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Abstract: Sand collectors are important for quantitatively monitoring aeolian sand activities. In
this paper, an automatic high-precision sand collector was designed. Based on the measured data
of aeolian transport performed with a piezoelectric saltation sensor (H11-Sensit) and a 10 m high
meteorological tower, the sampling efficiency of the automatic sand sampler and the horizontal dust
flux of the near surface were analyzed based on observed data. The results were as follows: the best-
fitting function between the number of impacting sand particles and the amount of collected sand was
a linear relationship. The average value of R2 was 0.7702, and the average sand collection efficiency
of the sand collector at a height of 5 cm was 94.3%, indicating good sand collection performance.
From all field tests conducted so far, it appeared that a high-precision sand sampler was a useful
device for making field measurements of horizontal dust fluxes and ascertaining the relationship
between transition particles and wind speed. In the future, the equipment costs and wind drive will
continue to be optimized.

Keywords: soil erosion; wind erosion; sand collection efficiency; dust horizontal flux

1. Introduction

Wind is an important erosion force that shapes the surfaces of Earth, Venus, Mars,
and Titan [1,2]. In arid, semi-arid, high latitude, and high-altitude regions on Earth, wind
erosion is usually considered to be the main driving force for soil loss and dust release [3–6].
Quantitative studies of wind-induced sand migration have played an important role in
revealing the geomorphological processes, and soil losses and wind erosion dust have
been accurately simulated [7–9]. In some countries, the annual average particulate matter
(e.g., PM2.5 and PM10) mass concentrations are high [10], where the major emission sources
of PM are the degradation of soil and the mismanagement of lands [10].

Many studies have been carried out on horizontal sand dust fluxes, such as in Europe,
China, Canada, Australia, and the United States, especially in arid and semi-arid regions.
On Earth, this occurs mainly in deserts, on beaches, and in other sparsely vegetated
areas, such as dry lake beds [11–15]. The lift-off velocities of differently sized particles
obey different distribution functions. The mean particle velocity at different heights also
depends on momentum exchange and particle concentration.

Because of the difficulty of obtaining relevant measurements, integrated dust samplers
have historically been the most common method for measuring sand dust fluxes in the field
and in laboratory investigations [16–18]. Different researchers have designed various types
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of sand samplers [19–22] to study the horizontal and vertical fluxes of dust transport in the
near strata [23–35], and they are widely used to obtain sand transport measurements in field
and in wind tunnel experiments [36–39]. Initial designs were improved by increasing the
sampling efficiency through taking account of the aerodynamics associated with blocking a
portion of the flow [17]. Additional improvements were made by increasing the temporal
resolution through automatic weighing systems [40,41] to retroactively apply a temporal
signature to the mass flux of sand dust [42]. However, the spatial and temporal resolution
of a mass-collecting sand dust traps remain insufficient for capturing most small-scale
aeolian processes. In addition, because sand traps obstruct aerodynamic processes to
varying degrees, the efficiency of sampling sand dust is variable, and differs with height
and wind conditions [43], but is generally around 80% [44]. In short, traditional sediment
collectors (such as the big spring number eight, BSNE, and modified Wilson and Cooke
(MWAC) samplers) cannot automatically collect and weigh sediment flux, nor can wind
erosion sensors (such as the Sensit and Wenglor laser fork).

The aim of this study was to understand the sand dust transport process and sampling
efficiency more fully. Thus, our research group designed an automatic, long-period, and
high-frequency sand sampler. The sand collector designed in this paper has two innova-
tions, focused at overcoming two problems: one is the interference of the sand collector on
the airflow in the measurement section and the other is the exhaust problem inside the sand
collector. The inlet of the sand sampler has been designed as a wedge, and a wind speed
guide groove and airflow guide outlet are also incorporated into the design. A hollow shaft
was designed as a special dustproof system (i.e., with first and second air leakage networks)
so that the airflow could be discharged into the atmosphere before entering the hollow shaft.
Consequently, the influence of the sand collector on the airflow was minimized, which
conformed to the principle of equal dynamic performance of the sand collector design,
which is of great significance to improving the sand collection efficiency. Additionally, the
dust collection of the sand collector realized the real-time dynamic monitoring of wind
erosion by combining dynamic dust collection with static weighing. Through this multi-
stage weighing approach, a historic breakthrough was achieved in terms of measurement
accuracy and resolution, and the measurement range has been greatly improved. Thus, the
high-precision, high-frequency, and long-period automatic monitoring of sand dust was
truly realized, which automatically recorded at high speeds and accurately reflected any
changes of the dust. In addition, the advantages of this sand collector were a low failure
rate, strong maintainability, and a wide range of use. It was not only able to observe the
wind and sediment activities at the height of several centimeters to several meters above
the surface, but was also able to observe these at heights of zero to several hundred meters.

Field experiments were conducted using the sand sampler, existing meteorological
data, and a Sensit wind erosion sensor to reveal the characteristics of the mass flux, mass
concentration, horizontal velocity, and impact number of particles, thus enhancing our
understanding of the characteristics and relationships of dust activities in the area. At the
same time, the results from this paper provided useful input data for theoretical analyses
and numerical model validation.

2. Materials and Methods
2.1. Study Area

The study area is located around a western station used to make wind drift sand flow
observations in Tazhong, China (83◦39′ E, 38◦58′ N), in the hinterland of the Taklimakan
Desert (Figure 1). The area has a typical temperate continental climate, with high tem-
peratures in dry summers, including little precipitation, rich sand resources, and scarce
vegetation. It has an average annual temperature of 13.6 ◦C, temperature extremes of
46.0 ◦C and −5.0 ◦C, an average annual precipitation of only 25.9 mm, and an average
annual evaporation capacity of up to 3812.3 mm. The area is also characterized by frequent
blowing sands and sandstorms, with more than 500 annual sand windstorms (6.0 m/s,
measured at 11.4 m above the ground), average wind speeds of 2.5 m/s, a maximum
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instantaneous wind speed of 20.0 m/s, and a blown-sand activity index of about 8000. The
main wind directions are ENE, EN, and NNE. The frequency of sandstorms and blowing
sands was high from March to August. The regional sandstorms in this area feature long
durations and poor visibilities. Previous studies showed that 91% of the sand grains at a
5 cm height were in the range of 63–250 µm, with most in the range of 125–250 µm [45,46].
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of Xinjiang Province, China.

2.2. Construction of the Sand Collector

The core structures of the sand sampler (Figure 2) were a dust collection system and
a dust measurement system. The dust collection system was installed above the device
enclosure (components 1–6 in Figure 2), which mainly consisted of an empennage, first
air leakage network, second air leakage network, sand intake, hollow shaft, and bearing
dust proof seat. The static measurement system was in the device enclosure, which was
mainly composed of a small-range, high-precision dust weighting system and a large-
scale dust weighting system. The small-range, high-precision dust weighting system
consisted of an automatic sand release device and a small-scale, high-precision weighing
sensor. The small-scale, high-precision weighting sensor was mounted on the inner wall
of the device enclosure, and the automatic sand release tipping bucket was related to the
small-scale, high-precision weighting sensor. The automatic sand release device consisted
of a small-capacity container (tipping bucket) and a container support shaft. The small
capacity container and container support shaft were related to a flexible rod, which can
rotate around the support shaft. The large-scale dust weighting system consisted of a
large capacity container and a large-scale weighting sensor. The large capacity container
was mounted on the second platform. One end of the large-scale weighting sensor was
fixed under the second platform and the other end was fixed on the inner wall of the
device enclosure. Conveniently, the large-capacity container was designed as an inverted
truncated cone-shaped container, which could help concentrate the center of the gravity of
the collected objects to the sensing part of the weighting sensor.

To improve the measurement accuracy and range of the sand sampler, graded weight-
ing was adopted. The range of the first-grade weighting container was 0–300 g with an
accuracy of 20 mg, and the range of the second-grade weighting container was 0–10 kg.
Sampling was carried out with the created device for twelve months at the test site, and
automatic observations were realized, where an aspect sensor was used to monitor the
sand amounts arising from each direction. The data acquisition system had a high storage
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capacity (2 GB) and high frequency (≥1 Hz), which allowed us to dynamically and compre-
hensively record the processes and dynamic variations of dust emission arising from wind
erosion in real time and weigh the collected dust with high precision over a wide range.
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During the tests, the empennage kept the sand intake rate consistent with the wind
direction according to the wind force in the wind direction. At this point, the surface
sands entered the hollow shaft through the sand intake valve. Sand-carrying gas flows
could be discharged from the first air and second air leakage networks. Sands then
automatically sank to the small-capacity container via gravity, and the sand weighting
sensor began to sense (accuracy: 20 mg). The weight data were subsequently uploaded
to the data acquisition system. Then, the aspect sensor uploaded the aspect data of the
acquired sand to the data acquisition system to obtain the instantaneous sand amount in the
corresponding direction. If the collected sands were over 240 g, the tipping bucket rotated
automatically to pour the sands into the large-capacity container for weighing (weight
range: 0–10 kg). Not only was the total sand amount in the whole process recorded, but
also the data measured by the small capacity sensor were calibrated, realizing long-term
automatic monitoring, and reducing the manual workload. The data acquisition system
was connected to a GPRS/CDMA communication module and power supply system, and
the GPRS/CDMA communication module was wirelessly connected with the computer,
with which real-time online observations were achieved offsite or onsite. The observation
frequency was up to 10 Hz. All the data measured during an experiment, including
wind speed, wind direction, sand transport aspect, instantaneous aspect sand flux, profile
sand flux, and cumulative total sand flux, were uploaded to the data acquisition system.
Through the wireless transmission network, the backstage carried out real-time remote
automatic monitoring of the acquired data.

2.3. Data Collection and Processing

Fifteen dust events from July to August in 2010 were studied. Blowing sands and
sandstorms are frequent in this area, which facilitated the collection of experimental data.
The automatic sand sampler developed by [46] (Figure 2) was used, which had a sand
intake area of 5 cm × 2 cm and a collection frequency of 1 Hz. An H11-B wind erosion
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sensor (H11-Sensit, American SENSIT Company: Valparaiso, IN, USA) (Figure 3) was used
to record the number of sand particles impacting the sensor every second. The sensor probe
was installed 5 cm above the ground. The sand sampler was mounted on a horizontal sand
surface with a straight-line distance of 50 m from the wind erosion sensor to ensure that
the sand sampler empennage could rotate normally on windy days. The sand intake height
of the sand sampler was the same as the height of the sensor probe. A national standard
test sieve was used for statistics.
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Figure 3. Wind erosion sensor (H11-Sensit).

The average particle size of sands was measured to be 63–250 µm. Sands with particle
sizes greater than 74 µm accounted for 75.57%, and those with particle sizes greater
than 50 µm accounted for 97.65%. The average of the two was 86.61%. The actual sand
collection multiplied by 86.61% was the effective weight corresponding to the number of
sand particles impacting the sensor. After the experiment, the SigmaPlot12.5 software was
used for data processing and plotting.

Yang and He showed that the number of sands particles impinging the sensor (N) and
the dust horizontal flux (F) have a linear relationship:

F = 0.0512N (1)

At the same time, the sand collection of the BSNE sand sampler at 5 cm above the
ground (y) and the number of sand particles impacting the sensor (x) also had a linear
relationship:

y = 0.0002x (2)

Equations (1) and (2) were combined to obtain the following equation:

F = 256M (3)

where M is the mass of sand collected within 5 cm above the ground (units: kg), N is the
number of sand particles impacting the sensor (in units of 103), and F is the horizontal flux
of dust passing through the 5 cm × 2 cm section (units: kg).

In our experiments, the number of sand particles impacting the sensor and the mass of
collected sand were found to have a linear relationship, as found by [47,48] and described
by Equation (2). Therefore, the dust horizontal flux in this paper was calculated using
Equation (3). Next, the sand collection efficiency is the ratio of the amount of sand collected
by the sand sampler over the actual amount of transported sand. The correlation coefficient
of the two was taken here as the average sand collection efficiency.
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3. Results and Analysis
3.1. Analysis of the Correlation between the Number of Impacted Particles and the Amount of
Sediment Collected

Fifteen typical sand–dust weather events from July to August 2015 were monitored
to analyze the variation trend of the impacting particle number and sediment concentra-
tion. It was found that the variation trend was consistent between sand–dust storms and
sand-blown weather, especially on 19 July 2015 (8:35–21:35), 4 August 2015 (11:35–21:15),
5 August 2015 (10:20–20:25), and 7 August 2015 (9:30–21:55) (Figure 4). It was inferred that
the variation trend of the impact particle number and sediment concentration was almost
consistent for any kind of sand–dust weather, indicating that the field sediment collection
performance of the automatic high-precision sand collector was good for both sand–dust
storm weather and sand-blown weather.

Figure 5 shows the relationship between the total number of impacting particles and
the total sediment concentration corresponding to the 15 dust weather events. It was found
that there is a statistically significant linear relationship between the total number of impact
particles and the total sediment concentration, where the correlation coefficient, R, reached
0.9608. If the sand sampler failed for a short while, the linear equation y = 0.0002x was used
to estimate the sediment concentration at a height of 5 cm in the corresponding time using
the number of particles impacting the sensor, so as to verify the reliability of the weighing.

A regression analysis was carried out on the treated sediment concentration data and
impacting particle number data by fitting an exponential function, logarithmic function,
power function, and linear function to the data. The best-fitting results are shown in
Table 1. From the 15 sets of fitting results, the fitting degrees of the linear function and
power function were higher than those of the logarithmic function and exponential function.
The linear function has 11 times higher results than the power function, and the average
was higher than the power function. Therefore, the linear function could better describe the
correlation between the number of sand particles impacting and the sediment concentration;
that is, the optimal relationship between the number of sand particles impacting and the
sediment concentration during each five-minute period was linear.
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Figure 4. Trends in the number of impact particles and the amount of sediment collected.
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Table 1. Fitting analysis of saltation particle numbers and sand collection quantity.

Observation Time
Coefficient of Determination (R2)

Exponential
Function

Logarithmic
Function

Power
Function

Linear
Function

July

19 (8:35–21:25) 0.45 0.62 0.69 0.6
20 (19:35–21:25) 0.33 0.18 0.26 0.28
21 (20:20–22day5:25) 0.32 0.34 0.45 0.60
29 (22:15–30 day 2:15) 0.44 0.3 0.55 0.69
31 (13:10–8.1 day 7:10) 0.34 0.25 0.35 0.49

August

1 (21:40–23:25) 0.63 0.68 0.75 0.82
4 (11:35–21:15) 0.44 0.31 0.43 0.72
5 (10:20–20:25) 0.32 0.38 0.53 0.78
7 (9:30–21:55) 0.26 0.24 0.25 0.38
8 (10:35–20:25) 0.28 0.48 0.55 0.44
9 (13:15–18:05) 0.60 0.31 0.44 0.84
13 (10:30–21:25) 0.33 0.27 0.32 0.63
14 (10:00–21:15) 0.43 0.31 0.64 0.47
18 (10:50–20:50) 0.41 0.21 0.68 0.58
20 (13:40–19:55) 0.54 0.29 0.56 0.75

Average 0.41 0.34 0.50 0.61

According to the linear regression analysis of the number of sand particles impacting
every 5 min and the amount of sand collected during this period, it was found that the aver-
age correlation coefficient R is 0.7702. According to the judgment standard, 0.3 < |R| < 0.5
is referred to as a weak correlation, 0.5 < |R| < 0.8 is referred to as a significant correlation,
and 0.8 < |R| < 1 is referred to as high correlation. Thus, it can be seen that among the
15 fitting results, nine were significantly correlated, and six were highly correlated. This
showed that the linear correlation between the number of sand particles impacting the
sensor and the sediment mass was good.

From an energy point of view, the energy gained by impacting particles during wind-
blown sand events is extremely complex, especially in the field, where the impacting
particles generally acquire mechanical energy and horizontal kinetic energy in the airflow.
According to the conservation of energy theorem, the amount of energy lost by the mass
should yield reliable and accurate experimental results.

3.2. Sand Collection and Sand Collection Efficiency

The number of sand particles impacting the sensor during the 15 dust events and the
theoretical values of the collected sand masses in Table 2 were fitted, and, as before, the
moving particles in the airflow are approximately equal to the energy lost as they impact
the sensor; this energy can be ascertained by monitoring the total energy of the impacting
particles per second at a certain height. In different periods of the 15 dust events, different
wind drift sand flows were observed, which were influenced by the wind speed and sand
source supply condition, which resulted in different fitting functions for the number of
sand particles impacting the sensor and the amount of collected sand. Therefore, two or
more functions should be combined when studying the relationship between the number
of sand particles impacting the sensor, and the collected sand results were well-described
by a linear relationship. The coefficient of determination, R2, was 0.6 (Figure 6). Therefore,
the theoretical value of the collected sand mass in each dust event could be calculated
according to the fitted linear equation. The calculated results are also shown in Table 2.
The statistical results showed that the theoretical values were smaller than the observed
values. The reason for this may be that the data described by the linear relationship do not
perfectly follow the best-fitting line, but are distributed about it. The field test and wind
tunnel test data were different, so the correlation coefficient was not 1 and it was inevitable
that the theoretical value of sand collection was smaller than the observed value.
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Table 2. Observed saltation particle numbers and observed and theoretical sand masses.

Observation Time Impact Number
of Particles

Observed Value
of Sediment/g

Theoretical Value
of Sediment
Quantity/g

July

19 (8:35–21:25) 2,936,905 743.4966 587.3810
20 (19:35–21:25) 3,407,661 154.126 681.5322
21 (20:20–22 day 5:25) 920,676 170.5492 184.1352
29 (22:15–30 day 2:15) 147,786 34.6005 29.5572
31 (13:10–1 day 7:10) 1,050,073 179.586 210.0146

August

1 (21:40–23:25) 19,772 4.5764 3.9544
4 (11:35–21:15) 195,696 26.6128 39.1392
5 (10:20–20:25) 116,005 12.3933 23.201
7 (9:30–21:55) 231,534 43.2746 46.3068
8 (10:35–20:25) 1,048,891 118.5805 209.7782
9 (13:15–18:05) 1,380,718 354.3815 276.1436
13 (10:30–21:25) 210,702 14.2759 42.1404
14 (10:00–21:15) 390,274 25.0633 78.0548
18 (10:50–20:50) 293,093 15.7758 58.6186
20 (13:40–19:55) 349,610 4.5021 69.922
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As shown in Figure 7, the theoretical and observed sand masses were fitted and ana-
lyzed, and the two did not show any linear relationship, with a R2 of only 0.40, indicating
the large difference between the observed and theoretical values. The reason for this large
discrepancy was that the theoretical values were calculated based on the actual amounts of
collected sand and the number of sand particles impacting the sensor. In addition, the field
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environment was complex, which resulted in errors of the data acquisition system in the
transmission process, which reduced the final mass accuracies.
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A similar study found that their active sand sampler had a higher sand collection
efficiency than their passive sand sampler in wind tunnel experiments, and found that
the sand collection efficiency increased with an increase of grain size [49]. He et al. found
that the sand collection efficiency of their active sand sampler was 105% with the error of
±5% [46]. The sand collection efficiency of their passive Leach sand sampler was 85%, and
the collection efficiency for sands with particle sizes smaller than 10 µm was 70%. Their
Fryrear BSNE sand sampler had a 90% ± 5% collection efficiency for aeolian sands and a
40% collection efficiency for sands with particle sizes smaller than 10 µm. Goossens et al.
found that their same sand sampler had a higher efficiency for collecting aeolian sands
than for collecting dust [47–49], where the larger the size of the collected particles, the
higher the collection efficiency of the sand sampler. Therefore, even for the same type of
sand samplers, the sand collection efficiency may be different due to different test methods.
For example, one experiment showed that the BSNE sand sampler had a sand collection
efficiency of 100–120% [48], while Xu et al. concluded that their BSNE sand sampler had
a sand collection efficiency of 90% [49]. Although it was impossible to calculate the sand
collection efficiency of each dust event directly based on the observed sand masses and the
theoretical values of the sand masses in this work, the average sand collection efficiency
could be calculated according to the correlation coefficient between the two: the average
sand collection efficiency of the sand sampler at a height of 5 cm was 94.3%. Therefore, the
method of testing the efficiency of sand samplers is a problem worth further studying.

3.3. Sand Dust Horizontal Flux Calculation

The dust horizontal fluxes were calculated with Equation (3). The variation of particle
size and wind speed likely affect the distribution of the dust horizontal fluxes. When the
sand particle size was large, the transition height was also high, and the corresponding
sand collection flux was also large. It can be seen from Figure 8 that during the 15 dust
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events, the maximum dust horizontal flux is 190.335 kg, which was measured during a
sandstorm. The other events were all blowing sand events, with a minimum value of
about 1.2 kg. As these experiments were conducted at the same sampling site, and over a
continuous sampling period, the impact of particle size was not taken into consideration
in our study; instead, only the impact of wind speed was considered. Unfortunately,
more useful information was lost after the wind speeds were averaged. Therefore, the
transport of most dust materials happened in the surface layer and they landed on the
Earth’s surface by short-distance transportation. Even during a sandstorm, only a small
amount of dust was transported at higher altitudes. Thus, when calculating the horizontal
dust flux, its functional relationship with height should be established. In this study, the
relationship between the collected sand within a height of 5 cm from the ground by the
sand sampler and the horizontal dust flux was used; specifically, the former was used to
calculate the latter using Equation (3) via a simplified calculation method that reduced the
computational requirements.
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The dust horizontal fluxes were calculated with Equation (3). The variation of particle
size and wind speed likely affect the distribution of the dust horizontal fluxes. When the
sand particle size was large, the transition height was also high, and the corresponding
sand collection flux was also large. It can be seen from Figure 8 that during the 15 dust
events, the maximum dust horizontal flux is 190.335 kg, which was measured during a
sandstorm. The other events were all blowing sand events, with a minimum value of
about 1.2 kg. As these experiments were conducted at the same sampling site, and over a
continuous sampling period, the impact of particle size was not taken into consideration in
our study; instead, only the impact of wind speed was considered. Unfortunately, more
useful information was lost after the wind speeds were averaged. Therefore, the transport
of most dust materials happened in the surface layer and they landed on the Earth’s surface
by a short distance.

3.4. Sand Transportation Rate and Wind Speed

Figure 9 shows the relationship between the sand transportation rate and wind speed
under different dusty weather conditions; (a) and (b) were strong and typical sandstorm
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weather events, respectively, and (c) to (j) were blowing sand weather events. In general,
the rate of sand–dust transport increased with an increase of wind speed, but the changing
trends of the wind speed and sand–dust transport rate during some weather processes
were inconsistent. For example, for some blowing sand events (e, g, i, and j) and strong
sandstorm events (a and b), although the wind speeds were small, the variations of the
sand transportation rate were large. The soil temperature at 0 cm during the correspond-
ing events showed that the soil temperature rapidly increased with an increase of solar
radiation intensity. In the surface layer, a strong decreasing temperature structure formed
in the surface layer, and the thermal turbulence became stronger and stronger, resulting
in enhanced heat transfer and unusually active sand saltation. When the wind speed
was small, but the sand transportation rate was relatively large, the corresponding soil
temperature at 0 cm was hot. This showed that the increased soil temperature at 0 cm could
promote the saltation of sands. This finding is consistent with the results of [48], who found
that the “synchronization of wind and temperature” was in favor of the co-occurrence of
wind and saltation. The specific relationship of the sand transportation rate with wind
speed and temperature needs to be further studied.
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Figure 9. Sediment of different dust events.

4. Discussion

There are many factors affecting the horizontal flux of sand dust. In addition to
differences in collection instruments, there are many other factors, especially in terms of
physical mechanisms, which are summarized in the following.

The movement of sand dust in response to wind is the most important feature of
aeolian sediment transport. Wind accelerates particles and ejects more particles when
impacting a surface, which leads to increases in the horizontal dust flux in the initial
stages [50,51]. However, this rapid increase in the impact particle concentration produces
a corresponding increase in the drag of dust particles on the fluid, thereby retarding the
wind speed. This in turn reduces the speeds of the horizontal dust flux particles, such
that a steady state is reached when the speeds of the impacting particles are reduced to a
value at which there is a single particle leaving the soil surface for each particle impacting
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it [52]. Because of the finite response time of dust flux particle speeds to the wind speed,
the horizontal dust flux can “overshoot” the eventual steady-state mass flux [53–55].

Kok, Parteli, and Michaels found that the wind profile was modified through momen-
tum transfer by impacting particles [14]. On the one hand, it is the retardation of the wind
profile through drag by the saltating particles that ultimately limits the number of particles
that can be saltated under given conditions. On the other hand, the drag produced by
saltating particles reduces the horizontal momentum flux carried by the wind. At the same
time, although the particle speeds at the surface were once thought to remain constant,
numerical simulations and wind-tunnel measurements have shown that the particle speeds
increase as a function of the shear velocity above the surface. This means that the mass
flux higher up in the saltation layer increases relative to that in lower layers, producing
a slight increase in the saltation layer height with shear velocity. The extraction of wind
momentum by saltating particles produces a steady-state wind profile that accelerates
saltating particles to a saltate speed that, on average, results in a single particle leaving the
soil bed for each particle impacting upon it.

Rice, Willetts, and McEwan found that, when the surface shear stress fell below the
impact threshold, fewer saltate particles were entrained by the wind. This in turn reduced
the transfer of momentum from the fluid to the impacting particles, thereby increasing the
surface shear stress back to its threshold value. Conversely, when the surface shear stress
exceeded the threshold value, more saltating particles were entrained, again restoring the
surface shear stress to its critical value. Experiments have indicated that particles with
a larger cross-sectional area have a correspondingly higher chance of being “splashed”
by a saltate particle [56]. Saltate particles may have short lifetimes because their high
inertia causes them to attain lower speeds when splashed, leading them to quickly settle
back to the dust surface [57]. Actually, winds cannot directly lift dust particles because
the corresponding interparticle cohesive forces are large compared to aerodynamic forces.
Instead, these dust particles mainly collide with each other under wind erosion [58,59].
During a dust storm, lifted particles are accelerated by the wind, and the resulting impacts
on the dust bed can eject, or splash, new erosion particles into the fluid stream. This
process produces an exponential increase in the particle concentration [60], which leads to
increasing drag on the wind, thereby retarding the wind speed in the erosion layer [61]. It
is this slowing of the wind that acts as a negative feedback process that reduces particle
speeds, which ultimately limits the number of impacting particles [62].

Dust flux is predominantly emitted by the saltates of eroding particles at the near
surface [58,59]. Several authors have also argued that mid-air collisions can affect particle
trajectories and the mass flux at large shear velocities [63–66]. Wind erosion produced
by colliding particles during a single hop is of the order of 10–50%, which increases with
wind speed [66]. That is, even at large impact speeds, not all saltating particles rebound
from the surface, because some will dig into the particle bed [67]. Moreover, recent mea-
surements indicated that the restitution coefficient is a declining function of the saltator
impact speed [68]. Numerical simulations [50,53,69,70], laboratory experiments [71], and
theory [57] have all indicated that the number of splashed particles scales with the impact-
ing momentum. Experiments have also indicated that the fraction of the average impacting
momentum spent on splashing surface particles is of the order of 15% for a bed of loose
sand particles [56,57,59]. Most splashed particles, therefore, move in low-energy reptation
trajectories and quickly settle back to the soil bed. However, some splashed particles do
gain enough momentum from the wind to participate in saltation and splash up more
particles. This multiplication process produces a rapid increase in the particle concentration
upon initiation of saltation, where the distribution of splashed speeds at a given ejected
velocity follows either an exponential or a lognormal distribution [72,73].

Sand transport has been measured by many instruments developed mainly to deter-
mine the rates of transported material. Accurately measuring these processes has been an
ongoing challenge since the first known discrete measurements were made by Bagnold.
In general, impact sensors suffer from poor sensitivity to small sand grains [74], and in
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the case of Safire, poor interinstrument repeatability [75]. Over the past decade, although
instruments vary in design and complexity, they can be split into two categories: inte-
grating and real-time electronic instruments. As achieved in this study, there have been
incremental improvements in this latter category of devices that have been motivated, in
part, by the observation that sediment transport occurred on spatial scales smaller than
5 cm and temporal scales shorter than 1 s. Initial designs were improved by increasing
the efficiency by taking account of the aerodynamics associated with blocking a portion of
the flow [13]. Additional improvements were made by increasing the temporal resolution
through automatic weighing systems [27,28]. However, the spatial and temporal resolu-
tions of a mass-collecting sediment trap remain insufficient for capturing most small-scale
aeolian processes. In addition, because sand traps obstruct the flow to varying degrees,
the efficiency of sampling saltating grains varies with height and wind conditions [17] but
is generally around 80% [44]. Sand particle sizes not only differ regionally [76], but also
vary significantly with height [77–79]. This variation of sand particle size with location and
height inevitably influences the sampling efficiency of different samplers, leading to errors
in the amount of aeolian sand collected. However, in previous experiments, this has often
been neglected, or a fixed sampling efficiency has been applied [48,80–82].

Some research has shown that an exchange of sand is expected between adjacent
dunes of different heights, since larger dunes are more likely to disperse sand than smaller
ones [83]. Changes in individual dunes relative to sand flux are unstable, meaning that in
one area, dunes that evolve only through sand flux should eventually merge into larger
dunes [84]. It is well-known that dune patterns are mainly determined by the amount of
available sand and the behavior of the wind in the year. At the same time, changes in the
wind and its direction may destroy the stability of large dunes, thereby affecting sediment
flux [85]. However, wind erosion processes are often random or strongly dependent on
local environmental conditions, making them difficult to incorporate into general analyses
or simulations of dune fields. Additionally, collisions between sand particles can adjust the
dune shape and the distance between them. When sand particles collide with each other,
sand will be redistributed between the dunes [86]. There is not yet a general theoretical
model that can self-consistently explain this diversity of dune patterns.

In order to understand the mechanism of sand–particle collisions between sand dunes,
it is necessary to use a continuum model for numerical simulations. Continuum dune
models have been used to quantitatively connect dune characteristics to environmental
conditions and physical processes, including interactions within a single sand dune and
between multiple sand dunes. At larger scales, each sand dune is regarded as a single
particle, and the results of the large-scale continuum model are used to explain the collisions
between particles, i.e., interactions between sand dunes. The pioneering work of [87] is
the basis of most sand dune formation and evolution continuum models. These models
have been mainly applied to study the influences of wind and sand flux on details of
dune morphology [88,89], and the influence of vegetation and induration in stabilizing
dunes [88]. Many studies have examined the characteristic scales of dune formation and
evolution in different environments, such as underwater or on Mars [90,91]. Jump particles
on the back of a windward dune hit the bottom of the dune, causing sand deposition, and
ultimately remain in the windward dune. With the transport of windward dune sand, the
dune’s contour becomes shorter, which leads to a speed increase in the sand flux. Similarly,
windward dunes accumulate sand, become taller, and thus reduce the sand flux speed [87].
It seems that the size ratio between dunes, not the individual size of dunes, determines the
impact of sand collision on sediment transport [92–94].

In future studies, we will attempt to apply a continuum model to fields composed of
hundreds of dunes. However, due to the large temporal and spatial scales involved and
current technical constraints, its feasibility may be limited [87]. In other words, following
the methods adopted in other research and the obtained basic parameters, we hope that the
future measurements of sand flux in areas between desert sand dunes will help to develop
better models for dune fields, based on previous agent-based simulations [83,87,95]. Such
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models rely on the accurate description of interdune sand transport, which is still poorly
known, and should thus constitute a topic of further investigation in future work.

To sum up, in the complex field environment, differences in the horizontal dust
fluxes and dust collection efficiencies were caused by differences in the type, accuracy,
and sampling periods of the sand samplers, as well as the sand particle size and height.
Therefore, in future research, developing a sand sampling device with a high sand collection
efficiency that is sensitive to small disturbances to the flow fields in complicated fields is an
important requirement to accurately estimate dust fluxes. Secondly, we aim to develop a
numerical model, and then calibrate the model through field-measured data, so as to carry
out numerical simulations of large-scale sediment flux and dust flux.

5. Conclusions

The cumulative collected sand mass and number of sand particles impacting the
sensor of the designed sand sampler were highly consistent in the complex field test
environment, which had a linear relationship with an R2 value of 0.6053, reflecting good
performance in sand collection. The sand collection efficiency was about 94.3% for the
sand sampler, indicating that the sand sampler could effectively monitor the movement
of sand particles. The data obtained from field experiments allowed us to deduce a
simple formula for calculating the dust horizontal flux: F = 256M. We also estimated the
maximum and minimum dust horizontal flux within a height of 5 cm near the surface of
the mobile sand surface in the tower during 15 dust events, finding values of 190.335 kg
and 1.2 kg, respectively.

Based on the simultaneous observations of wind speed and temperature in our attempt
to analyze the transitional sediment transport rate at a height of 5 cm, it was found that
with an increase of wind speed, the sediment transport rate generally increased, but
during some weather periods, the sediment transport rate changed with the wind speed.
Inconsistent, and in this case, the landmark temperature during the corresponding period
is significantly higher.
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