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Abstract

Background: The increasing production of genomic data has led to an intensified need for models that can cope efficiently
with the lossless compression of DNA sequences. Important applications include long-term storage and compression-based
data analysis. In the literature, only a few recent articles propose the use of neural networks for DNA sequence
compression. However, they fall short when compared with specific DNA compression tools, such as GeCo2. This limitation
is due to the absence of models specifically designed for DNA sequences. In this work, we combine the power of neural
networks with specific DNA models. For this purpose, we created GeCo3, a new genomic sequence compressor that uses
neural networks for mixing multiple context and substitution-tolerant context models. Findings: We benchmark GeCo3 as a
reference-free DNA compressor in 5 datasets, including a balanced and comprehensive dataset of DNA sequences, the
Y-chromosome and human mitogenome, 2 compilations of archaeal and virus genomes, 4 whole genomes, and 2
collections of FASTQ data of a human virome and ancient DNA. GeCo3 achieves a solid improvement in compression over
the previous version (GeCo2) of 2.4%, 7.1%, 6.1%, 5.8%, and 6.0%, respectively. To test its performance as a reference-based
DNA compressor, we benchmark GeCo3 in 4 datasets constituted by the pairwise compression of the chromosomes of the
genomes of several primates. GeCo3 improves the compression in 12.4%, 11.7%, 10.8%, and 10.1% over the state of the art.
The cost of this compression improvement is some additional computational time (1.7–3 times slower than GeCo2). The
RAM use is constant, and the tool scales efficiently, independently of the sequence size. Overall, these values outperform
the state of the art. Conclusions: GeCo3 is a genomic sequence compressor with a neural network mixing approach that
provides additional gains over top specific genomic compressors. The proposed mixing method is portable, requiring only
the probabilities of the models as inputs, providing easy adaptation to other data compressors or compression-based data
analysis tools. GeCo3 is released under GPLv3 and is available for free download at https://github.com/cobilab/geco3.
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Introduction

The DNA sequencing rate is increasing exponentially, stretching
genomics storage requirements to unprecedented dimensions.
Several projections show that by the year 2025, between 2 and 40
EB of additional storage will be needed per year [1]. Discarding

a substantial fraction of the data is not a feasible alternative,
given its high importance in many contexts, e.g., in biomedical
(e.g., personalized medicine) and anthropological fields.

The representation of genomic data usually consists of DNA
sequences accompanied by additional channels, such as head-
ers, quality scores, and variant positions, among others, that
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vary from type and purpose. Different file formats store the se-
quence with subsets of these metadata, but the core remains the
DNA sequences. The compression of these sequences has been
widely approached with general- and specific-purpose compres-
sors; the latter are now coming into frequent use given their sub-
stantial compression gains.

Specialized DNA compressors achieve substantially higher
compression than general-purpose because most of these com-
pressors use various models that take into account specific prop-
erties of DNA, such as inverted repeats and high level of substitu-
tions [2, 3]. However, the efficient combination of multiple mod-
els for DNA sequence compression is not a trivial problem. The
complexity associated with the development of improved algo-
rithms to combine those predictions [4] and the specificities of
the genomic data, namely, heterogeneity and non-stationarity,
delivers a highly demanding task.

In this article, we address the problem of combining the pre-
dictions of different models to produce an improved predictive
model and, by consequence, improve the compression of DNA
sequences. Accordingly, we take the specific DNA models from
GeCo2 [3], namely, the context and substitution-tolerant context
models [5], and implement a mixture of these models with a
neural network.

Therefore, instead of combining only the models’ predictions
with the algebraic combiner of GeCo2, where weights are at-
tributed to each model and updated on the basis of the model
performance with a particular forgetting factor, we improve the
mixture of experts using ensemble methods [6].

Specifically, we use a stacked generalization approach [7],
namely, applying a neural network metamodel that takes as in-
puts the outputs of other models and is trained to learn the
mapping between the models’ outputs and the actual correct
outputs. To implement the stack generalization, we use a multi-
layer perceptron. This network takes as inputs the probabilities
of each model, as well as derived features [8] that represent past
model performance, while it outputs the probabilities for each
symbol, which are redirected to an arithmetic encoder.

For evaluation, we created a new DNA compression tool
(GeCo3) and benchmark it for both reference-free and referen-
tial compression. Nine datasets are used for reference-free and
reference-based compression benchmarks, containing different
sequence nature, lengths, and redundancy levels.

The results show a consistent improvement in the compres-
sion ratio of GeCo3 over state-of-the-art DNA compressors, in
both reference-free and reference-based approaches, enabling
the use of GeCo3 as a long-term storage tool.

Although data compression is the natural approach for de-
creasing the storage of DNA sequences losslessly [9], it can also
be efficiently applied to sequence analysis and prediction using
special-purpose compressors [10–12]. Therefore, this improve-
ment also enables increasing the precision of DNA sequence
compression–based analysis tools. To facilitate the export of the
mixing method to other data compression or data analysis tools,
we provide the reusable and modular mixer code and instruc-
tions on how to integrate it easily.

In the following subsection, we provide background on
reference-free and reference-based DNA sequence compression.
Then, we describe GeCo3 in detail and, finally, we provide the
benchmark results and some discussion.

DNA sequence compression

Genomes are found in the most diverse places, e.g., in extreme
environments such as uranium mines [13], in soft and hard tis-

sues [14, 15], ancient cadavers [16], marine environments [17], or
deep subterranean habitats [18]. The environment and species
interactions are a key for genome adaptation, providing a wide
diversity in characteristics, namely, high copy number, high het-
erogeneity, high level of substitution mutations, or multiple re-
arrangements, such as fissions, fusions, translocations, or in-
verted repeats [19, 20]. Additionally, because genomic (DNA) se-
quences are an output of biochemical and computational meth-
ods, these sequences may have other alteration sources, e.g.,
contamination [21], environmental factors [22, 23], pathogenic
species included in the samples [24, 25], and unknown sources
[26]. Therefore, representing genomic sequences requires the
ability to model heterogeneous, dynamic, incomplete, and im-
perfect information [27].

The above specific characteristics led to the development of
the field of the study and construction of specific genomic data
compressors [28, 29]. This field, now 27 years old, started with
Biocompress [30]. Subsequently, several algorithms emerged,
mostly modeling the existence of exact or approximate repeated
and inverted repeated regions, through the use of simple bit en-
coding, context modeling, or dictionary approaches [2, 3, 31–52,
53–64].

The development of the FASTA format permitted the stan-
dardization of the co-existence of DNA sequences (in a visible
horizontal range) along with annotations (headers). Usually, the
DNA sequence is substantially the most abundant part of these
data, and, hence, multiple tools use specialized DNA compres-
sion algorithms combined with simple header coding, namely,
Deliminate [65], MFCompress [66], and NAF [67]. Notwithstand-
ing, for purposes of comparison with DNA sequence compres-
sors, setting a minimal header, asymptotically, increases its ir-
relevance relative to the DNA sequence according to its size.

From all the previous algorithms, the most efficient accord-
ing to compression ratio in the wide diversity of DNA sequences
are XM [43], GeCo2 [3], and Jarvis [64]. These compressors apply
statistical and algorithmic model mixtures combined with arith-
metic encoding. Specifically, the XM algorithm [43] combines 3
types of experts, namely, repeat models, a low-order context
model, and a short memory context model of 512 B. The GeCo2
algorithm [3] uses soft-blending cooperation between context
models and substitution-tolerant context models [5] with a spe-
cific forgetting factor for each model. The Jarvis compressor [64]
uses a competitive prediction model to estimate, for each sym-
bol, the best class of models to be used; there are 2 classes of
models: weighted context models and weighted stochastic re-
peat models, where both classes of models use specific sub-
programs to handle inverted repeats efficiently.

Some compressors use a reference genome as an addi-
tional input. This approach is called referential compression,
and it started to gain momentum in 2009 [68, 69]. Referential
compressors attained substantially higher compression ratios
compared with reference-free compressors. The resulting com-
pressed lengths can be hundreds or thousands of times smaller
than the original file [70, 71]. As an example, an entire human
genome of ∼3 GB can be compressed to 4 MB by referential com-
pression; on the other hand, a reference-free compressor min-
imizes the data to ∼580 MB. The majority of reference-based
compression algorithms use dictionaries, repeat models, or con-
text models [3, 54, 68–80]. From the previous compressors, the
most productive, according to compression ratio, are HiRGC [78],
GeCo2 [3], iDoComp [70], GDC2 [71], and HRCM [80]. HiRGC [78]
is based on a 2-bit encoding scheme and an advanced greedy-
matching search on a hash table. GeCo2 [3] is described above.
iDoComp [70] uses a suffix array for loading the reference and
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later applies a greedy parsing of the target that benefits the
substitutional single-nucleotide polymorphisms that occur in
higher number. GDC2 [71] performs a Ziv-Lempel factoring, com-
bined with a second-level factoring and followed by arithmetic
coding. HRCM [80] explores sequence information extraction,
followed by sequence information matching and further encod-
ing.

The use of neural networks to compress DNA sequences is
seen in DeepDNA [62]. DeepDNA is a special-purpose DNA com-
pressor without specialized models. It uses a hybrid approach
with a convolutional layer to capture the genome’s local features
and a recurrent layer to model long-term dependencies.

In general-purpose sequence compressors, the idea of us-
ing neural networks to mix probabilities is seen in Mahoney
[4]. In this case, it is called logistic mixing. Logistic mixing can
be viewed as using a neural network without hidden layers
and a simpler update rule than backpropagation. Other general-
purpose compressors followed the same line, namely, Cmix [81]
and DeepZip [82]. Cmix [81] uses recurrent neural networks
trained with stochastic gradient descent for context mixing.
DeepZip [82] also uses recurrent neural networks, both as pre-
dictors (models) and as mixers.

Although the best general-purpose compressors use com-
plex computational models, namely, based on neural networks,
it has been shown that they still have lower compression capa-
bilities (5–10%) using substantially higher computational time
according to the most efficient specific compressors [82]. The
discrepancy in precision is higher when the method is de-
signed for fast computations [83]. The main reason that the
best general-purpose algorithms (using neural networks) are not
so efficient is that they do not use specific DNA models that
take into account the algorithmic nature of genomic sequences,
which harms the model sensitivity.

In this article, we combine the sensitivity of specific DNA
models, namely, the use of multiple context models combined
with DNA-specific algorithmic models, with the power of neural
networks for context mixing.

Methods

In this section, we present the methods that describe the pro-
posed compressor (GeCo3). GeCo3 uses a combination of multi-
ple context models and substitution-tolerant context models of
several order-depths. The neural network provides an efficient
combination of these models. Therefore, we describe the new
method with the main focus on the neural network, including
the inputs, updates, outputs, and training process.

Neural network structure

The model mixing is constructed using a feed-forward artificial
neural network trained with stochastic gradient descent [84].
This choice is motivated by implementation simplicity and com-
petitive performance compared with more complex neural net-
works [85]. The activation function for this network is the sig-
moid, and the loss function is the mean squared error. The net-
work structure is fully connected with 1 hidden layer, as seen in
Fig. 1b. One bias neuron is used for the input and hidden layer,
while the weights respect the Xavier initialization according to
Glorot and Bengio [86]. Although we empirically tested different
activation functions (ReLu, TanH) and a higher number of hid-
den layers, the most efficient structure was obtained with the
previous description.

We introduced 2 parameters for the GeCo3 compression tool
in order to control the number of nodes of the hidden layer
and the learning rate. These parameters are written in the com-
pressed file header to ensure a lossless decompression.

Neural network inputs

The stretched probabilities of each symbol are used as inputs to
the network. These are given by

pi, j = stretch
(

1 + fi, j∑
m∈� 1 + fi,m

)
− stretch (meanp) , (1)

where fi, j is the frequency of symbol j for model i with � as the
set of all symbol and meanp is the mean probability of each sym-
bol.

We stretch the probabilities according to the work of Ma-
honey [4]. The effects of stretching can be seen in Supplemen-
tary Section 1 (Stretching function plot). The inputs are normal-
ized for forcing the average to be close to zero by subtracting
the stretched mean probability, which, for the case of DNA, we
assume to be 0.25. The normalization and its motivation are ex-
plained in LeCun et al. [87]. Stretching the probabilities has the
effect of scaling them in a non-linear way, which increases the
weights of probabilities near 0 and 1.

The context models, substitution-tolerant context models,
and the mixed probabilities of GeCo2 are used as input models.
This inclusion means that the mixing done in GeCo2 is not dis-
carded but is used as an additional input to the neural network.

We extract features from the context (the last n symbols)
and also calculate model and network performance indicators
to improve the network predictions. These are used as inputs to
the neural network. Three performance indicators are derived
for each mode according to the names “hit,” “best,” and “bits.”
These features correspond to 3 input nodes per model, as seen
in Fig. 1b.

To measure how precise model i is voting, we use

hiti,n =

⎧⎪⎨
⎪⎩

hiti,n−1, if ∀x, y ∈ � : pi,x = pi,y

hiti,n−1 + 0.1, if ∀x ∈ � : pi,sym > pi,x

hiti,n−1 − 0.1, otherwise.

(2)

The symbol with the highest probability is considered the vote of
the model. Each time the model votes correctly, hit is increased.
If the model abstains (probabilities of each symbol are equal),
then hit remains the same; otherwise, it decreases.

For each model, we also measure whether it has assigned the
highest probability to the correct symbol, compared to all other
models. This is given by

besti,n =

⎧⎪⎨
⎪⎩

besti,n−1, if ∀x, y ∈ � : pi,x = pi,y

besti,n−1 + 0.1, if pi,sym ≥ pk,sym

besti,n−1 − 0.1, otherwise.

(3)

The update rules for best are similar to those for hit, and both
have a domain of [−1, 1].

As an approximation to the average number of bits the model
would output, we use an exponential moving average

bitsi,n = α1 · [− log2(pi,sym) + log2(meanp)
] + (1 − α1) · bitsi,n−1, (4)

with α1 = 0.15. This input is also normalized such that the aver-
age value is close to zero.
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Figure 1: Mixer architecture: (a) High-level overview of inputs to the neural network (mixer) used in GeCo3. Model1 through Modeli represent the GeCo2 model outputs

(probabilities for A, C, T, G). Perf represents the performance metrics (hit, best, bits) for each model. Freqs are the frequencies for the last 8, 16, and 64 symbols. nnbits
is a moving average of the approximate number of bits that the neural network is producing. The network outputs represent the non-normalized probabilities for each
DNA symbol. (b) A fully connected neural network with 1 hidden layer. For illustration purposes, this neural network only has the inputs corresponding to 1 model

and the 3 features that evaluate the model performance. The frequencies of the last 8, 16, and 64 symbols, as well as the nnbits and the bias neurons, are omitted.

In equations (2), (3), and (4), pi, sym is the probability assigned
by model i to the actual symbol in the sequence. To reach these
features and their constants, we tested each with a couple of
files from 1 dataset and adjusted until we found a value that
produced satisfactory results.

The features extracted from the context are the probabilities
of each symbol for the last 8, 16, and 64 symbols. These repre-
sent a total of 12 input nodes. In Fig. 1a, these nodes are rep-
resented by FreqsL8, FreqsL16, and FreqsL64. For example, to ob-
tain the probabilities for the last 8 symbols with the sequence
ACAGTAAA, the number of A’s is divided by the number of total
symbols, so the frequency of symbol A is 5/8 and for the other
symbols is 1/8. These probabilities are then scaled to fit between
−1 and 1.

In Fig. 1a, nnbits represents the exponential moving average
of the approximate number of bits and is given by

nnbitsn = α2 · [− log2(psym) + log2(meanp)
] + (1 − α2) · nnbitsn−1,

(5)

with psym as the probability the network assigned to the correct
symbol and α2 = 0.5.

Updating model performance features

As an example of how to update the features, consider 2 sym-
bols and 3 models, and assume that all features start equal to
zero. Model 1 assigns the probabilities [0.5, 0.5], meaning that
the model abstains and, as such, no change is made to hit or
best. Also, bits1 would be equal to zero. The probabilities for
model 2 and 3 are [0.7, 0.3] and [0.8, 0.2], respectively. Assum-
ing that the models voted correctly, then hit is now 0 + 0.1 = 0.1
for both. Because model 3 assigned the highest probability to the
correct symbol, then best3 is now 0 + 0.1 = 0.1 and best2 becomes
−0.1. Moreover, bits2 would become bits2 = 0.15 · [−log2(0.7) +
log2(0.5)] and bits3 = 0.15 · [− log2(0.8) + log2(0.5)].

Neural network outputs and training

One node per symbol is used as output from the network. After
the result is transferred to the encoder, the network is trained
with the current symbol using the learning rate specified within
the program input.

When compared to GeCo2, the results of the new mixing con-
tain 2 main differences. First, the sum of output nodes is dif-
ferent from 1. This outcome is corrected by dividing the node’s
output by the sum of all nodes. The second difference is that the
new approach outputs probabilities in the range [0, 1], while in
GeCo2, the mixing always yielded probabilities inside the range
of the models.

Results

In this section, we benchmark GeCo3 against state-of-the-art
tools in both reference-free and referential compression ap-
proaches. In the following subsection, we describe the datasets
and materials used for the benchmark, followed by the compar-
ison with GeCo2 using different characteristics, number of mod-
els, and data redundancy. Finally, we provide the full benchmark
for the 9 datasets.

Datasets and materials

The benchmark includes 9 datasets. Five datasets are selected
for reference-free compression, including

(1) DS1: 2 compilations of FASTQ data, namely, a human virome
(Virome) [88] and ancient DNA from a Denisova individual
(Denisova) [89];

(2) DS2: 4 whole genomes: human (HoSaC), chimpanzee (Pa-
TrC), gorilla (GoGoC), and the Norway spruce (PiAbC);

(3) DS3: 2 compilations of archaeal (Archaea) and viral genomes
(Virus);

(4) DS4: highly repetitive DNA with the human Y-chromosome
(HoSaY) and a human mitogenome collection (Mito) (pro-
posed in [90]);
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(5) DS5: a comprehensive-balanced dataset (proposed in [91]),
containing the following sequences:
(1) HoSa: chromosome 4 of the reference human genome
(2) GaGa: chromosome 2 of Gallus gallus;
(3) DaRe: chromosome 3 of Danio rerio;
(4) OrSa: chromosome 1 of Oryza sativa Japonica;
(5) DrMe: chromosome 2 of Drosophila miranda;
(6) EnIn: genome of Entamoeba invadens;
(7) ScPo: genome of Schizosaccharomyces pomb;
(8) PlFa: genome of Plasmodium falciparum;
(9) EsCo: genome of Escherichia coli;

(10) HaHi: genome of Haloarcula hispanica;
(11) AeCa: genome of Aeropyrum camini;
(12) HePy: genome of Helicobacter pylori;
(13) YeMi: genome of Yellowstone Lake mimivirus;
(14) AgPh: genome of Aggregatibacter phage S1249;
(15) BuEb: genome of Bundibugyo ebolavirus.

On the other hand, to benchmark the reference-based ap-
proach, we use the complete genomes of 4 primates (human,
gorilla, chimpanzee, and orangutan) with a pairwise chromoso-
mal compression. Non-human chromosomes are concatenated
to match the human chromosomal fusion [92]. For each chromo-
somal pair, the following compression was performed:

(1) DSR1: chimpanzee (PT) using human (HS) as a reference;
(2) DSR2: orangutan (PA) using human (HS) as a reference;
(3) DSR3: gorilla (GG) using human (HS) as a reference;
(4) DSR4: human (HS) using gorilla (GG) as a reference.

All the materials to replicate the results, including the se-
quence identifiers, URL, filtering applications, and associated
commands, can be found in Supplementary Section 8 (Repro-
ducibility).

Neural network mixing compression

To assess the performance of the neural network mixing, we
compare GeCo2 with GeCo3. To ensure a fair comparison, the
compression modes, including the models and parameters, are
kept identical for both programs.

In Table 1, GeCo2 and GeCo3 are compared using the com-
pression modes published by Pratas et al. [3]. The overall com-
pression improves by 1.93%, and the mean improvement is
1.06%. The larger sequences (larger than ScPo) have mean im-
provements of 2.04%, while the remaining have modest im-
provements of 0.4%. Only the 2 smallest sequences show nega-
tive improvement, given the absence of enough time to train the
network. Additionally, the 8 B that are used to transmit the 2 net-
work parameters to the decompressor are a significant percent-
age of the total size, unlike in larger sequences. Overall, GeCo3
improves the compression of the whole dataset by >1.9%.

Neural network mixing computational resources

Regarding computational resources, the mixing modification is
2.7 times slower, as reported in Table 1. The computation was
performed on an Intel(R) CoreTM i7-6700 CPU at 3.40 GHz running
Linux 5.4.0 with the scaling governor set to performance and 32
GB of RAM. The new mixing approach is always slower because
GeCo2’s mixing is still used, not as a result of the encoder, but
rather as an input to the network. The difference in RAM use of
both approaches is <1 MB, which corresponds to the size of the
neural network and the derived features for each model.

The number of hidden nodes is chosen to fit in the vec-
tor registers in order to take full advantage of the vector-
ized instructions. Accordingly, we set the number of hid-
den nodes as a multiple of 8, where floating points of
4 B represent the nodes and 32 B represent the vector
registers.

Effects of the hidden layer size on mixing

Increasing or decreasing the number of hidden nodes affects
the number of weights, and it also affects compression, as can
be seen in Fig. 2. Increasing the number of nodes increases the
compression up to a point. This point varies from sequence
to sequence; however, the most abrupt gains in compression
generally occur until 24 hidden nodes. As expected, increas-
ing the number of hidden nodes leads to an increase in ex-
ecution time and a progressive decline of compression gain.
These results are also consistent in referential compression
as seen in Supplementary Section 6 (Referential hidden nodes
effect).

The importance of derived features on mixing

We removed the derived features from the inputs to the network
to assess its effect on the mixing performance. The results are
presented in Table 2.

When using just the models’ probabilities as inputs, the
compression is more efficient than GeCo2 by a small margin
(0.18%), while, in the majority of the sequences, there is no
improvement. By adding the result of the GeCo2 mixing as
an input, the improvement increases to 1.36%. The gain esca-
lates, having an improvement of 1.73%, when using the context
models and tolerant context models as inputs and the derived
features.

Scaling the number of models

GeCo2 and GeCo3 contain several modes (compression levels),
which are parameterized combinations of models with diverse
neural network characteristics. To see how the compression
of the new approach scales with more models, we introduced
mode 16 with a total of 21 models. This new mode was used to
compress the sequences of HoSa to HePy (by size order). For the
remaining sequences, the same models were used as in Table 1.
We used this approach because increasing the number of mod-
els was incapable of improving the compression of GeCo3 and
GeCo2, given the smaller dimensions of these sequences. The
number of hidden nodes was also adjusted until no tangible im-
provements in compression were observed.

The results in Table 3 show that the distance between the
approaches increases from 1.93% to 2.43%. The time difference
reduces from 2.7 to 2.0 times. This reduction is due to the in-
creased percentage of time spent by the higher-order context
models. These results show that neural network mixing can
scale with the number of models. The forgetting factors for this
new mode were not tuned, due to the use of a large number of
models. Therefore, with this tuning, additional gains can be ob-
served. Nevertheless, this shows another advantage of this new
mixing, which is that there are only 2 parameters that need tun-
ing regardless of the number of models. As the sequence size
and the number of models increase, there is almost no tuning
required, with the optimal values being ∼0.03 for the learning
rate and 64 hidden nodes.
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Table 1: Number of bytes needed to represent each DNA sequence for GeCo2 and GeCo3 compressors

ID GeCo2 bytes GeCo3 bytes GeCo2 secs GeCo3 secs Mode
Learning

rate
Hidden
nodes

HoSa 38,845,642 37,891,143 223 598 12 0.03 64
GaGa 33,877,671 33,411,628 160 424 11 0.03 64
DaRe 11,488,819 11,189,716 64 189 10 0.03 64
OrSa 8,646,543 8,434,878 44 133 10 0.03 64
DrMe 7,481,093 7,379,992 33 99 10 0.03 64
EnIn 5,170,889 5,066,670 26 75 9 0.05 64
ScPo 2,518,963 2,511,054 11 24 8 0.03 40
PlFa 1,925,726 1,906,919 10 22 7 0.03 40
EsCo 1,098,552 1,094,298 2 8 6 0.03 40
HaHi 902,831 896,037 2 6 5 0.04 40
AeCa 380,115 377,343 1 2 5 0.04 16
HePy 375,481 373,583 1 3 4 0.04 40
YeMi 16,798 16,793 0 0 3 0.09 24
AgPh 10,708 10,715 0 0 2 0.06 16
BuEb 4,686 4,686 0 0 1 0.06 8
Total 112,744,517 110,565,455 577 1,583

The column mode applies to both compression methods, while the learning rate and the number of hidden nodes only apply to the latter. Bold indicates the best
compression.

Figure 2: Number of bytes (s) and time (t) according to the number of hidden nodes for the reference-free compression of ScPo, EnIn, and DrMe sequence genomes.

Table 2: Number of bytes needed to represent each DNA sequence
using the GeCo3 compressor with specific conditions.

ID Models Models + GeCo2 Models + derived

HoSa 38,556,039 38,153,358 37,943,933
GaGa 33,758,606 33,548,929 33,444,816
DaRe 11,615,937 11,280,688 11,251,390
OrSa 8,694,790 8,517,947 8,471,715
DrMe 7,475,341 7,414,919 7,392,290
EnIn 5,183,237 5,095,391 5,087,359
ScPo 2,524,818 2,514,188 2,513,085
PlFa 1,928,282 1,912,745 1,912,176
EsCo 1,104,646 1,095,589 1,096,255
HaHi 903,019 898,280 898,145
AeCa 378,226 377,857 377,696
HePy 379,285 374,364 374,975
YeMi 16,901 16,827 16,882
AgPh 10,744 10,727 10,731
BuEb 4,694 4,696 4,698
Total 112,534,565 111,216,505 110,796,146

For the column named “Models,” only the context models and tolerant context

models of GeCo2 were used as network inputs. For “Models + GeCo2,” the result
of GeCo2 mixing was also used as input. With “Models + Derived” the inputs for
the network were the same as “Models” with the derived features added. The
compression modes are the same as in Table 1. Bold indicates the best compres-

sion.

Compressing highly repetitive and large sequences

In this subsection, we show how the reference-free compression
scales with the new mixing using highly repetitive and extensive
sequences, namely, in the gigabyte scale. Four datasets are se-
lected, and the results presented in Table 3.

According to the results from Table 3, GeCo3 compresses the
highly repetitive sequences (DS3 and DS4) with an average of
6.6% compared to GeCo2 using 1.9 times more time. For the
larger sequences of DS1 and DS2, GeCo3 has a mean compres-
sion improvement of 3.2% in the primates, 8.2% in the spruce
(PiAbC), 11.8% for the Virome, and 5.2% for Denisova, with a
2.6 times mean slower execution time. These results show that
the compression of longer repetitive sequences presents higher
compression gains.

Reference-free sequence compression benchmark

In this subsection, we compare GeCo3 with other specialized
reference-free compressors, namely, XM (v3.0) [43], GeCo2 (pre-
viously compared), Jarvis [64], and NAF [67]. As presented in Ta-
ble 3, GeCo3 achieves the best total size in 3 of 5 datasets. In DS3
and DS4, GeCo3 was unable to achieve the best compression,
which was delivered by Jarvis. These types of datasets justify this
performance. Specifically, DS3 and DS4 contain a high number
of identical sequences. These are collections of mitogenomes,
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8 Efficient DNA sequence compression with neural networks

archeal and virus, where the variability is very low, which gives
an advantage to models of extremely repetitive nature. Such
models, also known as weighted stochastic repeat models, are
present in Jarvis, unlike in GeCo3. The reason why we excluded
these models from GeCo is that they fail in scalability because
the RAM increases according to the sequence length. For the
larger datasets, DS1 and DS2, Jarvis was unable to compress the
sequences even with 32 GB of RAM. On the other hand, GeCo3
has constant RAM, which is not affected by the sequence length
but rather only by the mode used.

Comparing GeCo3 against the second-best compressor for
each dataset, the compression gain is 6% (vs GeCo2), 5.8% (vs
GeCo2), −0.8% (vs Jarvis), −3.2% (vs Jarvis), and 1.9% (vs Jarvis)
for DS1, DS2, DS3, DS4, and DS5, respectively. For the individ-
ual sequences in the datasets, GeCo3 compresses more than the
other compressors, except for AgPh, BuEb, Mito, Virus, and Ar-
chaea. Tiny sequences compose the AgPh and BuEb dataset, and
the neural network does not have enough time to learn, while
Mito, Virus, and Archaea have already been mentioned above.

Regarding computational time, GeCo3 is faster than XM per
dataset, spending on the average only 0.6 times the time. Against
GeCo2, it is slower by 2.1 times on average, and compared to
Jarvis, it is 1.1 times slower. NAF is the fastest compressor in
the benchmark. Compared to NAF, GeCo3 is between 12 times
slower for DS5 and 3 times for DS1.

Regarding computational memory, the maximum amount of
RAM used for GeCo2 and GeCo3 was 12.6 GB, Jarvis peaked at
32 GB, XM at 8 GB, and NAF used at most 0.7 GB. Jarvis could
not complete the compression for DS1 and DS2 owing to a lack
of memory. This issue is a limitation that was mentioned ear-
lier. We also note that XM was unable to decompress some of
the sequences. In these cases, the decompressed file has the
correct size, but the sequence does not fully match the origi-
nal file. NAF, GeCo2, and GeCo3 were the only compressors that
have been able to compress all the sequences losslessly, inde-
pendently from the size. The overall results of these compres-
sors show that GeCo3 provides a total compression improve-
ment of 25% and 6% over NAF and GeCo2, respectively.

Compared with general-purpose compressors that achieve
the best compression ratios, such as CMIX and DeepZip, GeCo3
is ∼100 times faster. GeCo3 also has better total compression ra-
tio compared to CMIX (7.7%). We could not obtain enough results
with DeepZip to make a meaningful comparison. The table with
the results can be seen in Supplementary Section 3 (Results for
general purpose compressors).

Reference-based sequence compression benchmark

In this subsection, we benchmark GeCo3 with state-of-the-art
referential compressors. The comparison is done between the
genomes of different species and not for re-sequenced genomes.
Re-sequencing is applied to the same species and, in a general
case, limits the domain of applications; e.g., phylogenomic, phy-
logenetic, or evolutionary analysis.

To run the experiments, we used 4 complete genomes of
closely related species: Homo sapiens (HS), Pan troglodytes (PT),
Gorilla gorilla (GG) and Pongo abelii (PA). The compression for PT,
GG, and PA was done using HS as the reference. HS was com-
pressed using GG as a reference. Each chromosome was paired
with the corresponding one of the other species. Due to the un-
availability of chromosome Y for GG and PA, comparisons that
involved these chromosomes were not made. The compressors
used in this benchmark are GeCo3, GeCo2, iDoComp [70], GDC2
[71], and HRCM [80]. The FASTA files were filtered such that the

resulting file only contained the symbols {A, C, G, T}, and a tiny
header line. HRCM needs the line size to be limited; therefore,
line breaks were added for the files under its compression. How-
ever, this approach prevents a direct comparison of total com-
pressed size and time, which we solved using the compression
ratio percentage (output size ÷ input size × 100) and the speed
in kilobytes per second (input size ÷ 1,000 ÷ seconds spent). For
GeCo2 and GeCo3, 2 approaches of referential compression are
considered. One approach is based on conditional compression,
where a hybrid of both reference and target models is used. The
other approach, called the relative approach, uses exclusively
models loaded from the reference sequence. Both types of com-
pression assume causality, which means that with the respec-
tive reference sequence, the decompressor is able to decompress
without loss. The reason why we benchmark these 2 approaches
is that there are many sequence analysis applications for both
approaches.

The results are presented in Table 4, showing the total
compression ratio and speed for the 4 comparisons. The to-
tal compression ratio is the total output size ÷ total input size
× 100 and the total speed is total input size ÷ 1,000 ÷ to-
tal seconds spent. The results show GeCo3 achieving the best
compression ratio, in both relative and conditional compression.
The latter shows improved compression capabilities, with mean
improvements of 11%, 35%, 38%, and 50% over GeCo2, iDoComp,
GDC2, and HRCM, respectively. This comes at a cost of being
the slowest. The mean increase in time over GeCo2, iDoComp,
GDC2, and HRCM is 1.7, 9.8, 2.6, and 7.3 times, respectively. Com-
pared with GeCo2, the total improvement for PT, PA, GG, and HS
is 12.4%, 11.7%, 10.8%, and 10.1%. The total improvements are
similar to the mean improvement per chromosome. The com-
putational RAM of GeCo3 is similar to GeCo2. The complete re-
sults per chromosome are shown in Supplementary Section 4
(Complete results for referential compression). These show that
in the majority of pairs GeCo3 offers better compression.

In Table S7 of Supplementary Section 4, we show the results
for compression of a resequenced genome. In this dataset HRCM
achieves the best results, with GeCo3 trailing in both speed (42
times) and ratio (−363%). While these results show that GeCo2
and GeCo3 are not suitable for compressing this type of dataset,
the substantial improvement over GeCo2 (20%) hints at the pos-
sibility that the new mixer might be useful when integrated into
a different type of compressor.

Estimating the cost for long-term storage

To estimate the cost of long-term storage, we developed a
model with the following simplifying assumptions: ≥2 copies
are stored; compression is done once and the result is copied
to the different backup media; 1 CPU core is at 100% utilization
during compression; the cooling and transfer costs are ignored;
the computing platform is idle when not compressing;

and no human operator is waiting for the operations to ter-
minate.

Given the assumptions we now show the cost model:

Totalcost = Processingcost + Storagecost

Processingcost = Processingtime × Power × Energyprice

Storagecost = Ncopies × Size × Sizeprice,

where Processingtime is the total time to compress and decom-
press the sequence.
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value to calculate the power (watts) that a system uses during
processing. The mean result for all systems is 34 W. The mean
cost of electricity in the world is €0.12 per kWh [94]. The mean
storage cost per GB for hard disk drives is€0.04 [95] and for solid-
state drives is €0.13 [96].

Assuming €0.13 per GB and 3 copies, the costs for DS1 are
€11.86,€9.54, and€9.5 for NAF, GeCo2, and GeCo3, respectively.
Using €0.04 per GB and 3 copies, GeCo2 is more cost-effective at
€3.12, followed by GeCo3 (€3.46) and NAF (€3.74). In Fig. 3, we
show the costs of storing each sequence in DS1 and DS2 with
GeCo3 relative to NAF and GeCo2. As hinted by Fig. 2, we also
show that the cost of compressing the Denisova sequence is im-
proved when using 32 instead of 64 hidden nodes. The reduction
of hidden nodes leads to a negligible decrease in compression
ratio (5.2% to 4.9% vs GeCo2) but a substantial time decrease (3.1
to 2.4 times vs GeCo2).

These results use the average costs, though given the vari-
ability of electricity prices, CPU power efficiency and storage
costs, the analysis would need to be done for each specific case.

Discussion

In essence, this article considers the GeCo2 as a base, collecting
its specific DNA models, and augments the mixture of models by
using a neural network. The primary outcome is a new efficient
tool, GeCo3. The results show a compression improvement at
the cost of longer execution times and equivalent RAM.

For the evaluated datasets, this approach delivers the best
results for the most significant and the highest repetitive se-
quences. One of the reasons for this is that for small sequences,
the network spends a significant percentage of time adjusting.
Moreover, we show the importance of selecting and deriving the
appropriate network inputs as well as the influence of the num-
ber of hidden nodes. These can be used to increase compression
at the cost of higher execution times.

Compared to other state-of-the-art compressors, this ap-
proach is typically slower but achieves better compression ra-
tios in both reference-free and referential compression. Never-
theless, the compression times can be reduced by decreasing the
number of hidden nodes while still improving the ratio.

The GeCo3 reference-free results show an improvement of
25% and 6% over NAF and GeCo2, respectively. In reference-
based compression, GeCo3 is able to provide compression gains
of 11%, 35%, 38%, and 50% over GeCo2, iDoComp, GDC2, and
HRCM, respectively.

The time trade-off and the symmetry of compression-
decompression establish GeCo3 as an inappropriate tool for on-
the-fly decompression. Tools such as NAF [67] are efficient for
this purpose because the computational decompression speed
is very high, which for industrial use is mandatory. The purposes
of tools such as GeCo3 are in another domain, namely, long-term
storage and data analysis.

In particular, the results suggest that long-term storage of
extensive databases, e.g., as proposed in [97], would be a good fit
for GeCo3.

The steady rise of analysis tools based on DNA sequence
compression is showing its potential, with increasing applica-
tions and surprising results. Some of the applications are the
estimation of the Kolmogorov complexity of genomes [98], rear-
rangement detection [99], sequence clustering [100], measure-
ment of distances and phylogenetic tree computation [101], and
metagenomics [12].
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Figure 3: Relative ratio and cost of GeCo3 compared with NAF and GeCo2 for sequences in DS1 and DS2. Higher relative ratios represent greater compression improve-

ments by GeCo3. The cost is calculated assuming€0.13 per GB and the storage of 3 copies. The red dashed line shows the cost threshold. Cost points above the line
indicate that GeCo3 is more expensive. Denisova32h represents the results of running the Denisova sequence with 32 instead of 64 hidden nodes.

The main advantage of using efficient (lossless)
compression-based data analysis is avoidance of overesti-
mation. Many analysis algorithms include multiple thresholds
that use a consensus value for what is considered balanced
and consistent, leaving space for overestimation. The problem
is that using a consensus or average parameter for a specific
analysis may overtake the limit of the estimation balance.
Because data compression needs the appropriate decompressor
to ensure the full recovery of the data, the compressor acts
under a boundary that ensures that the limit is never surpassed
(Kolmogorov complexity). This property is critical in data anal-
ysis because the data in use may be vital and sensitive, mainly
when multiple models are used. Without a channel information
limit and an efficient mixing model, the information that is
embedded in the probability estimation of each model transits
to the model choice.

The mixing method used to achieve these results assumes
only that probabilities for the symbols are available. Because
of this, it can be easily exported to other compressors or
compressed-based data analysis tools that use multiple mod-
els. GeCo3 shows what compression improvements and execu-
tion times can be expected when using neural networks for the
mixture of experts in DNA sequence compression.

This article highlights the importance of expert mixing. Mix-
ing has applications in all areas where outcomes have uncer-
tainty and many expert opinions are available. This ranges from
compression to climate modeling and, in the future, possibly the
creation of legislation. While more traditional methods, such as
weighted majority voting, are more efficient and can achieve ac-
curate results, neural networks show promising results. With
the development of specialized hardware instructions and data
types to be included in general-purpose CPUs [102, 103], neural
networks should become an even more attractive option for ex-
pert mixing.

One of the possible reasons this approach has higher com-
pression than GeCo2 is due to the mixing output not being con-
strained by the inputs. By comparing the histograms in Fig. 4 for
the sequences EnIn and OrSa (2 of the sequences with higher
gains), we can verify that GeCo3 appears to correct the mod-
els’ probabilities >0.8 to probabilities closer to 0.99. Therefore,

in some way, it is betting more if ≥4 in 5 chances are accom-
plished. Referential histograms are presented in Supplementary
Section 7 (Referential histograms); these are similar to the ones
presented here.

Another improvement is due to the higher percentage of
symbols inferred correctly. For dataset 5 (DS5), GeCo3 has a
mean improvement of 1.5% in the number of symbols in-
ferred correctly, where only the smallest sequence has a lower
hit rate than GeCo2. Supplementary Section 2 (Percentage of
symbols guessed correctly) presents the table of hit rate per
sequence.

For referential compression, we show a complexity profile
in Fig. 5. This profile reveals that GeCo3 consistently outputs a
lower number of bits per symbol. The gains appear to be larger
in places of higher sequence complexity, i.e., in the higher bits
per symbol (Bps) regions. These regions are typically where rapid
switching between smaller models should occur, suggesting that
the neural network mixer can adapt faster than the approach
used in GeCo2. Supplementary Section 5 (Referential complex-
ity profiles) presents 2 additional complexity profiles with simi-
lar nature.

Finally, the training is maintained during the entire sequence
because we found that stopping early leads to worse outcomes.
This characteristic might be due to the advantages of over-fitting
for non-stationary time series reported by Kim et al. [104].

Additional improvements on the compression of large FASTQ
data, e.g., from the Virome and Denisova datasets, can be
achieved with complementary techniques based on reorder-
ing or metagenomic composition identification. Specifically, the
reads of these datasets can be split according to their com-
position using fast assembly-free and alignment-free methods,
namely, extensions of Read-SpaM [105], to take advantage of
the similar read proximity to improve the compression substan-
tially.

Whichever the technology and application, the core method
that we provide here, namely, for combining specific DNA mod-
els with neural networks, enables a substantial improvement in
the precision of DNA sequence compression–based data analy-
sis tools and provides a significant reduction of storage require-
ments associated with DNA sequences.
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Figure 4: Comparison of histograms using the EnIn (Entamoeba invadens) and OrSa (Oryza sativa) genome sequences and GeCo2 and GeCo3 as data compressors.

Figure 5: Complexity profile using the smoothed number of bits per symbol (Bps) of GeCo2 subtracted by GeCo3 Bps. The Bps were obtained by referential compression
of PT Y (Chromosome Y from Pan troglodytes) with the corresponding Homo sapiens chromosome, with the same parameters as in Table 4. Regions where the line rises
above zero indicate that GeCo3 compresses more than GeCo2.

Availability of Source Code and Requirements

Project name: GeCo3
Project home page: http://github.com/cobilab/geco3
RRID:SCR 018877
biotools: geco3
Operating system(s): Platform independent
Programming language: C
Other requirements: C compiler (e.g., gcc)
License: GNU GPL

Availability of Supporting Data and Materials

The supplementary material includes the information to install
the benchmark compressors and download and compress the
data.
Additional supporting data and materials are available at the Gi-
gaScience database (GigaDB) [106].

Additional Files

Supplementary Section 1. Stretching function plot
Supplementary Figure S1. Stretching function applied to the
models’ probabilities.
Supplementary Section 2. Percentage of symbols guessed
correctly

Supplementary Table S1. Percentage of symbols guessed cor-
rectly by GeCo2 and GeCo3 for all sequences in dataset four
(DS4). The improvement percentage of GeCo3 over GeCo2 is the
diff.
Supplementary Section 3. Results for general purpose compres-
sors
Supplementary Table S2. Number of bytes and time needed to
represent a DNA sequence for CMIX, DeepZip and ZPAQ. CMIX
and DeepZip were run with the default configuration and ZPAQ
was run with level 5. Some tests were not run (NR) due to time
constraints and DeepZip forced the computer to reboot (SF) with
some sequences.
Supplementary Section 4. Complete results for referential com-
pression
Supplementary Table S3. Pairwise referential compression ratio
and speed in kB/s for PT sequence using HS as reference. GeCo3
uses 64 hidden nodes and has 0.03 learning rate. The configura-
tion for GeCo2-r and GeCo3-r is “-rm 20:500:1:35:0.95/3:100:0.95
-rm 13:200:1:1:0.95/0:0:0 -rm 10:10:0:0:0.95/0:0:0”. For GeCo2-
h and GeCo3-h the following models where added “-tm
4:1:0:1:0.9/0:0:0 -tm 17:100:1:10:0.95/2:20:0.95”. iDoComp, GDC2
and HRCM use the default configuration.
Supplementary Table S4. Pairwise referential com-
pression ratio and speed in kB/s for PA sequence
using HS as reference. Same configurations as in
Table S3.

http://github.com/cobilab/geco3
https://scicrunch.org/resolver/RRID:SCR_018877


12 Efficient DNA sequence compression with neural networks

Supplementary Table S5. Pairwise referential compression ratio
and speed in kB/s for GG sequence using HS as reference. Same
configurations as in Table S3.
Supplementary Table S6. Pairwise referential compression ratio
and speed in kB/s for HS sequence using GG as reference. Same
configurations as in Table S3.
Supplementary Table S7. Total referential compression ratio
and speed in kB/s for a re-sequenced Korean human genome.
GeCo3 uses 64 hidden nodes and has 0.03 learning rate.
The configuration for GeCo2-r and GeCo3-r (relative approach)
is “-rm 20:500:1:35:0.95/3:100:0.95 -rm 13:200:1:1:0.95/0:0:0 -rm
10:10:0:0:0.95/0:0:0”. For GeCo2-h and GeCo3-h (conditional ap-
proach) the following models where added “-tm 4:1:0:1:0.9/0:0:0
-tm 17:100:1:10:0.95/2:20:0.95”. iDoComp, GDC2 and HRCM use
the default configuration.
Supplementary Section 5. Referential complexity
profiles
Supplementary Figure S2. Smoothed number of bits per sym-
bol (Bps) of GeCo2 subtracted by GeCo3 Bps. The Bps were ob-
tained by referential compression of PT 21 and GG 22, with the
same parameters as in Table S3. Places where the line rises
above zero indicate that GeCo3 has better compression than
GeCo2.
Supplementary Section 6. Referential hidden nodes effect
Supplementary Figure S3. Effect of the number of hidden nodes
in reference compressed sequence size and time.
Supplementary Section 7. Referential histograms
Supplementary Figure S4. Histograms for GeCo2 and GeCo3 with
the vertical axis in a log 10 scale.
Supplementary Section 8. Reproducibility

Abbreviations
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access memory; ReLu: rectified linear unit.
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15. Toppinen M, Pratas D, Väisänen E, et al. The landscape of
persistent human DNA viruses in femoral bone. Forensic
Sci Int Genet 2020;48:102353.

16. Duggan AT, Perdomo MF, Piombino-Mascali D, et al. 17th
century variola virus reveals the recent history of smallpox.
Curr Biol 2016;26(24):3407–12.

17. Teixeira H, Berg T, Uusitalo L, et al. A catalogue of marine
biodiversity indicators. Front Mar Sci 2016;3:207.

18. Cowan DA, Ramond JB, Makhalanyane TP, et al. Metage-
nomics of extreme environments. Curr Opin Microbiol
2015;25:97–102.

19. Rieseberg LH. Chromosomal rearrangements and specia-
tion. Trends Ecology Evol 2001;16(7):351–58.

20. Roeder GS, Fink GR. DNA rearrangements associated with a
transposable element in yeast. Cell 1980;21(1):239–49.

21. Sajantila A. Editors’ Pick: Contamination has always been
the issue!. Investig Genet 2014;5:106.

22. Harris K. Evidence for recent, population-specific evolu-
tion of the human mutation rate. Proc Natl Acad Sci U S
A 2015;112(11):3439–44.

23. Jeong C, Di Rienzo A. Adaptations to local environments
in modern human populations. Curr Opin Genet Dev
2014;29:1–8.

24. Beres S, Kachroo P, Nasser W, et al. Transcriptome remod-
eling contributes to epidemic disease caused by the human
pathogen Streptococcus pyogenes. mBio 2016:00403–16.

http://mattmahoney.net/dc/dce.html


Silva et al. 13

25. Fumagalli M, Sironi M. Human genome variability, natu-
ral selection and infectious diseases. Curr Opin Immunol
2014;30:9–16.

26. Long H, Sung W, Kucukyildirim S, et al. Evolutionary deter-
minants of genome-wide nucleotide composition. Nat Ecol
Evol 2018;2(2):237–40.

27. Golan A. Foundations of Info-Metrics: Modeling and Infer-
ence with Imperfect Information. Oxford University Press;
2017.

28. Hernaez M, Pavlichin D, Weissman T, et al. Genomic data
compression. Annu Rev Biomed Data Sci 2019;2:19–37.

29. Hosseini M, Pratas D, Pinho AJ. A survey on data com-
pression methods for biological sequences. Information
2016;7(4):56.

30. Grumbach S, Tahi F. Compression of DNA sequences. In:
DCC ’93: Data Compression Conference, Snowbird, UT.
1993:340–50.

31. Grumbach S, Tahi F. A new challenge for compres-
sion algorithms: genetic sequences. Inf Process Manag
1994;30(6):875–86.

32. Rivals E, Delahaye JP, Dauchet M, et al. A guaranteed com-
pression scheme for repetitive DNA sequences. In: DCC ’96:
Data Compression Conference, Snowbird, UT. 1996:453.

33. Loewenstern D, Yianilos PN. Significantly lower entropy
estimates for natural DNA sequences. J Comput Biol
1999;6(1):125–42.

34. Allison L, Edgoose T, Dix TI. Compression of strings with
approximate repeats. Proc Int Conf Intell Syst Mol Biol
1998;6:8–16.

35. Apostolico A, Lonardi S. Compression of biological se-
quences by greedy off-line textual substitution. In: DCC
’00: Proceedings of the Conference on Data Compression.
Washington, DC: IEEE; 2000:143–52.

36. Chen X, Li M, Ma B, Tromp J. DNACompress: Fast and effec-
tive DNA sequence compression. 2002;18(12):1696–8.

37. Matsumoto T, Sadakane K, Imai H. Biological sequence
compression algorithms. In: Dunker AK, Konagaya A,
Miyano S , et al., eds. Genome Informatics 2000: Proc. of
the 11th Workshop, Tokyo. 2000:43–52.

38. Tabus I, Korodi G, Rissanen J. DNA sequence compression
using the normalized maximum likelihood model for dis-
crete regression. In: DCC ’03: Proceedings of the Confer-
ence on Data Compression. Washington, DC: IEEE; 2003:
253–62.

39. Korodi G, Tabus I. An efficient normalized maximum likeli-
hood algorithm for DNA sequence compression. ACM Trans
Inf Syst 2005;23(1):3–34.

40. Cherniavsky N, Ladner R. Grammar-based compression of
DNA sequences. University of Washington; 2004, UW CSE
Tech. Rep. 2007-05-02.

41. Manzini G, Rastero M. A simple and fast DNA compressor.
J Softw Pract Exp 2004;34:1397–411.

42. Behzadi B, Le Fessant F. DNA compression challenge revis-
ited: A dynamic programming approach. In: Apostolico A,
Crochemore M, Park K , eds. Combinatorial Pattern Match-
ing: Proc. of CPM-2005. Berlin, Heidelberg: Springer; 2005,
doi.org/10.1007/11496656 17.

43. Cao MD, Dix TI, Allison L, et al. A simple statistical al-
gorithm for biological sequence compression. In: 2007
Data Compression Conference (DCC’07), Snowbird, UT.
IEEE;2007:43–52.

44. Vey G. Differential direct coding: a compression algorithm
for nucleotide sequence data. Database (Oxford) 2009;2009,
doi:10.1093/database/bap013.

45. Mishra KN, Aaggarwal A, Abdelhadi E, et al. An efficient hor-
izontal and vertical method for online dna sequence com-
pression. Int J Comput Appl 2010;3(1):39–46.

46. Rajeswari PR, Apparao A. GENBIT Compress-Algorithm for
repetitive and non repetitive DNA sequences. Int J Comput
Sci Inf Technol 2010;2:25–9.

47. Gupta A, Agarwal S. A novel approach for compressing DNA
sequences using semi-statistical compressor. Int J Comput
Appl 2011;33(3):245–51.

48. Zhu Z, Zhou J, Ji Z, et al. DNA sequence compression using
adaptive particle swarm optimization-based memetic algo-
rithm. IEEE Trans Evol Comput 2011;15(5):643–58.

49. Pinho AJ, Pratas D, Ferreira PJSG. Bacteria DNA sequence
compression using a mixture of finite-context models. In:
Proc. of the IEEE Workshop on Statistical Signal Processing,
Nice, France. 2011:125–28.

50. Pinho AJ, Ferreira PJSG, Neves AJR, et al. On the rep-
resentability of complete genomes by multiple compet-
ing finite-context (Markov) models. PLoS One 2011;6(6):
e21588.

51. Roy S, Khatua S, Roy S et al. An efficient biological se-
quence compression technique using lut and repeat in the
sequence. arXiv 2012:1209.5905.

52. Satyanvesh D, Balleda K, Padyana A, et al. GenCodex - A
novel algorithm for compressing DNA sequences on multi-
cores and GPUs. In: Proc. IEEE, 19th International Conf.
on High Performance Computing (HiPC), Pune, India. IEEE;
2012.

53. Bose T, Mohammed MH, Dutta A, et al. BIND–An algorithm
for loss-less compression of nucleotide sequence data. J
Biosci 2012;37(4):785–9.

54. Li P, Wang S, Kim J, et al. DNA-COMPACT: DNA compression
based on a pattern-aware contextual modeling technique
2013;8(11):e80377.

55. Pratas D, Pinho AJ. Exploring deep Markov models in ge-
nomic data compression using sequence pre-analysis. In:
22nd European Signal Processing Conference (EUSIPCO),
Lisbon. IEEE; 2014:2395–9.

56. Sardaraz M, Tahir M, Ikram AA, et al. SeqCompress: An
algorithm for biological sequence compression. Genomics
2014;104(4):225–8.

57. Guo H, Chen M, Liu X, et al. Genome compression based
on Hilbert space filling curve. In: Proceedings of the 3rd In-
ternational Conference on Management, Education, Infor-
mation and Control (MEICI 2015), Shenyang, China. 2015:
29–31.

58. Xie X, Zhou S, Guan J. CoGI: Towards compressing genomes
as an imag. IEEE/ACM Trans Comput Biol Bioinform
2015;12(6):1275–85.

59. Chen M, Shao J, Jia X. Genome sequence compression based
on optimized context weighting. Genet Mol Res 2017;16(2),
doi:10.4238/gmr16026784.

60. Bakr NS, Sharawi AA. Improve the compression of bacterial
DNA sequence. In: 2017 13th International Computer Engi-
neering Conference (ICENCO). IEEE; 2017:286–90.

61. Mansouri D, Yuan X. One-Bit DNA Compression Algorithm.
In: Cheng L, Leung A, Ozawa S , eds. International Con-
ference on Neural Information Processing. Cham: Springer;
2018:378–86.

62. Wang R, Bai Y, Chu YS, et al. DeepDNA: A hybrid con-
volutional and recurrent neural network for compress-
ing human mitochondrial genomes. In: 2018 IEEE Inter-
national Conference on Bioinformatics and Biomedicine
(BIBM). IEEE; 2018:270–4.



14 Efficient DNA sequence compression with neural networks

63. Wang R, Zang T, Wang Y. Human mitochondrial genome
compression using machine learning techniques. Hum Ge-
nomics 2019;13(1):49.

64. Pratas D, Hosseini M, Silva JM, et al. A reference-free loss-
less compression algorithm for DNA sequences using a
competitive prediction of two classes of weighted models.
Entropy 2019;21(11):1074.

65. Mohammed MH, Dutta A, Bose T, et al. DELIMINATE—
A fast and efficient method for loss-less compression
of genomic sequences: sequence analysis. Bioinformatics
2012;28(19):2527–9.

66. Pinho AJ, Pratas D. MFCompress: A compression
tool for FASTA and multi-FASTA data. Bioinformatics
2014;30(1):117–8.

67. Kryukov K, Ueda MT, Nakagawa S, et al. Nucleotide
Archival Format (NAF) enables efficient lossless reference-
free compression of DNA sequences. Bioinformatics
2019;35(19):3826–8.

68. Christley S, Lu Y, Li C, et al. Human genomes as email at-
tachments. Bioinformatics 2009;25(2):274–5.

69. Brandon MC, Wallace DC, Baldi P. Data structures and com-
pression algorithms for genomic sequence data. Bioinfor-
matics 2009;25(14):1731–8.

70. Ochoa I, Hernaez M, Weissman T. iDoComp: A com-
pression scheme for assembled genomes. Bioinformatics
2015;31(5):626–33.

71. Deorowicz S, Danek A, Niemiec M. GDC 2: Compres-
sion of large collections of genomes. Sci Rep 2015;5:
11565.

72. Kuruppu S, Puglisi SJ, Zobel J. Relative Lempel-Ziv
compression of genomes for large-scale storage and
retrieval. In: International Symposium on String Pro-
cessing and Information Retrieval. Springer; 2010:
201–206.

73. Wang C, Zhang D. A novel compression tool for efficient
storage of genome resequencing data. Nucleic Acids Res
2011;39(7):e45.

74. Kuruppu S, Puglisi SJ, Zobel J. Optimized relative Lempel-
Ziv compression of genomes. In: Proceedings of the Thirty-
Fourth Australasian Computer Science Conference-Volume
113. 2011:91–8.

75. Deorowicz S, Grabowski S. Robust relative compres-
sion of genomes with random access. Bioinformatics
2011;27(21):2979–86.

76. Pinho AJ, Pratas D, Garcia SP. GReEn: A tool for efficient
compression of genome resequencing data. Nucleic Acids
Res 2012;40(4):e27.

77. Wandelt S, Leser U. FRESCO: Referential compression of
highly similar sequences. IEEE/ACM Trans Comput Biol
Bioinform 2013;10(5):1275–88.

78. Liu Y, Peng H, Wong L, et al. High-speed and high-
ratio referential genome compression. Bioinformatics
2017;33(21):3364–72.

79. Fan W, Dai W, Li Y, et al. Complementary contextual mod-
els with FM-Index for DNA compression. In: 2017 Data Com-
pression Conference (DCC). IEEE; 2017:82–91.

80. Yao H, Ji Y, Li K, et al. HRCM: An efficient hybrid referential
compression method for genomic big data. BioMed Res Int
2019;2019, doi:10.1155/2019/3108950.

81. Byron K. CMIX. http://www.byronknoll.com/cmix.html. Ac-
cessed in 2020-01-23.

82. Goyal M, Tatwawadi K, Chandak S, et al. DeepZip: Lossless
data compression using recurrent neural networks. arXiv
2018:1811.08162.

83. Absardi ZN, Javidan R. A fast reference-free genome com-
pression using deep neural networks. In: 2019 Big Data,
Knowledge and Control Systems Engineering (BdKCSE),
Sofia, Bulgaria. IEEE; 2019:1–7.

84. Robbins H, Monro S. A stochastic approximation method.
Ann Math Stat 1951;22(3):400–7.

85. Hiransha M, Gopalakrishnan EA, Menon VK, et al. NSE stock
market prediction using deep-learning models. Procedia
Comput Sci 2018;132:1351–62.

86. Glorot X, Bengio Y. Understanding the difficulty of train-
ing deep feedforward neural networks. In: Proceedings of
the Thirteenth International Conference on Artificial Intel-
ligence and Statistics. 2010:249–56.

87. LeCun YA, Bottou L, Orr GB, et al. Efficient backprop.
In: Neural Networks: Tricks of the trade. Springer; 2012:
9–48.
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