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Abstract

Assessing the compatibility between gene family phylogenies is a crucial and often computationally demanding step in many

phylogenomic analyses. Here, we describe the Evolutionary Similarity Index (IES), a means to assess shared evolution between

gene families using a weighted orthogonal distance regression model applied to sequence distances. The utilization of pairwise

distance matrices circumvents comparisons between gene tree topologies, which are inherently uncertain and sensitive to evolu-

tionary model choice, phylogenetic reconstruction artifacts, and other sources of error. Furthermore, IES enables the many-to-many

pairingofmultiplecopiesbetweensimilarlyevolvinggenefamilies.This isdonebyselectingnon-overlappingpairsofcopies,onefrom

each assessed family, and yielding the least sum of squared residuals. Analyses of simulated gene family data sets show that IES’s

accuracy is on par with popular tree-based methods while also less susceptible to noise introduced by sequence alignment and

evolutionary model fitting. Applying IES to an empirical data set of 1,322 genes from 42 archaeal genomes identified eight major

clusters of gene families with compatible evolutionary trends. The most cohesive cluster consisted of 62 genes with compatible

evolutionary signal, which occur as both single-copy and multiple homologs per genome; phylogenetic analysis of concatenated

alignments from this cluster produced a tree closely matching previously published species trees for Archaea. Four other clusters are

mainly composed of accessory genes with limited distribution among Archaea and enriched toward specific metabolic functions.

Pairwise evolutionary distances obtained from these accessory gene clusters suggest patterns of interphyla horizontal gene transfer.

An IES implementation is available at https://github.com/lthiberiol/evolSimIndex.
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Significance

Detecting shared evolutionary trends of gene families is necessary for distinguishing genes with incompatible evolu-

tionary signals from those suitable to reconstruct reliable phylogenomic trees. Commonly used methods to achieve this

directly compare the topologies of gene trees, which tend to be inaccurate given the inherent uncertainty of phylo-

genetic reconstruction. We propose the Evolutionary Similarity Index (IES), based on orthogonal distance regressions

between evolutionary distance matrices. Simulations show that IES substantially outperforms tree-based methods, at a

fraction of the computational effort, and is able to evaluate similarities between gene families containing duplication

events. We used IES to assess the compatibility between archaeal gene families, producing a cohesive cluster of 62

genes with similar evolutionary signals, likely representing a central evolutionary trend of archaeal genomes.
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Introduction

Phylogenies reconstructed from single genes are known to

poorly reflect the underlying history of whole genomes; con-

sequently the detectable phylogenetic signal from an isolated

locus cannot be extrapolated to reflect the evolution of whole

genomes (Dagan and Martin 2006; Bapteste et al. 2009;

Koonin et al. 2009). To ameliorate this effect, it has become

common practice to estimate species’ evolutionary histories

by concatenating multiple sequence alignments of single-

copy genes widely conserved across sampled genomes. The

preference toward using core genome sequences is due to

their expected resistance to horizontal gene transfer (HGT)

(Thomas and Nielsen 2005; Sorek et al. 2007; Popa and

Dagan 2011); however, despite the lower frequency of HGT

among some gene families, it has been shown that horizontal

exchange also occasionally affects core genes. In fact, the

slow substitution rate and corresponding high sequence con-

servation of the core genome may even favor HGT, permitting

increases in neutral and nearly neutral HGT at the genus and

species levels (Papke and Gogarten 2012; Shapiro et al. 2012).

Given this context, it is clear that more rigorous methods are

needed to identify genes best reflecting the underlying vertical

evolutionary signal in a group of species; such methods should

seek to maximize the compatibility between evolutionary sig-

nals in order to provide a more robust basis for phylogenomic

reconstruction. Many strategies have been proposed to assess

similarities between phylogenetic signals obtained by individual

gene trees—for example, Robinson–Foulds bipartition compat-

ibility (RF) (Robinson and Foulds 1981), geodesic distance (DgeoÞ
(Kimmel and Sethian 1998; Billera et al. 2001; Kupczok et al.

2008; Owen and Provan 2011), matching split distance (Dms)

(Lin et al. 2012; Bogdanowicz and Giaro 2012), and quartet

distance (Dqt) (Estabrook et al. 1985)—as well as other meth-

ods that assess similarities between phylogenetic profiles

(Pellegrini et al. 1999; Vert 2002; Barker and Pagel 2005; Liu

et al. 2018). The majority of tree-based methods rely on

straightforward comparisons between tree topologies

(Robinson and Foulds 1981; Kunin et al. 2005; Leigh et al.

2008; Puigb�o et al. 2009; Lin et al. 2012; Bogdanowicz and

Giaro 2012; Mirarab et al. 2014; Gori et al. 2016). However,

although an intuitive solution, comparisons between tree to-

pologies require phylogenetic trees of all assessed gene families

to be accurately reconstructed, adding a substantial computa-

tional cost to an already computationally demanding task.

Furthermore, the vastness of tree space, combined with the

inherent uncertainty of phylogenetic reconstruction, provides

multiple sources of error to tree-based evolutionary similarity

assessments. Another method to assess the evolutionary com-

patibility of genes is based on similarities between patterns of

presence and absence (phylogenetic profiles) of such genes

among genomes of interest. Although more recent implemen-

tations displayed substantial improvements (Liu et al. 2018),

reliance on an initial reference tree constitutes an obstacle to

its application to new taxon samplings. Phylogenetic profile-

based methods also do not assess divergences between

sequences of homologous genes, which limits the resolution

of their results.

Accounting for uncertainty-based variations in tree topology

(i.e., bipartition support) further increases the computational

burden and decreases the resolution of the evaluated phyloge-

netic signal (e.g., collapsing low support bipartitions or weighing

them based on support). A proposed solution to bypass the

computational cost of tree similarity assessments is Pearson’s

correlation coefficient (r) between evolutionary distance matrices

(Goh et al. 2000; Pazos and Valencia 2001; Novichkov et al.

2004; Rangel et al. 2019). Unlike tree-based comparisons, meth-

ods based on Pearson’s r enable simple implementations to de-

tect similar evolutionary signals between gene families with

histories complicated by multiple homologs within genomes.

This is accomplished by estimating multiple correlation coeffi-

cients, each using distinct combinations of paralogs between

gene families (Gertz et al. 2003; Ramani and Marcotte 2003).

Despite its application in protein–protein interaction studies, the

sensitivity of Pearson’s r to noise in evolutionary distances and

the granularity of its estimates have yet to be compared with

those of tree-based metrics. Direct coupling analysis has also

been used to pair gene copies between possibly coevolving

gene families (Gueudr�e et al. 2016), but despite positive results

the assumption that protein products of coevolving genes must

be directly interacting may limit its applications.

Given the limitations of the aforementioned approaches

and methods, we propose the IES to quantify the similarity

between evolutionary histories based on weighted orthogo-

nal distance regression (ODR) (wODR) between pairwise dis-

tance matrices. We show that IES is robust to dissimilarity

saturation resulted by up to 50 simulated perturbations to

underlying phylogenies. More common tree-based evolution-

ary similarity estimates must be corrected for distance satura-

tion to display similar robustness and are significantly more

susceptible to errors in evolutionary history reconstruction. As

a case study for this new method, we assessed evolutionary

similarities across 1,322 archaeal gene families and detected

significant evolutionary incompatibilities between conserved

single-copy genes, as well as a clear central evolutionary ten-

dency involving 62 gene families that occur as both single and

multiple copies across genomes.

Results and Discussion

Simulated Data Set

Similarities between evolutionary histories of simulated gene

families were assessed using our newly proposed IES and four

tree-based metrics: Dgeo, RF, Dms, and Dqt. Results from all five

approaches successfully identified the monotonic decrease in

similarity between simulated gene families as the number of

perturbations increased (supplementary figs. S2 and S3,
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Supplementary Material online); tree-based estimates, how-

ever, were heavily impacted by noise introduced through em-

pirical sequence alignment methods and suboptimal

evolutionary model (fig. 1 and supplementary figs. S2–S4,

Supplementary Material online). The accuracy of each method

in identifying the degree of similarity between simulated gene

families was evaluated by calculating ordinary least squares

(OLS) R2 between pairwise shared evolution estimates (1� IES

or dadj for tree-based metrics) and number of simulated per-

turbations. OLS models were fitted using a Y-axis intercept of

0 as two gene families with identical histories should yield no

differences according to any method (supplementary figs. S2

and S3, Supplementary Material online).

Under perfect conditions (i.e., no sequence alignment

errors and optimal evolutionary model), IES performed on

par with tree-based adjusted estimates (fig. 1). Among gene

families simulated with weak phylogenetic perturbations, IES

significantly outperformed tree-based methods as measured

by OLS R2. Adjusted Dqt performed similarly to IES among gene

families with medium perturbations. In simulations generated

using strong phylogenetic perturbations, adjusted Dqt signifi-

cantly outperformed IES as a predictor of differences between

simulated gene families; for simulations with strong phyloge-

netic perturbations no significant difference was detected be-

tween IES, RF, and Dms. Among simulated genes reconstructed

with perfect information, IES displayed greater accuracy when

compared with established tree-based methods even though

three out of four tree-based methods ignore branch lengths

(i.e., RF, Dms, and Dqt), and consequently are not affected by

perturbations applied to branch lengths. Among tree-based

methods, Dgeo was shown to be the most negatively impacted

by strong phylogenetic perturbations between simulated gene

trees. Although Dgeo distributions obtained from SPR10

and SPR50 data sets are not significantly different from other

tree-based methods, Dgeo showed an abrupt decrease in

performance among SPR100 gene families. This may be due

to a high sensitivity to long SPR moves or suggest that the

applied saturation correction is not well suited for its full range

of distance estimates.

Phylogenetic reconstruction using a simulated sequence

alignment (tree_1_TRUE.phy, from SPR10 and replicate_1) un-

der LGþG model by IQTree 1.6.7 took 393.6 s in a single

thread; computing the pairwise distance matrix for the same

alignment took 6.487 s. Both computations were performed

on a 3GHz Intel Xeon W processor. Although Dqt may provide

marginal gains in extreme scenarios in comparison to IES, it

comes with an added computing time of almost 150�, with-

out bipartition support assessment. When assessing large data

sets, the quadratic nature of distance matrices will decrease the

reported disparity between computing times of IES and tree-

base methods, even though the latter still rely in bipartition

support values for enhanced accuracy. Both the time and com-

puting resources required for reasonable phylogenetic recon-

struction constitute prohibitive factors toward the assessment

of shared evolution in large multi-genome data sets.

Robustness Assessment between Approaches

The dichotomic pattern in a cladogram is extremely suscepti-

ble to uncertainties in phylogenetic reconstruction. Combined

with the vast tree space available for 50 taxa, this can cause

noise-induced topological variations to be not directly distin-

guishable from real deviations in evolutionary history (Szöllosi

et al. 2013). Pairwise maximum likelihood distance matrices

used to estimate IES are less prone to such uncertainty as they

bypass forming hypotheses about the evolutionary relation-

ships between taxa. This assumption is corroborated by com-

paring evolutionary similarity estimates obtained using error-

free sequence alignments and optimal evolutionary models to

those using realigned sequences and suboptimal evolutionary

FIG. 1.—Boxplots of OLS R2 for shared evolution estimates from perfectly aligned simulated gene families for each data set of simulated phylogenetic

perturbations. Each data set was replicated ten times, and scatterplot and fitted OLS regressions are available in supplementary figure S2, Supplementary

Material online. Negative R2 values occur as fitted linear regressions do not explain the association between variables, and in this scenario reflect strong

saturation of evolutionary similarity measurements.
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models. Although alignment errors (average SP-score of 0.87)

and evolutionary model suboptimality (JTT) were kept to the

minimum one could expect in empirical data sets, the result-

ing noise is sufficient to negatively impact RF, Dms, and

Dqtestimates. In all three simulated data sets (SPR10, SPR50,

and SPR100) tree-based methods, except Dgeo, displayed sig-

nificantly smaller OLS R2 when compared with the number of

phylogenetic perturbations between simulated gene families

(supplementary fig. S5, Supplementary Material online). On

the other hand, IES estimates were shown to be robust toward

error-induced noise in both SPR50 and SPR100 data sets (sup-

plementary fig. S5, Supplementary Material online).

Evolutionary Similarities within Archaeal Gene Families

In order to test IES performance when estimating shared phylo-

genetic signal in an empirical set of gene families, we evaluated

1,322 families of homologous proteins assembled from anno-

tated coding sequences (CDS) extracted from 42 archaeal

genomes (supplementary table S1, Supplementary Material on-

line). This empirical data set contains conserved and accessory

gene families with different sizes due to gene losses, duplica-

tions, and transfers.

IES was estimated for all pairwise combinations of gene

families present in at least ten genomes, with 2,142 out of

748,712 comparisons having IES values of at least 0.7 (sup-

plementary fig. S6a, Supplementary Material online). Pairs of

gene families with an IES � 0:7 were added as nodes to a

network with pairwise IES as edge weights connecting gene

families. In total 419 unique archaeal gene families were

added to the network, whereas the remaining 903 gene

families did not display any IES � 0:7 with other gene families.

The 0.7 IES threshold was selected as it is the most robust to

threshold increases, as measured by Variation of Information

(Meil�a 2007), while also yielding the greater cluster modularity

than networks obtained using lower thresholds (supplemen-

tary table S2, Supplementary Material online). Although in-

creasing the IES threshold from 0.7 to 0.75 leads to a 26%

increase in cluster modularity, it does so by removing 71.15%

of edges (supplementary table S2, Supplementary Material on-

line). Previous applications based on Pearson’s r between evolu-

tionary distances have also suggested a 0.7 threshold (Goh et al.

2000; Pazos and Valencia 2001). The resulting evolutionary sim-

ilarity network (fig. 2) is heavily imbalanced, with just 11% of

nodes involved in 50% of network edges. The majority of gene

families (68%) did not display any IES above the 0.7 threshold

with other gene families, suggesting a general incompatibility

between evolutionary signals, or an inability to detect compat-

ibility with this method. However, the high edge concentration

within just a few nodes suggests a strong central signal present

among few gene families, from which the evolutionary trajec-

tories of others have diverged (Puigb�o et al. 2009).

A hierarchical clustering of pairwise IES based on average

nucleotide distances between gene families within individual

genomes suggests that shared evolution estimates are

strongly impacted by genetic linkage (supplementary fig.

S6b, Supplementary Material online). Pairs of gene families

within close genomic proximity (i.e., apart from each other by

fewer than 10,000 bp in at least 21 genomes) have signifi-

cantly more similar evolutionary trends than pairs separated

by long genomic distances (i.e., apart from each other by

more than 100,000 bp in at least 21 genomes), as depicted

in figure 3a (P ¼ 6:18e�75 and f ¼ 0:86). Pairs of gene fam-

ilies with strong genetic linkage displayed significantly greater

IES relative to pairs of gene families with weak linkage.

Clusters of Gene Families with Compatible
Evolutionary Signals

Evolutionary trends shared across gene families were grouped

using Louvain community detection, recovering 41 compatible

evolutionary signal (CES) clusters, of which 25 comprise only

two gene families and eight major clusters contain ten or more

similarly evolving gene families. As evidence of the effective-

ness of clustering gene families using pairwise IES, we observe

that CES clusters are strongly associated with genetic linkage

within short genetic distances (fig. 3b). Across short nucleotide

distances between loci, linkage is a strong predictor of CES

relations between genes, but its predictive power rapidly

decreases as the genomic distance between two given loci

increases (fig. 3b), displaying a linear log–log relationship

(supplementary fig. S7, Supplementary Material online).

Comparing frequencies of intra- and intercluster gene pairs

across distinct windows of genomic distances showed that

the proportion of CES genes within 1,000bp of each other is

three times the proportion of non-CES genes within the same

window. Increasing the window size led to abrupt decreases in

proportion; within a 10,000-bp window, the ratio of CES

genes is reduced to 1.8 the ratio of non-CES, and at a

100,000-bp window this difference in proportion falls to 1.2

(fig. 3b). Given the strong genetic linkage and functional asso-

ciations of operons, these results suggest that the evolutionary

signal shared by gene pairs in known operons might be even

stronger than that shown by figure 3.

Among the eight CES clusters with ten or more gene fam-

ilies, four are comprised mostly core genes, and four are com-

posed of mostly accessory genes (fig. 4). The four CES clusters

of core genes (cluster#2, cluster#3, cluster#4, and cluster#5)

are promising candidates for reconstructing a representative

phylogenetic signal present within sampled Archaea. These

four core CES clusters are composed of 102 extended core

genes (single copy and present in at least 35 genomes) and

146 broadly distributed gene families present on average in 33

genomes, both as single and multiple copies. CES clusters of

accessory genes (cluster#0, cluster#1, cluster#8, and cluster#15

in fig. 5) include specific archaeal clades, but do not map to

well-established phylogenetic relationships; rather, they show

polyphyletic gene distributions, likely caused by HGTs and/or

Rangel et al. GBE
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gene losses shared by CES gene families. For example, clus-

ter#0 is well represented amongst Euryarchaeota and hyper-

thermophilic TACK; cluster#15 comprises gene families with

shared evolutionary trends mainly occurring within

Crenarachaeota and hyperthermophilic Euryarchaeota; CES ac-

cessory gene families in cluster#1 and cluster#8 display con-

gruent signals grouping methanogenic Euryarchaeota with

Thaumarchaeota and Asgardarchaeota, respectively. Besides

the eight CES clusters with ten or more gene families, the

CES network community detection yielded 34 other clusters

containing between two and nine gene families (see

Supplementary Material online). These 34 CES clusters contain

a total of 88 gene families, with degree centralities much

smaller than the 331 gene families within the eight major

CES clusters (averages of 1.36 and 17.79, respectively).

CDSs from 21 out of 42 sampled genomes have functional

annotations available in StringDB (see Supplementary Material

online), which was used to identify annotated KEGG Pathways

enriched within homologs of CES gene families from each

genome. In the dendrogram and heatmap depicted in figure

4, we clearly identify two sets of opposing CES clusters of gene

families: accessories (top three rows) and core (bottom four

rows). All four CES clusters of core gene families are enriched

with KEGG Pathways related to genetic information processing

(e.g., Ribosome, DNA replication, and Aminoacyl-tRNA biosyn-

thesis), whereas CES clusters of accessory gene families are

enriched with KEGG Pathways related to metabolism (e.g.,

Methane metabolism, Microbial metabolism in diverse environ-

ments, and Biosynthesis of antibiotics in fig. 4). KEGG Pathways

related to metabolism display minor enrichment signal within

CES clusters of core gene families, and KEGG Pathways related

to genetic information processing are not enriched within clus-

ters of accessory genes (fig. 4). Cluster#1, restricted to metha-

nogenic Euryarchaeota and Thaumarchaeota, is enriched for

methane metabolism genes within six genomes. Similarly,

gene families from cluster#8, restricted to methanogenic

Euryarchaeota and Asgardarchaeota, are also enriched in meth-

ane metabolism in five genomes (fig. 4).

cluster#3
cluster#4

cluster#2

cluster#0

cluster#5

cluster#15

cluster#1

cluster#8

contains duplications
single-copy

Gene family node shapes

FIG. 2.—A compatible evolutionary signal network, with each node representing a gene family, and edges connecting nodes representing shared

evolutionary signals (IES � 0:7). Nodes of the same colors have similar evolutionary trends, as identified by Louvain community detection. Triangular nodes

represent single-copy genes, and circular nodes are gene families containing duplications. Clusters of CES gene families with less than ten members are not

represented.
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Compatible Evolutionary Signal Clusters and Possible
Vertical Evolutionary Signals

Phylogenies generated from extended core genomes are gen-

erally used as reasonable proxies of the species-tree phylog-

eny, given the assumption that these genes are less likely to

undergo HGT between distantly related groups. However, an

extended core phylogeny may not represent the species tree

for several reasons, including systematic biases in phyloge-

netic reconstruction due to shared compositional bias, or

strong biases in HGT partners among sets of genes. The ex-

tended core tree can still be used as an adequate representa-

tion of the consensus evolutionary signal detected in the

sampled archaeal genomes, the closest thing we have to

the simple “null hypothesis” of a shared history due to vertical

inheritance. The 102 genes composing the extended core

genome are not equally distributed across CES clusters (fig.

2); cluster#4 contains the greatest number of extended core

genes, 44 out of 62 gene families, followed by cluster#3 with

27 out of 111 gene families. The split of the extended core

genome into four distinct major CES clusters (fig. 2) suggests

differing sets of HGTs among core genes, creating conflicting

evolutionary histories between genes from different clusters

(fig. 6). Closeness centrality measures (~C ¼ 0:56) and node

strength corrected by cluster size (~S ¼ 0:19) suggest that clus-

ter#4 gene families share stronger and more cohesive evolu-

tionary trends than gene families from other clusters

(supplementary fig. S8, Supplementary Material online).

Therefore, cluster#4 contains the set of genes that may be

best able to recover a representative evolutionary history

across sampled Archaea. Cluster#4’s evolutionary history is

also the most similar to that inferred from the extended

core genome (figs. 5 and 6). The phylogeny obtained from

pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n

%
 in

tr
a-

cl
us

te
r g

en
e 

pa
irs

%
 in

te
r-

cl
us

te
r g

en
e 

pa
irs

Genomic interval containing gene pairs (bp)

A

B

FIG. 3.—(A) Distributions of IES between pairs of genes within 10,000bp of each other (blue) and between pairs of genes apart by at least 100,000bp

(orange). Neighboring gene pairs displayed significantly more similar evolutionary signals than nonneighboring gene pairs. (B) Ratio between the proportion

of gene pairs in intra- and inter-CES clusters, Y axis, occurring within genomic windows, X axis. About 100 window sizes were assessed ranging from 1,000

to 1,000,000 bp.
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concatenated cluster#4 genes is highly similar to recently pub-

lished reconstructions of the archaeal Tree of Life, with virtu-

ally identical Euryarchaeota clade structure (Williams et al.

2017, 2020).

Although binning genes with congruent evolutionary his-

tories permits phylogenetic reconstructions less likely to be

subject to spurious signals arising from the averaging of

conflicting evolutionary signals, the resulting phylogenies re-

main susceptible to phylogenetic reconstruction artifacts.

For example, since IES is not estimated from phylogenies

but from pairwise evolutionary distances, we do not expect

it to be subject to long-branch attraction (LBA) artifacts.

Nevertheless, phylogenies reconstructed from sets of genes

with high IES between each other are as susceptible to LBA as

any other data set. Despite robustness to phylogenetic arti-

facts, IES estimates are still affected by sampling biases: the

overrepresentation of specific taxonomic groups can lead to

underestimating deviations in the evolutionary history of less

represented groups.

LBA is a frequently invoked in discussions of archaeal phy-

logeny, specifically with regard to the phyletic status of the

DPANN group (Brochier-Armanet et al. 2011; Petitjean et al.

2014; Raymann et al. 2014; Williams et al. 2015; Feng et al.

2021). Regardless of the set of genes used for phylogenetic

reconstruction, extended core genome or any of the four CES

clusters of core genes, all resulting trees depicted a well-

supported DPANN clade composed of Nanohaloarchaea

archaeon, Ca. Woesearchaeota archaeon, Nanoarchaeum

equitans, and Ca. Diapherotrites archaeon. To assess the im-

pact of LBA in reconstructing DPANN, we generated phyloge-

nies from the CES clusters of core genes including only a single

DPANN taxon at a time. When included individually, each

DPANN taxon showed varying placements across trees gener-

ated from different CES clusters. This suggests that the initial

monphyletic grouping of DPANN for these clusters was, in fact,

artifactual and that the extended core gene history for these

genomes is likely complex (see Supplementary Material online).

Cluster#4 phylogenies individually testing the position of each

DPANN taxa placed Nanohaloarchaea sister to Halobacteria,

with NanohaloarchaeaþHalobacteria being sister to

Methanomicrobia. Cluster#3 also reported Nanohaloarchaea

sister to Halobacteria, but with both nested within

Methanomicrobia. This placement for Nanohaloarchaea has

been previously proposed by Narasingarao et al. (2012),

Zhaxybayeva et al. (2013), Petitjean et al. (2014), and Feng et

al. (2021). The uncertain placement of Nanoarchaea has also

been topic of investigation (Huber et al. 2002; Brochier et al.

2005). Interestingly, each CES cluster recovered a different

placement for Nanoarchaea: sister to Euryarchaeota (clus-

ter#2), sister to KorarchaeotaþCrenarchaeota (cluster#3),

FIG. 4.—Heatmap of enriched KEGG Pathways within each CES cluster of gene families. Shades of red represent the proportion of genomes with

detected KEGG Pathway enrichment within its homologs of CES gene families. Columns and rows were clustered using complete linkage and correlation

coefficients. KEGG Pathways enriched in fewer than 10% of genomes in which CES genes occur are not reported. Cluster#15 did not show significant

enrichment of KEGG Pathways.
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FIG. 5.—Phylogenetic tree of Archaea reconstructed from 62 genes within CES cluster#4. The phylogeny was obtained using LGþFþGþC60 evolu-

tionary model from IQTree and each gene had its parameters independently estimated according to parameter “-sp.” Bipartition supports were estimated

using UFBoot and aLRT, each with 1,000 replicates, and bipartitions well supported by both methods are colored in green (UFBoot � 95% and aLRT

� 80%), whereas bipartitions well supported by a single method are colored in yellow. Red dotted lines indicate Nanohaloarchaea (1) and Nanoarchaea (2

and 3) placements reconstructed within phylogenies containing a single DPANN genome at a time. Despite the lack of outgroups to Archaea within our

sample the tree is rooted in DPANN for the sake of visualization. The associated heatmap reflects the representation of gene families within CES clusters

amongst archaeal genomes.
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sister to Korarchaeota (cluster#4), and sister to Thermococcales

(cluster#5). One of the most accepted Nanoarchaea place-

ments is as sister to Thermococccales (Brochier et al. 2005;

Urbonavi�cius et al. 2008; Dutilh et al. 2014), which in our

analyses was recovered only by cluster#5 (see Supplementary

Material online).

Although our tests further support that the monophyly of

DPANN is likely due to LBA, we did not detect a significant LBA

effect for Woesearchaeota and Diapherotrites. Except for

Diapherotrites placing between Class I and II methanogens in

cluster#2, phylogenies from all four clusters proposed both

taxa grouping together as sister to Euryarchaeota, assuming

an archaeal root between TACKþAsgard and Euryarchaeota

(see Supplementary Material online). The disparate placements

of DPANN members within trees from CES clusters also sug-

gests that, in addition to LBA, the DPANN clade from the ex-

tended core genome phylogeny is further impacted by the

heterogeneity of the phylogenetic signal. This may not only

produce a “signal averaging” effect favoring a monophyletic

DPANN deeper in the archaeal tree, but may also be a contrib-

uting factor to the LBA artifact itself. Heterogeneity among

combined phylogenetic signals is likely to increase the esti-

mated branch length, as the incorrect assumption of a single

underlying phylogeny will lead to more homoplastic sites.

Assuming that a given set of genomes constitutes a mono-

phyletic clade, it is also reasonable to expect a certain number

of gene families to be over represented within the clade and

not readily available to genomes outside the clade. Regardless

FIG. 6.—Scatterplots of pairwise evolutionary distances between gene families. Pairwise distances between CES clusters are shown in blue, whereas

pairwise distances between CES clusters and the 102 core gene data set are shown in red. Similarities between evolutionary histories were estimated by IES.
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of the driving force behind the enrichment of gene families

within a clade, which may be inheritance from a common

ancestor or biased HGT (Andam et al. 2010; Andam and

Gogarten 2011), we identified 80 gene families enriched

within TACK genomes and 111 within Euryarchaeota

(q � 0:05). In contrast to TACK and Euryarchaeota clades,

we did not detect any gene families enriched within the four

sampled DPANN genomes, providing phylogenetically inde-

pendent evidence against its monophyly. Complementarily,

and in support of a NanohaloarchaeaþHalobacteria clade,

we identified 78 genes present in Nanohaloarchaea archaeon

enriched within the three Nanohaloarchaea and Halobacteria

genomes. In another contrast, Thaumarchaeota, a well-

accepted clade with similar number of sampled genomes in

our data set, was found to have 456 gene families enriched

within its five genomes. Although the differing degrees of

physiological, metabolic, and genetic diversity within these

groups certainly influence the number of shared gene fami-

lies, it remains striking that this particular signal of shared

ancestry is conspicuously lacking in DPANN.

Common and Distinct Evolutionary Trends between CES
Clusters

Among CES clusters of core gene families, cluster#4 and

cluster#5 are most evenly represented across archaeal

groups, whereas cluster#2 and cluster#3 are poorly distrib-

uted among DPANN (fig. 5). All four CES clusters of core

gene families have low frequency within Thaumarchaeota

archaeon SCGC AB-539-E09, and only cluster#2 and clus-

ter#4 are present in any abundance in Thermoplasmatales

archaeon SCGC AB-539-N05, 29 and 44 gene families re-

spectively. All four clusters display very similar overall phy-

logenies calculated from concatenations of genes within

each cluster, varying mainly within the organization of

Euryarchaeota (fig. 5 and Supplementary Material online).

All four CES clusters of core genes reconstructed the mono-

phyly of Euryarchaeota, with the exception of cluster#2, which

placed Pyrococcus furiosus, Thermococcus kodakarensis,

Methanocaldococcus jannaschii, Methanothermobacter ther-

mautotrophicus, and Methanopyruus kandleri together as sis-

ter to AsgardarchaeotaþTACK. Only cluster#4 recovered the

monophyly of Methanomicrobia as sister to Halobacteria, as

supported by Bayesian reconstructions reported in (Martijn et

al. 2020; Williams et al. 2020). The other three CES clusters

place Halobacteria within Methanomicrobia, as reported by

(Williams et al. 2017) and in the RNA polymerase phylogeny

reported in (Da Cunha et al. 2017).

All four core CES clusters robustly identified

Asgardarchaeota as sister to TACK (fig. 5), with small variation

in the Asgardarchaeota phylogeny, and cluster#5 placed

Korarchaeota at the base of the TACK superphylum (see

Supplementary Material online) as previously reported in the

literature (Williams et al. 2017, 2020); the remaining three

CES clusters of core genes place Korarchaeota sister to

Crenarchaeota (fig. 5 and Supplementary Material online).

When assessing all-versus-all IESbetween CES clusters of

core genes, the evolutionary signal detected from cluster#4

is the least dissimilar to the other three (fig. 6). This shortest

path from cluster#4’s evolutionary trajectory to others sug-

gests that cluster#4 best approximates the average archaeal

evolutionary history (fig. 6). In general, the overall high IES

estimates between core CES clusters suggest that despite

composing distinct clusters, gene histories between clusters

are generally congruent, with deviations reflecting small diver-

gences potentially representing genes with specific sets of

reticulate histories.

Phylogenetic trees obtained from accessory gene families

in cluster#0, cluster#1, cluster#8, and cluster#15 recon-

structed all represented archaeal phyla as monophyletic (ex-

cept for P. furiosus in Euryarchaeota in cluster#0,

supplementary fig. S9, Supplementary Material online), sug-

gesting a shared common origin of accessory genes from

each CES cluster by all genomes from the same phylum.

Although the monophyly of archaeal phyla within trees of

CES clusters of accessory genes does not permit an accurate

prediction of the directionality of possible interphyla HGTs,

intraphylum distances congruent to the supposed vertical in-

heritance signal can be used to evaluate interphylum distan-

ces under a wODR model (supplementary figs. S10, S12, S14,

and S15, Supplementary Material online). When compared

with pairwise distances expected from vertical inheritance,

interphylum distances that are significantly shorter than esti-

mates obtained from intraphylum distances may be attributed

to HGT acquisition by one of the phyla in question. For each

CES cluster of accessory genes, we assessed wODR of its

pairwise distances against the inferred vertical evolution signal

estimated from cluster#4.

When comparing pairwise distances obtained from clus-

ter#1 against cluster#4, distances between Euryarchaeota

and Thaumarchaeota are consistently placed below the esti-

mated regression line (supplementary figs. S10 and S11,

Supplementary Material online). This suggests that cluster#1

genes were horizontally transferred between ancestors of

both phyla, causing shorter evolutionary distances between

phyla than expected if their homologs diverged exclusively by

vertical inheritance.

Interphyla distances between Euryarchaeota and

Crenarchaeota obtained from cluster#0 fit the evolutionary

rate expected using intraphylum distances for this CES cluster

(supplementary fig. S12, Supplementary Material online), sug-

gesting that homologs from both phyla were vertically inher-

ited from a common ancestor. Different behavior was seen

for cluster#0 interphyla distances involving Thaumarchaeota

(Crenarchaeota to Thaumarchaeota and Euryarchaeota to

Thaumarchaeota), which are shorter than expected from

the wODR using intraphylum distances (supplementary fig.

S12, Supplementary Material online) and display significantly
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greater residuals than distances between Crenarchaeota and

Euryarchaeota (supplementary fig. S13, Supplementary

Material online). The absence of cluster#0 genes among

Asgardarchaeota and Korarchaeota and the short interphyla

distances to Thaumarchaeota homologs suggest an extensive

loss among other phyla and horizontal acquisition by the

thaumarchaeal ancestor from either crenarchaeal or euryarch-

aeal donors.

Despite the occurrence of accessory genes from cluster#1

and cluster#8 in methanogenic Euryarchaeota (fig. 5) and

the enrichment of methane metabolism pathways (fig. 4),

evolutionary histories of both CES clusters are not related

(fig. 2). Gene families in CES cluster#8 did not display IES �
0:7 outside its own cluster, constituting a separate con-

nected component in the CES network depicted in figure

2. That said, cluster#8 gene families display shorter

Euryarchaeota-Asgardarchaeota distances when compared

with cluster#4 distances, but unlike cluster#0 and cluster#1,

intra-Asgardarchaeota and intra-Euryarchaeota pairwise dis-

tances are not mutually compatible under a single linear re-

gression (supplementary fig. S14, Supplementary Material

online). The lack of a strong wODR anchor in the form of

intraphyla distances suggests a more complex horizontal ex-

change history of cluster#8 genes, possibly involving intra-

phylum HGTs, which we cannot accurately assess with the

data set used in this study. CES cluster#15 of accessory

genes is well distributed among Crenarchaeota, and its intra-

phylum pairwise distances are congruent to cluster#4 dis-

tances, but their patchy occurrence among Euryarchaeota

and Korarchaeota (fig. 5) does not permit a confident as-

sessment of this cluster’s interphyla evolutionary history

(supplementary fig. S9, Supplementary Material online).

Consistency of Duplicated Gene Copies within CES Clusters

Among the eight larger CES clusters, 89 gene families occur in

multiple copies among genomes; in order for CES phylogenies

be reconstructed a single copy must be selected as the best

representative of the evolutionary signal shared by CES genes.

These 89 gene families are found in multiples a total of 237

times across the 42 sampled archaeal genomes, 52 times

within CES cluster#4. During each wODR between pairs of

gene families only the copy yielding the least sum of squared

residuals is selected as best representing the shared history by

both families. In 71.7% of cases when multiple copies are

present in a genome the same copy is supported by more

than 70% of similarly evolving gene families (supplementary

fig. S16, Supplementary Material online). The significant dif-

ference between the observed support of selected copies

against a null distribution where each copy has the same

probability of yielding the least sum of squared residuals fur-

ther corroborates IES’s effectiveness and robustness to sto-

chastic noise (supplementary fig. S16, Supplementary

Material online).

Conclusions

We have presented IES, a new, robust, and efficient method

to detect gene families with compatible evolutionary histories,

which may predict good candidates to be used in phyloge-

nomic tree reconstructions. The distance regression basis of

our proposed method does not require hypotheses regarding

evolutionary relationships between taxa represented by the

branching pattern of phylogenetic trees. Besides significant

gains in accuracy and computing efficiency compared with

other tree-based approaches, IES introduces a new and robust

strategy to pair copies of gene families that best represent

shared evolutionary trends. The strong effect of genetic link-

age in pairwise IES estimates within archaeal gene families

constitute independent evidence of IES’s ability to recover

shared evolutionary histories within empirical data sets.

Despite similar performances of Pearson’s r and wODR R2 in

detecting these trends, IES achieves the same result in a more

efficient way. The utilization of wODR also imparts more robust

statistical support not directly available to previous Pearson’s r

implementations, whereas the assessment of pairwise distan-

ces between taxa provides robustness in the presence of arti-

facts associated with phylogenetic inference (e.g., LBA). The

ability to assess residuals of each data point independently also

allows for evaluations of specific homologs, a useful tool for

HGT detection. IES can thus be incorporated into phylogenom-

ics pipelines and used to guide the selection of gene families for

more accurate and robust species-tree inference, as well as the

detection of meaningful clusters of gene families evolved in

shared, yet reticulate, patterns. Results obtained from all three

simulated scenarios and their replicates corroborate the effi-

ciency of IES under multiple conditions, which further supports

its application to assess distinct data sets.

By assessing similarities of evolutionary signal between ar-

chaeal gene families using IES we were able to detect several

clusters of shared distinct evolutionary trends. Phylogenetic

reconstruction using concatenated sequences from each of

the four major CES clusters of core genes provides strong

evidence for the existence of four major evolutionary trends.

The phylogeny resulting from CES cluster#4, in particular,

recovers a species tree hypothesis consistent with that pro-

posed in several other studies, and does so while using a more

empirically supported selection of gene families that does not

presuppose vertical inheritance.

CES clusters obtained using IES also provide key evidence

for horizontal exchange of functionally related genes between

phyla (supplementary fig. S10, Supplementary Material

online). For example, given the almost exclusive occurrence

of genes from CES cluster#1 among methanogenic

Euryarchaeota and Thaumarchaeota, tree-based approaches

are not able to report the potential HGT between these phyla.

Separately, intra- and interphyla distances obtained from CES

cluster#1 are strongly correlated to distances described in CES

cluster#4, however the significant placement of interphyla
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distances bellow the wODR line strongly suggests an HGT

between ancestors of both phyla.

The method used to analyze the archaeal gene set is gen-

eral and can thus be applied to other genome sets.

Furthermore, the IES implementation described provides a

straightforward framework for future improvements and a

possible alternative to phylogenetic reconciliation approaches

to identify HGT events, as described in supplementary figures

S9–S15, Supplementary Material online.

Materials and Methods

ODR is an errors-in-variables regression method that accounts

for measurement errors in both explanatory and response

variables (Boggs et al. 1987), instead of attributing all errors

exclusively to the response variable, as performed by OLS.

Although OLS regression models seek to minimize the sum

of squared residuals of the response variable, ODR minimizes

the sum of squared residuals from each data point obtained

by the combination of explanatory and response variables.

Novichkov et al. (2004) assessed the compatibility between

the evolutionary history of genes with a reference genomic

evolutionary history using Pearson’s r and estimates of an OLS

regression’s intercept. The latter extra step, when compared

with other implementations using solely Pearson’s r (Ramani

and Marcotte 2003; Izarzugaza et al. 2008; Gueudr�e et al.

2016) is required to infer if data points not fitting a regression

line through zero are caused by HGT. The approach proposed

by Novichkov et al. requires two key conditions that restrict its

usage on empirical data sets: 1) there must exist a reference

history to which gene histories are compared; and 2) there are

no errors in the reference distances between genomes.

The approach described here is based on ODR. Its modeling

of errors within both assessed variables decreases the neces-

sity of comparing gene family pairwise distances against a

well-established reference. When evaluating evolutionary his-

tories of two gene families with no clear separation between

explanatory and response errors-in-variables approaches (e.g.,

ODR) are better suited to compare pairwise evolutionary dis-

tances. Our implementation uses a wODR model with regres-

sion line through the origin (a ¼ 0, where a is the Y-axis

intercept) to avoid overfitting ODR model to the detriment

of coherent evolutionary assumptions. Data points are inde-

pendently weighed based on residuals from an initial regres-

sion line to decrease the model’s susceptibility to few

homologs with strong signal incompatibility.

Algorithm Explanation

In the simplest scenario of two gene families occurring as

single copies in the same set of genomes, IES is equal to the

coefficient of determination (R2) of a wODR between pair-

wise distance matrices of both gene families. Data points

are weighted in regard to their impact on the model fitting.

The weighing step is required to avoid a few outlying

sequences preventing the identification of a signal shared

by the majority; weights are estimated as the inverse of

residuals obtained from a geometric mean regression with

intercept equal to zero and slope equal to sY=sX, where sY

and sX are the standard deviations of the regressed varia-

bles. If two assessed gene families do not occur in the same

set of genomes, the wODR R2 is calculated exclusively using

homologs from genomes containing both families; the

resulting R2 is then adjusted by the Bray–Curtis Index (IBC).

IBC is defined as 1� DBC, where DBC is the Bray–Curtis

Dissimilarity (Bray and Curtis 1957) calculated from the

copy number of each gene family within genomes. The in-

corporation of unequal genomic occurrence between gene

families prevents possible overestimation of evolutionary

signal similarity by the wODR R2 caused by gene losses

and duplications that are not observed by the regression.

Supplementary figure S1, Supplementary Material online,

depicts how the decrease in taxa overlap can lead to over-

estimated shared evolution solely by wODR R2, and conse-

quently the importance of IBC adjustment. We simulated

two gene families separated by five Subtree Prune and

Regraft (SPR) transformations and measured the evolution-

ary similarity between both gene families as we randomly

removed one taxon from each simulated gene family (sup-

plementary fig. S1, Supplementary Material online). As the

set of taxa used during the regression becomes unrepresen-

tative of underlying evolutionary processes, estimates based

only on wODR R2 tend to artificially increase. We will sub-

sequently refer to the wODR R2 � IBC product as IES.

A main advantage of our proposed method over tree-

based approaches is its ability to quantify the evolutionary

signal shared by gene families with different copy numbers

within genomes, as depicted in figure 7. When estimating IES

between one gene family occurring exclusively as single-copy

(gene1) and another gene family (gene2) with two copies

within genome J (j1 and j2), we initially select which of J’s

copy of gene2 (j1 or j2) maximizes IES between both gene

families. During an initial wODR step, gene1’s pairwise distan-

ces involving its single J copy are duplicated in such a way that

distances involving both j1 and j2 are initially paired with it (fig.

7); the gene2 copy in genome J yielding the least sum of

squared residuals will be kept during further steps. The final

pairwise IES will be estimated using the copy of gene2 that

results in the least sum of residuals when paired with the

single gene1 copy (j1 in fig. 7). Whenever both gene families

occur in multiples within the same genome, all nonoverlap-

ping products of copies from both families are part of the final

IES estimation. In our implementation, wODR is performed

through the SciPy (Virtanen et al. 2020) API of ODRPACK

(Boggs et al. 1989). Our method’s capability to automatically

select gene copies that optimize evolutionary signal similarity

between two gene families vastly expands the scope of data

sets fit for general evaluation of evolutionary signal
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compatibilities. The presence of multiple gene copies within a

genome constitutes a key bottleneck to methods commonly

used to assess the similarity of evolutionary histories. Tree-

based evolutionary distance assessment algorithms are not

generally capable of pairing genes between two gene families

when at least one family contains multiple gene copies within

genomes (Stamatakis 2006; Nguyen et al. 2015; Gori et al.

2016; Huerta-Cepas et al. 2016); Pearson r implementations

either rely on multiple tests (Gertz et al. 2003; Ramani and

Marcotte 2003; Izarzugaza et al. 2008) or on predicting struc-

tural interaction between gene products (Gueudr�e et al.

2016).
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FIG. 7.—Steps for IES estimation between gene families containing multiple gene copies. tree1 and tree2 are phylogenetic trees of two hypothetical gene

families, gene1 and gene2, respectively. matrix1 and matrix2 contain pairwise evolutionary distances between taxa from their respective gene families. The red

arrows in matrix1 highlight the duplication of pairwise distances involving the j homolog of gene1 necessary to match dimensions of the two matrices. The

wODR scatterplot displays the linear relationships between distances from both gene families, and highlights distances related to the j1 homolog of gene2 in

blue and related to the j2 homolog in red. Arrows also highlight pairwise distances homologs in genomes J and I from both gene families.
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Despite identical taxonomic occurrence of gene1 and

gene2, their copy numbers diverge within genome J, which

likely arose from a horizontal exchange without replacement

of gene2. To reflect this difference in evolutionary events be-

tween gene family histories in IES we adjust the resulting

wODR R2 ¼ 1 with an IBC ¼ 0:95.

Statistics and Data Analysis

Pandas Python library (McKinney 2010) was used to perform

operations on pairwise distance matrices and for generating

condensed versions of the matrices submitted to the wODR

model. Effect size (f) hypothesis tests of differences between

distributions were obtained using Common Language statis-

tics (McGraw and Wong 1992), and P value correction for

multiple tests was performed using False Discovery Rate im-

plementation in StatsModels Python library (Seabold and

Perktold 2010).

Network community detection was performed using the

Louvain clustering method (Blondel et al. 2008) implementa-

tion available in the iGraph (Csardi and Nepusz 2006) Python

library (igraph.community_multilevel).

Enrichment of gene families within sets of genomes were

assessed using hypergeometric tests and P values corrected

with Benjamini–Hochberg’s false discovery rate and expressed

as q values (Benjamini and Hochberg 1995; Benjamini and

Yekutieli 2001).

Data Simulation

Our simulated data set is composed of three sets of 50 trees

generated through random stepwise perturbations from a sin-

gle starting tree. Each set of 50 trees differs from the other on

the intensity of the stepwise perturbations, which were simu-

lated through 49 consecutive random SPR transformations with

varying regrafting ranges. Small perturbations were caused by

regrafting pruned subtrees to a branch within 10% of the

branches closest to the original placement; medium perturba-

tions regrafted within the 50% closest branches; and strong

perturbations regrafted the pruned subtree to any branch in

the tree. Additionally, each bipartition’s branch length was mul-

tiplied by independently drawn gamma distributed random

variables (l ¼ 1 and r ¼ 0:2) after each SPR. These three

sets of simulated trees will be referred to as SPR10, SPR50,

and SPR100 and were independently replicated ten times.

In a real-world scenario, multiple complex mechanisms can

shuffle evolutionary signals without altering gene copy num-

bers (e.g., hidden paralogy, xenologous gene displacement,

and incomplete lineage sorting); whereas these mechanisms

tend to cause varying levels of perturbation to the underlying

evolutionary signal the topological consequence to the tree is

the same for all, an SPR. Through consecutive perturbations of

the initial tree in the form of random SPR and branch length

transformations, we obtained three sets of simulated gene

families with histories of greatly varying similarities. All trees

were simulated with in-house scripts using ETE3 (Huerta-

Cepas et al. 2016). All simulated trees are available in

Supplementary Material online.

Simulated gene family phylogenies were used to generate

sequence alignments containing insertions and deletions us-

ing INDELible (Fletcher and Yang 2009) (see Supplementary

Material online), which outputs perfectly aligned homologous

sites of simulated sequences. Sequences from each resulting

simulated gene family were also aligned using MAFFT (Katoh

and Standley 2013) with the –auto parameter; both the true

alignment provided by INDELible and the empirical alignment

generated by MAFFT were used to construct phylogenetic

trees and pairwise distance matrices using IQTree (Nguyen

et al. 2015). Differences between aligned homologous sites

simulated by INDELible and the sequence alignment obtained

using MAFFT were assessed using Sum-of-Pairs score (SP-

score) calculated by FastSP (Mirarab and Warnow 2011).

Archaeal Empirical Data Set

Complete genome sequences of 42 Archaea from

the Euryarchaeota phylum and from TACK, DPANN,

and Asgardarchaeota groups were downloaded from

NCBI GenBank (Supplementary table S1, Supplementary

Material online). Other candidate phyla known from meta-

genomic sequences as well as some remaining members of

the DPANN group were not included, as their expected phy-

logenetic relationships are not as well understood. Archaea

was selected as the test data set since the evolutionary rela-

tionships between some major groups are well-established,

whereas others remain contested. Furthermore, many sets

of archaeal metabolic genes have a strong phyletic depen-

dence (e.g., methanogenesis among Euryarchaeota; Borrel

et al. 2013), therefore facilitating the assessment of shared

evolutionary trends driven by similar ecological and/or met-

abolic requirements. Clustering of homologous proteins

was performed using the orthoMCL (Li et al. 2003) imple-

mentation available in the GET_HOMOLOGUES package

(Contreras-Moreira and Vinuesa 2013). Evolutionary similar-

ity comparisons were restricted to gene families present in at

least ten genomes.

Pairwise maximum likelihood distances between homolo-

gous proteins were generated using IQTree under the LGþG

evolutionary model. Phylogenetic trees from clusters of gene

families with CES and extended core genome (i.e., single copy

and present in at least 35 out of the 42 sampled Archaea

genomes) were reconstructed from concatenated multiple

sequence alignments using the LGþC60þFþG and individual

partitions corresponding to each concatenated gene.

Enrichment of gene functions among CES clusters were

performed using StringDB API (Szklarczyk et al. 2019). For

each genome, homologs from CES gene families were sub-

mitted independently for enrichment assessment. Retrieved
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protein annotations are available in the Supplementary

Material online.

Tree-Based Metrics of Evolutionary Similarity

All four tree-based metrics were used to calculate distances

between all pairwise combinations of trees reconstructed

from simulated alignments. Dgeo was calculated using the

treeCl Python package (Gori et al. 2016), RF was obtained

using ETE3, and both Dms and Dqt were calculated using

treeCmp (Bogdanowicz et al. 2012).

Given the nonadditive nature of tree-based metrics and

uniform probability of simulated SPR moves across all

branches, estimates from tree-based methods showed sub-

stantial degrees of saturation when compared with the num-

ber of perturbations between simulated gene families. In

comparisons presented below we used a transformation

that applies, if the approach to the steady state follows an

exponential decay: dadj ¼ �lnð1� dnormÞ, where dadj and

dnorm are the adjusted and normalized distance estimates.

For sequence divergence, this is known as Poisson

Correction (Nei and Zhang 2006).

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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