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Abstract: The present study focuses on the etching conditions and mechanism of MgO-Al2O3-SiO2

glass-ceramic (MAS) in hydrofluoric acid (HF). The results show that the amorphous phase has 218
times higher etching rate than pure cordierite crystal at room temperature. In addition, the activation
energies of cordierite and amorphous phases in the HF solution are 52.5 and 30.6 kJ/mol, respectively.
The time (tad) taken for complete dissolution of the amorphous phase depends on the HF concentration
(CHF). Based on the etching experiments, a new model is established and refined to assess the tad
evolution. In addition, a highly crystalline cordierite phase, with the high specific surface area
(59.4 m2·g−1) and mesoporous structure, has been obtained by HF etching. This paper presents
novel insights into the etching chemistry and opens up avenues for further research in the area of
cordierite-based catalytic ceramics.
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1. Introduction

Cordierite ceramic is an excellent choice as a catalytic converter substrate for automobile exhaust
purification due to its outstanding properties such as low thermal expansion coefficient, high chemical
durability, and desirable refractories [1–3]. However, the relatively lower specific surface area of
conventionally sintered cordierite ceramic results in a lower catalytic efficiency [4]. As a counter
strategy, the cordierite ceramics are generally deposited by an active coating prior to the depositing
of the catalytic layer [5,6]. In our previous research, a pine-like dendritic structure cordierite, as the
main crystal phase, has been prepared based on MgO-Al2O3-SiO2 glass-ceramic (MAS), and the size of
crystal gap in the dendritic cordierite is nanoscale [7]. He et al. enlarges the surface area of porous
cordierite ceramic prepared by the compression molding method to 19.47 m2·g−1 by acid treatment [8].

With a well-known etching effect on silicate glasses [9–14], HF can be a feasible candidate to
dissolve the amorphous phase with silicon-oxygen tetrahedron, the same as for the cordierite phase in
MAS as well. Thus, in order to maximize the erosion degree of the amorphous phase and minimize
the cordierite phase by HF as far as possible, it is necessary to study the etching conditions of MAS
in HF so as to control the etching process, improve the microstructure of the crystallization phase,
and to expand the application fields of glass-ceramics. However, few studies have been reported on
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either the etching conditions or mechanism of MAS in the HF solution. Lee et al. revealed that the
microstructure and ration of the crystallinity of the cordierite phase could be controlled by changing
the HF-etching conditions followed by a heating treatment process [15].

For precisely controlling the chemical etching process, the main factors affecting the etch rate
and etch time are investigated. The origin of the etch rates gap between the two phases has also been
discussed. Moreover, the relationship between the tad and CHF has been studied and a refined model
has been established. We believe that it may be a good idea to prepare some glass ceramics with
a higher specific surface area.

2. Materials and Methods

The 20MgO-20Al2O3-54SiO2-3K2O-1Fe2O3-2TiO2 (in molar %) glass was prepared from analytical
purity (AR) chemical oxide and carbonate by melting at 1580 ◦C for 2 h in an alumina crucible in
an electric furnace. The re-melted glass (10 cm × 10 cm × 1 cm) was cast on a metal block and
placed in an annealing furnace, which was preheated to 650 ◦C. Then, the furnace was cooled to
500 ◦C (cooling rate 1 K/min), switched off, and cooled to room temperature. The glass samples were
nucleated at 798 ◦C for 4 h, and crystallized at 945 ◦C for 4 h to achieve the MAS, respectively. During
this process, the nucleations have been precipitated first when the nucleations are stable, the atoms
in the melt migrate to the interface, making the crystals grow. Crystallized samples were grinded
to powder with a particle size less than 75 µm and stored in the drying oven. For facilitating the
comparison of etch rates between the amorphous phase and residual cordierite phase, the samples
selected were the initial glass (made by melting) and pure cordierite crystal (HanYe Refractory,
Shandong, China), respectively.

HF solutions with different concentrations are diluted by HF (40% w/w) with a purity grade of
AR. All concentrations mentioned are in molar per liter (mol/L). Several batch experiments of CHF
and time is designed to achieve the etch rate and tad (as tabulated in Table 1). In this measurement,
the etch time interval is 5 min. In each batch, 100 mg crystallized powder sample was added into
100 mL HF solution in a plastic tube to ensure the HF is in extreme excess so that the HF solution
concentration changes are negligible. Substances in tubes are centrifuged for 5 min with a rotating
speed of 3000 revolutions per minute. Achieved powder is dried in an oven at 80 ◦C.

Table 1. Etching conditions of MAS in HF solution

CHF (mol/L) Etch Time (min)

1 5–200
2 5–200
3 5–200
5 5–200
8 5–200

10 5–200
15 5–200
20 5–200

The crystal structure of the samples were determined by X-ray diffraction (XRD, D8 Advance
X, Bruker, Aachen, Germany). The XRD analysis was performed at a scanning speed of 2◦/min,
with a 0.01◦ step size, and Cu Kα radiations in the 2θ range of 5◦ to 70◦. The microstructure of
the samples were recorded by using scanning electron microscopy (SEM, MIRA3, TESCAN, Brno,
Czech Republic). The specific surface area of the samples were measured by Brunauer-Emmett-Teller
(BET, BK112T, Beijing JWGB Sci. Tech. Co., Ltd., Beijing, China). The mass loss (∆m) was measured by
an analytical balance, with an accuracy of ±0.1 mg. The relative content of the crystalline cordierite
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phase was obtained by dividing the mass of etched samples with the initial sample mass in a given time
(t). The etch rate (r) can be extracted from the slope of the ∆m-time curve and depends on CHF [16].

r =
dm

S · dt
= k · Cn

HF (1)

where k (s−1) corresponds to the rate constant of the reaction, n represents the order of reaction and
S refers to the surface area. As the value of the surface area is not constant in such measurements,
it cannot be used to calculate exact etching. However, based on the initial BET surface area values,
the surface area of the initial glass sample (1 m2/g) and the single phase cordierite (60 m2/g) has
a value of 0.1 m2 and 6 m2, respectively, in the etching rate counts.

3. Results and Discussion

3.1. Phase and Microstructure Analysis

Figure 1 presents the XRD pattern of the as-prepared MAS, which exhibits the hexagonal
α-cordierite (PDF#48-1600), which is the dominant phase with the space group of D6h

2 = P6/mcc.
The ratio of the amorphous versus crystalized phase can be approximated to 7:13. Additionally,
low-intensity spinel phase peaks, at 2θ = 20◦ and 32◦, can be discerned due to the presence of TiO2,
which has been added as a nucleation agent in the raw material. The spinals always precipitate along
with the main crystalline phase in MgO-Al2O3-SiO2 glass ceramics. Escobar J. et al. reported that the
addition of TiO2 could inhibit the formation of the spinel-like species [17,18]. Therefore, a negligible
amount of the spinel phase has been detected by XRD. Figure 2 shows the SEM images of MAS
samples with different etching conditions. In the glass-ceramics, cordierite crystals are surrounded
by an amorphous phase. Figure 2a presents the typical dendritic structure of MAS after etching for
10 s in 5 mol/L HF solution. Figure 2b indicates the over-etching of samples in 20 mol/L HF solution,
which was carried out for 30 min. The SEM images indicate that optimal etching time should be
adopted to avoid microstructural degradation.
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3.2. Etching Process Analysis

The etching mechanism was further investigated by establishing a relationship between etching
time and the mass loss (∆m) of MAS in 1 mol/L HF; the results are shown in Figure 3. The change
in the slope of the curve indicates that the etching rate was not constant and decreased with time.
In addition, the dissolution of glass-ceramic in HF can be divided into three regions: (1) The etching
rate remained constant from 0 to 55 min, (2) the etching rate got reduced due to the dissolution of
crystalline phases from 55 to 120 min, and (3) the etching rate attained a lower but constant value after
120 min due to the complete consumption of the amorphous phases. One should note that the gradual
dissolution of the amorphous phase enhanced the exposure of the cordierites structure, which resulted
in a lower etching rate in the second and third regions.
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One should note that, despite the similar composition, the etching rate of crystalline (rc) and
amorphous phases (ra) in HF solutions are different. The first and third regions of the mass-loss plot
can be fitted with linear curves, which indicates the complex nature of glass ceramic reactions in HF
solutions. According to Equation (1), ra and rc can be obtained by dividing the slope of fitted lines by
the specific surface area. In this measurement, ra is 218 times faster than rc at room temperature.

To investigate the origin of divergence in etching rates, the etching rates of the cordierite phase
and initial glass phase, at different temperatures, are shown in the inset of Figure 4. The etching rates
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have shown a direct relationship with temperature. The rate constant (k) can be expressed as a function
of the reciprocal of temperature according to Arrhenius equation:

k = A · exp(− Ea
RT

) (2)

where Ea refers to the activation energy, R = 8.314 J·mol−1·K−1 represents the molar gas constant,
T corresponds to the thermodynamic temperature, and A refers to the pre-exponential factor.
Equation (3) can be deduced from Equations (1) and (2):

ln r = − Ea
RT

+ ln A + n · ln CHF (3)

where the total of lnA and n·lnCHF is a constant.
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The chemical reaction rate is closely related to the activation energy of the reactants. Figure 4
presents the lnr vs. 1000/T curves. The activation energies of the cordierite and initial glass are 52.5
and 30.6 kJ/mol, respectively. It has been reported that the activation energy of vitreous SiO2 is about
30–32 kJ/mol [19]. Based on the activation energy, the reaction between the cordierite phase and HF is
harder than the reaction between HF and the initial amorphous phase.

The cordierite crystal structure is mainly composed of [SiO4] tetrahedrons, [AlO4] tetrahedrons,
and [MgO6] octahedrons, which are shown in Figure 5a. In the hexagonal α-cordierite, the [AlO4]
occupies two random positions of the hexagonal rings and the remaining positions are occupied
by [SiO4]. The hexagonal rings are connected by [AlO4] and [MgO6] to form a stable cordierite
structure [20]. In the hexagonal α-cordierite, Mg2+ ions exist in the octahedral gaps and the
coordination number is six. In the cordierite, the Mg–O bonds are covalent bonds [21,22]. However,
the connection of Mg2+ ions is quite different in the amorphous phase (as shown in Figure 5b).
In the amorphous phase, Mg2+ ions break up the SiO2 network and Si atoms are induced, which are
bonded with less than four bridging oxygen atoms. The non-bridged oxygen atoms are terminated
by Mg2+ ions and the silicon bonded to those oxygen atoms etched at a faster rate, similar to Si-F
units. The two newly generated non-bridged oxygen atoms are linked by Mg2+ ions that resemble
ionic bonds [23], which are weaker than the covalent bonds in the cordierite. Therefore, the etching
rate of the amorphous phase is higher than the cordierite phase.
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3.3. Factors Affecting tad

It is crucial to control the reaction process and etching rate to reduce the erosion of the cordierite
phase and to maximize the removal of the amorphous phase during HF treatment. Therefore, it is
necessary to measure the degree of the amorphous phase removal. The complete removal of the
amorphous phase is defined by the etching terminal point (tad), which can be expressed as follow:

tad =
∆m
S · r

=
∆m

S · k0 · Cn0
HF

(4)

where S has an estimated average value of 0.05 m2.
In Figure 6b, two fitting lines at different lnCHF ranges are drawn, and tad can be expressed as:

tad =
∆m

S · ki · Cni
HF

(CHF ≤ 6.55, i = 1; CHF > 6.55, i = 2) (5)

with n1 = 0.93, k1 (s−1) = 4.81, and n2 = 1.71 and k2 (s−1) = 1.12. Model II (expressed by Equation (5)) is
also shown in Figure 7. The deviation has been minimized in Model II. To precisely define the etching
terminal point, the tad function will be further corrected in a later study.
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Figure 7. Data fit on Model I and II.

According to Equation (1), Figure 6a presents the Arrhenius curve of lnr vs. lnCHF. The slope of
the fitting line corresponds to the reaction order and the intercept exhibits the logarithm of the rate
constant, which are n0 = 1.21 and k0 = 3.86, respectively. Model I (expressed by Equation (4)) and the
experimental tad data are shown in Figure 7. It can be seen that the measured data fit Model I in low
and high CHF regions, whereas a deviation is noticed in the middle CHF region, which corresponds to
the variation of n value.

3.4. Specific Surface Area Analysis

Figure 8 shows the specific surface area of as-prepared and etched samples. We have observed
a linear relationship between the etching time and specific surface area. However, after 40 min of
etching, the increase in specific surface area was slower due to the complete dissolution of the glass
phase. In addition, etching for 50 min resulted in higher specific surface area due to over-etching,
which completely dissolved the cordierite phase. Furthermore, the specific surface area of 59.4 m2·g−1

has been obtained after 40 min of etching, which is 10 times higher than the as-prepared sample.
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Moreover, the type-IV isotherms (Figure 9) indicate the mesoporous structure of as-prepared and
etched samples. Therefore, a cordierite phase with the high specific surface area and mesoporous
structure can be obtained by optimal etching conditions.
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Interestingly, the specific surface of the cordierite area has been improved to 59.4 m2·g−1 by using 
optimal HF etching conditions. 
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4. Conclusions

Herein, we have investigated the dissolution of cordierite glass-ceramic in HF solution and
obtained a highly crystalline cordierite phase with the high specific surface area and mesoporous
structure. We have observed significant differences between etching rates of cordierite and the
amorphous phase. In 1 mol/L HF solution, ra was ~218 times higher than rc, which has been explained
by using the activation energy values of cordierite (52.5 kJ/mol) and the amorphous (30.6 kJ/mol)
phases. In the amorphous phase, Mg2+ ions broke the SiO2 network and resulted in a loose structure.

Furthermore, a new model for the tad evolution has been established and refined by the fitted
reaction orders as:

tad =
∆m

S · ki · Cni
HF

(CHF ≤ 6.55, i = 1; CHF > 6.55, i = 2) (6)

Interestingly, the specific surface of the cordierite area has been improved to 59.4 m2·g−1 by using
optimal HF etching conditions.
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