC, ADCP and CDC activity when isolated effector

populations are analyzed. In situations where the complement

system and FcR-positive effector cells are available as effector

source, strong complement deposition may negatively impact

FcR engagement. Both effector functions may be simultaneously

active only at selected antibody concentrations. Nevertheless,

this dual Fc engineering approach may display a new strategy to

improve antibody therapy of various tumor types but further

carefully designed in vivo studies are necessary to support this

concept. As a perspective, our results may help in guiding

optimal antibody engineering strategies to optimize antibodies’

effector functions.
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