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ABSTRACT
Background and Purpose: Alzheimer's disease (AD) is characterized by progressive cognitive decline and neuronal loss, com-
monly linked to amyloid-β plaques, neurofibrillary tangles, and neuroinflammation. Recent research highlights the gut micro-
biota as a key player in modulating neuroinflammation, a critical pathological feature of AD. Understanding the role of the gut 
microbiota in this process is essential for uncovering new therapeutic avenues and gaining deeper insights into AD pathogenesis.
Methods: This review provides a comprehensive analysis of how gut microbiota influences neuroinflammation and glial cell 
function in AD. A systematic literature search was conducted, covering studies from 2014 to 2024, including reviews, clinical 
trials, and animal studies. Keywords such as “gut microbiota,” “Alzheimer's disease,” “neuroinflammation,” and “blood–brain 
barrier” were used.
Results: Dysbiosis, or the imbalance in gut microbiota composition, has been implicated in the modulation of key AD-related 
mechanisms, including neuroinflammation, blood–brain barrier integrity, and neurotransmitter regulation. These disruptions 
may accelerate the onset and progression of AD. Additionally, therapeutic strategies targeting gut microbiota, such as probiotics, 
prebiotics, and fecal microbiota transplantation, show promise in modulating AD pathology.
Conclusions: The gut microbiota is a pivotal factor in AD pathogenesis, influencing neuroinflammation and disease progression. 
Understanding the role of gut microbiota in AD opens avenues for innovative diagnostic, preventive, and therapeutic strategies.

1   |   Introduction

Alzheimer's disease (AD) manifests as a relentless neurodegen-
erative disorder marked by progressive memory impairment 
and cognitive deterioration, coupled with the accumulation of 
amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs) 
within the brain [1]. Epidemiological investigations indicate 
a notable surge in AD-related mortality over the past two de-
cades, cementing its status as the foremost neurodegenerative 

affliction among the elderly globally [2]. Despite extensive 
research efforts, the precise pathogenesis of AD remains 
enigmatic; however, burgeoning evidence implicates neuroin-
flammation as a central factor in its pathological advancement 
[3]. Neuroinflammation, predominantly driven by activated 
neuroglial cells—the innate immune cells of the central ner-
vous system (CNS)—is pivotal in AD [4]. Dysregulation and 
hyperactivation of neuroglia lead to the excessive secretion of 
pro-inflammatory cytokines, reactive oxygen species (ROS), 
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and nitric oxide (NO), thereby exacerbating neuroinflamma-
tion and neurotoxicity [4–6].

The gut microbiota orchestrates cerebral function and influ-
ences the onset and progression of AD. It modulates the equi-
librium of the gut–brain axis by interacting with the CNS, 
including the vagus nerve, immune system, and endocrine sys-
tem [7]. Alterations in the gut microbiota are associated with 
elevated levels of inflammatory cytokines, oxidative stress, and 
neurotoxicity in the brains of both AD patients and animal mod-
els [8, 9]. The gut microbiota may impact AD by regulating neu-
roinflammation, as its metabolites may cross the blood–brain 
barrier (BBB), eliciting anti-inflammatory and neuroprotective 
effects on glial cells [10–12]. Furthermore, the gut microbiota 
influences the infiltration of peripheral immune cells and the ex-
posure of glial cells to systemic inflammatory stimuli, regulates 
the expression and activity of pattern recognition receptors, and 
modulates the production and metabolism of neurotransmitters 
[13–15].

This paper aims to provide a comprehensive analysis of the 
current role of the gut microbiota in modulating neuroinflam-
mation and glial cell function in AD. Its objective is to enhance 
our understanding of AD's pathogenesis and to deliberate on the 
potential advantages and challenges of manipulating the gut mi-
crobiota as a novel approach for diagnosing, treating, and pre-
venting AD.

2   |   Gut Microbiota and AD

2.1   |   Pathogenesis of AD

Current investigations propose that the etiology and pathogen-
esis of AD may be influenced by myriad risk factors (Figure 1): 
(i) The Aβ cascade hypothesis assumes a central role in AD pa-
thology [16]. (ii) The inflammatory response is pivotal in AD 
pathogenesis, wherein the resultant inflammatory process can 
precipitate neuronal damage [17, 18]. (iii) The integrity of the 
BBB is crucial in AD progression, and its compromised state 
incites inflammatory and neurodegenerative processes [19, 20]. 
(iv) Other pathological mechanisms [3, 21]: Apart from the afore-
mentioned factors, various elements such as tau protein mod-
ifications, the autophagy–lysosomal pathway, mitochondrial 
function, cholinergic transmission, oxidative stress, and genetic 
susceptibility may influence AD progression. Notably, disrup-
tions in the gut microbiota may serve as significant factors in 
AD pathogenesis, influencing Aβ deposition and neuroinflam-
mation [22]. These interwoven factors collectively contribute to 
AD progression.

2.2   |   Gut Microbiota and the Brain

High-throughput sequencing technologies have provided us 
with a deeper understanding of the diversity and abundance of 

FIGURE 1    |    Primary hypotheses concerning the pathogenesis of AD. Risk factors for AD are postulated to correlate with at least one of seven 
primary pathologies: Apoptosis, oxidative stress, hyperphosphorylation of Tau proteins, Aβ aggregation, pro-inflammatory cytokines released by 
reactive glial cells, cerebrovascular pathology, and alterations in the gut microbiota. Each of these primary pathologies may ultimately exacerbate 
and contribute to the burden of the other major AD pathologies. These pathologies may eventually converge, precipitating insufficient neuronal 
sustenance, synaptic decay, and demise, culminating in neurodegeneration that clinically manifests as cognitive decline.
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human gut microbes. The magnitude and composition of these 
microbiota are shaped by various factors, including gender, 
age, diet, and geography [23]. Gut microbes not only colonize 
the body's surfaces and fluids but predominantly inhabit the 
digestive tract [24]. They form an extensive chemical factory 
that impacts host health through the synthesis of diverse com-
pounds. The gut microbiome plays a pivotal role in modulating 
host immunity, digestion, and neural signaling and its associa-
tion with brain function, potentially offering novel insights into 
the exploration, comprehension, and treatment of neurodegen-
erative conditions like AD [25]. The microbial–gut–brain axis 
represents a complex network of connections between the gut 
and the brain through the nervous, endocrine, and immune sys-
tems via multiple pathways (e.g., metabolite pathways, immune 
response pathways, neurotransmission pathways, neuroendo-
crine–hypothalamic axis pathways, and gut and BBB), which 
may act autonomously or synergistically to influence the onset 
and progression of AD [22, 26].

2.3   |   Alterations in the Gut Microbiome in AD

Recent studies have revealed significant discrepancies in the 
gut microbiota among individuals suffering from AD [27–36] 
or analogous animal models [37–46], juxtaposed with those of 
robust health (Table  1). These investigations propose that the 
alterations noted in the gut microbiome, encompassing reduced 
microbial diversity, abnormal proliferation or depletion of par-
ticular bacterial groups, decreased abundance of probiotics, and 
variances in microbial metabolites, could represent a pivotal as-
pect in the pathogenesis of AD [47–51].

3   |   Gut Microbiota and Neuroinflammation

Neuroinflammation is the immune response elicited by glial 
cells within the CNS, typically in reaction to stimuli such as 
neural injury, infections, toxins, or autoimmunity [52]. In 
AD, neuroinflammation constitutes the third primary patho-
logical hallmark following Aβ accumulation and NFT for-
mation [53]. Among the principal glial cell types, microglia 
are distinguished as the predominant innate immune cells 
of the CNS, serving as the primary responders to Aβ plaques 
by aggregating in their vicinity [54, 55]. Numerous genome-
wide association studies have further identified microglia 
as the principal cell type expressing AD-related genes [56]. 
Microglia play a pivotal role in detecting and reacting to en-
vironmental changes, eliminating harmful stimuli, and pre-
senting antigens to T lymphocytes, ultimately contributing 
to neurodegeneration [18]. Astrocytes are integral in main-
taining the integrity and metabolic coupling of the BBB, reg-
ulating ion and neurotransmitter homeostasis, producing 
neurotrophic factors, and supporting neuronal activity and 
synaptic function [6]. Under normal circumstances, microg-
lia and astrocytes perform neuroprotective functions, limiting 
the extent of neuroinflammation. However, in pathological 
conditions such as AD, the chronic activation of microglia 
and astrocytes becomes dysregulated and overactivated, lead-
ing to sustained low-grade neuroinflammation and excessive 
production of pro-inflammatory cytokines, ROS, and NO, 
which can be detrimental to neurons and synapses [4]. Indeed, 

neuroinflammation and the activation of glial cells are hall-
mark features of AD [57].

Neuroinflammation plays a key role in the pathogenic mech-
anisms of AD, influencing the metabolism of Aβ and tau, the 
functionality of neurons and synapses, and accelerating the 
progression and deterioration of AD. It augments the pro-
duction and deposition of Aβ, a hydrophobic peptide that, if 
not cleared, aggregates into neurotoxic oligomers and fibrils, 
leading to neuronal death and synaptic dysfunction [58]. 
Neuroinflammation activates β-secretase and γ-secretase 
pathways, enhancing Aβ production while releasing oxida-
tive stress factors, metalloproteinases, and inflammatory 
cytokines that impair Aβ degradation and clearance [59]. 
Additionally, neuroinflammation disrupts Aβ transport and 
elimination, causing its accumulation at the blood–brain 
barrier. It also catalyzes the aberrant phosphorylation and 
aggregation of tau [60]. In AD pathology, aberrant tau phos-
phorylation leads to its detachment from microtubules, cul-
minating in the formation of NFTs and disrupting neuronal 
metabolism and signal transduction. The activation of various 
kinases, such as GSK-3β, CDK5, MAPK, and PKA, induced 
by neuroinflammation, elevates tau phosphorylation levels 
[54]. Moreover, the secretion of inflammatory cytokines like 
tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and 
IL-6 during neuroinflammation exacerbates tau aggregation 
and dissemination [18]. Neuroinflammation inflicts damage 
on neurons and synapses, both directly and indirectly, by in-
ducing apoptosis and necrosis through the release of oxida-
tive stress factors, inflammatory cytokines, nitric oxide, and 
glutamate [4]. Additionally, neuroinflammation disrupts the 
synthesis, release, and reuptake of neurotransmitters, precip-
itating synaptic dysfunction and degeneration. The altered 
expression and signaling pathways of neurotrophic factors fur-
ther impair neuronal survival and plasticity [61]. Hence, miti-
gating neuroinflammation emerges as a promising strategy for 
the prevention and treatment of AD.

Furthermore, the gut microbiota serves as a significant source 
of amyloid proteins. Bacterial strains such as Escherichia coli, 
Bacteroides fragilis, Salmonella typhi, Pseudomonas fluorescens, 
and Staphylococcus aureus are known to produce amyloid pro-
teins. These strains synthesize proteins like curli, TasA, CsgA, 
FapC, and phenol-soluble modulators, which facilitate the mis-
folding of Aβ fibrils and oligomers. This aberration may com-
promise the host's immune system [62]. Additionally, these 
bacteria can produce endotoxins such as lipopolysaccharides 
(LPS), whose levels rise following bacterial infection or alter-
ations in gut microbial metabolic activity due to inflammation, 
potentially exacerbating neurodegeneration [63]. Notably, this 
process may impair brain cell function, initiating a vicious cycle 
between the gut and the brain [64, 65]. Presently, the compre-
hension of the mechanisms by which the gut microbiota modu-
lates neuroinflammatory processes in AD remains in its nascent 
stages. Nonetheless, preliminary evidence from extant research 
indicates that the gut microbiota exerts a substantial modula-
tory influence on neuroinflammation via four discernible path-
ways: the metabolite pathways of the gut microbiota, immune 
response pathways, neural transmission pathways, and the gut–
brain barrier (Figure 2). These pathways, either independently 
or synergistically, impact the onset and progression of AD. 
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TABLE 1    |    Metamorphosis of gut microbiota in AD context.

Category Methodology Major findings Refs.

AD patients 16S rRNA sequencing Bacterial population in the brain ↑ [27]

16S rRNA sequencing Firmicutes and Bifidobacterium ↓, Bacteroidetes↑ [28]

qPCR Escherichia/Shigella ↑ and E. rectale ↓ [29]

Metabolic phenotyping Metabolite concentrations of tryptophan 
pathway metabolites in urine and serum ↓

[30]

PCR for DNA and DNA sequencing LPS and gram-negative Escherichia coli 
fragments colocalize with amyloid plaque

[31]

16S rRNA sequencing Various changes in microbial populations associated 
with amyloid positivity and p-tau status

[32]

Behavioral assessment FMT from healthy donors showed 
improvements in MMSE score, memory, 

cognition, mood, and socialization

[35]

MCI patients 16S rRNA sequencing The abundance of the genus Ruminococcus, 
Butyricimonas, and Oxalobacter ↓

[36]

GC–MS and PET Fecal levels of acetic acid, butyric acid, 
and caproic acid ↓; Fecal SCFAs in MCI 

group were negatively associated with Aβ 
deposition in cognition-related regions

[50]

CSF biomarker quantification TMAO levels in CSF ↑ [51]

Adults (4 Age 
Groups)

qPCR Bifidobacterium, Faecalibacterium, 
Bacteroides group, and Clostridium cluster 

XIVa ↓ with age up to 66–80 years

[33]

Animal models

GF mice RNA-seq GF animals display global defects in microglia [37]

APP/PS1 
transgenic mice

16S rRNA sequencing and 1H 
nuclear magnetic resonance

Proteobacteria and Verrucomicrobia ↑, Bacteroidetes 
and key metabolic components of SCFAs ↓

[38]

Thy1-C/EBPβ 
transgenic mice

Immunofluorescent staining 
and ELISA assays

FMT from AD donors induces Aβ and Tau 
aggregation, associated with upregulation 

of the C/EBPβ/AEP pathway, microglia 
activation, and cognitive impairment

[46]

APP/PS1 
transgenic mice

16S rRNA sequencing Microbiota composition and diversity perturbed [39]

5xFAD mice 16S rRNA sequencing and 
Immunofluorescent staining

Dysbiosis of gut flora (Aβ in gut; trypsin ↓; 
Firmicutes: Bacteroidetes ratio ↑; Clostridium leptum 

↑); C/EBPβ/AEP pathway active in gut with age

[40, 
41]

3xTg mice Immunofluorescent staining Microbiota accelerates AD pathology with 
active C/EBPβ/AEP signaling in brain

[41]

3xTg mice 16S rRNA sequencing and 
Immunostaining

FMT from SPF mice and AD patients to GF 3xTg 
mice activates C/EBPβ/AEP signaling, promoting 

microglial activation and cognitive deficits

[42]

P301L mice 16S rRNA sequencing Firmicutes: Bacteroidetes ratio↓ [43]

5xFAD mice Amyloid quantification and 
behavioral assessment

7-day FMT regimen improved the “plaque-busting” 
and cognitive behavior shown in 5xFAD mice

[44]

APP/PS1 
transgenic mice 
and WT mice

ELISA assays and 
behavioral assessment

FMT from AD donors worsened behavior and 
increased neuroinflammation; FMT from AD 
donors to WT increased neuroinflammation

[45]

(Continues)
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Continued research endeavors hold the promise of enhancing 
the understanding of the intricate and interrelated interactions 
between the gut microbiota and AD, thereby offering a novel 
vantage point for the development of innovative therapeutic 
strategies.

3.1   |   The Metabolite Pathway

The gut microbiota plays an important role in the function and 
behavior of the neuroinflammatory system, affecting it through 
the direct or indirect production of metabolites such as short-
chain fatty acids (SCFAs), amino acids, lipopolysaccharides 
(LPS), and trimethylamine (Figure 3) [66].

3.1.1   |   Short-Chain Fatty Acids

SCFAs, primarily composed of butyrate, propionate, and ac-
etate, are fermentation by-products of the gut microbiota, 
predominantly derived from the phylum Bacteroidetes and indi-
gestible carbohydrates such as dietary fibers [67]. These SCFAs 
permeate the BBB via monocarboxylate transporters on endo-
thelial cells and contribute to maintaining BBB integrity by sup-
pressing pathways associated with non-specific inflammatory 
responses to microbial infections in vitro [68, 69]. Studies have 
demonstrated that SCFA mixtures restore the expression levels 
of claudin-5, occludin, and ZO-1 in the hippocampus, thereby 
improving BBB permeability [70, 71]. Similarly, using hCMEC/
D3 cells as an in vitro model of the human BBB, it was observed 

Category Methodology Major findings Refs.

APP/PS1 
transgenic mice

ELISA assays and 
behavioral assessment

FMT from WT donors improved cognitive 
function, decreased Aβ plaque burden, and 
decreased levels of soluble Aβ40 and Aβ42

[38]

Note: Arrows: ↑: Increase or higher levels;↓: Decrease or lower levels.
Abbreviations: Aβ, amyloid-beta; AD, Alzheimer's Disease; AEP, aspartic endopeptidase; C/EBPβ, CCAAT/enhancer-binding protein beta; CSF, cerebrospinal fluid; 
FMT, fecal microbiota transplantation; GC–MS, gas chromatography–mass spectrometry; GF, germ-free; LPS, lipopolysaccharide; MCI, mild cognitive impairment; 
MMSE, mini-mental state examination; NMR, nuclear magnetic resonance; PCR, polymerase chain reaction; PET, positron emission tomography; qPCR, quantitative 
polymerase chain reaction; SPF, specific pathogen-free.

TABLE 1    |    (Continued)

FIGURE 2    |    Neuroinflammatory signaling cascades propagated through the intricate network of the gut–brain axis. Bidirectional transmission 
of inflammatory signals between the intestinal tract and the central nervous system occurs via four predominant avenues: (I) Microbial metabolic 
pathways; (ii) Immune regulatory pathways; (iii) Neurologic circuits of the Vagus Nerve; and (iv) Induction of compromise in the blood–brain barrier. 
This figure was created with BioRe​nder.​com. Ach, acetylcholine; Kyn, kynurenine; LPS, lipopolysaccharide; SAA, Serum amyloid A; SCFAs, short-
chain fatty acids; TMAO, trimethylamine N-oxide; Trp, tryptophan; VN, vagus nerve; 5-HT, 5-hydroxytryptamine.

http://biorender.com
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that propionate mitigated the LPS-induced disruption of occlu-
din, claudin-5, and ZO-1 localization within cells [69]. Thus, 
dysbiosis of the gut microbiota may compromise the protective 
role of SCFAs on the BBB, leading to increased permeability 
and the infiltration of peripheral inflammatory factors into the 
brain, ultimately contributing to neuroinflammation [72, 73].

SCFAs exert their physiological effects by acting as endog-
enous ligands for G-protein-coupled receptors (GPCRs), 
particularly GPR43 and GPR41, and by modulating gene ex-
pression through inhibition of histone deacetylase (HDAC) 
activity [12]. In vitro studies have demonstrated that acetate 
displays anti-inflammatory properties in Aβ-induced BV-2 
microglia by enhancing GPR41 expression and inhibiting 
the ERK/JNK/NF-κB signaling pathway [74]. Furthermore, 

in  vitro experiments have indicated that SCFAs can dimin-
ish histone deacetylase activity and hinder NF-κB nuclear 
translocation, thereby directly modulating LPS-induced pri-
mary microglial cells [75]. Animal studies have shown that 
genetic deletion of microglial Hdac1 and Hdac2 significantly 
ameliorates cognitive deficits in 5xFAD mice by enhancing 
microglial Aβ phagocytosis [76]. Meanwhile, augmenting 
butyrate levels through Clostridium butyricum intervention 
has demonstrated its capacity to suppress microglial activa-
tion and reduce pro-inflammatory cytokine levels in APP/
PS1 mice [77]. SCFAs directly interact with microglia, atten-
uating their antigen-capturing capabilities and consequently 
reducing the production of pro-inflammatory cytokines such 
as IL-12 and TNF-α [78, 79]. These cytokines play a crucial 
role in regulating the neuroinflammatory response and Aβ 

FIGURE 3    |    Metabolic pathways of the gut microbiota in AD. Key metabolites produced by the gut microbiota, such as SCFAs, Trp and indole 
derivatives, and TMAO, influence microglial activity via specific signaling pathways and receptors. This figure was created with BioRe​nder.​com. 
AhR, Aryl Hydrocarbon Receptor; GPCRs, G-Protein-Coupled Receptors; HDCA, Hydroxy-3-oxo-4,6,8,11,13-icosapentaenoic acid; NF-κB, Nuclear 
Factor kappa-light-chain-enhancer of activated B cells; PI3K/AKT/mTOR, Phosphoinositide 3-Kinase/Protein Kinase B/Mechanistic Target of 
Rapamycin; SCFAs, Short-Chain Fatty Acids; TMAO, Trimethylamine N-oxide; Trp, Tryptophan.

http://biorender.com
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deposition in the brain [75]. Despite numerous studies high-
lighting the pivotal role of SCFAs in mediating communica-
tion between gut microbiota and glial cells, a more exhaustive 
understanding of the mechanisms underlying SCFA actions 
in AD, including their effects on other neural cells within the 
brain, necessitates further meticulous exploration.

3.1.2   |   Tryptophan and Indole Derivatives

Amino acids, as precursors of bioactive molecules, play a pivotal 
role, with mounting evidence highlighting the critical involvement 
of the gut microbiota in the metabolic processing and utilization 
of essential amino acids, particularly tryptophan (Trp) [80]. The 
majority of dietary L-tryptophan released in the gut is transferred 
into circulation via epithelial transport; approximately 10%–20% 
of L-tryptophan is metabolized by intestinal epithelial cells and 
the gut microbiota within the intestinal lumen [81]. The gut mi-
crobiota can degrade dietary L-tryptophan into bioactive metabo-
lites, namely (i) indoles, (ii) kynurenine (Kyn), (iii) serotonin, and 
(iv) tryptamine pathways [82–85]. Enterochromaffin cells in the 
gut are capable of converting dietary L-tryptophan into serotonin, 
while the gut microbiota can also modulate the synthesis and re-
lease of serotonin from enterochromaffin cells [86]. For instance, 
Reigstad et  al. [87] demonstrated that SCFAs produced by the 
microbiota promote serotonin production in human enterochro-
maffin cells. Tryptophan hydroxylase 1 (TPH1), the rate-limiting 
enzyme in serotonin biosynthesis, catalyzes the conversion of 
L-tryptophan into 5-hydroxytryptophan, which is subsequently 
decarboxylated to produce 5-hydroxytryptamine (5-HT), or sero-
tonin. Consequently, 5-HT can be further metabolized into mela-
tonin, regulating various features of the gut microbiota, including 
oxidative stress and inflammation [88].

Gut microorganism-mediated Trp metabolism encompasses 
pathways such as the aryl hydrocarbon receptor (AhR) li-
gand pathway, the indole pathway, the Kyn pathway, and the 
5-hydroxytryptophan pathway [89]. Metabolites of Trp derived 
from the gut, such as indole or bacterial tryptophanase, influence 
astrocytes and microglia via AhR signaling, thereby significantly 
impacting neuroinflammation in experimental autoimmune 
encephalomyelitis mice [90, 91]. Additionally, indole metabo-
lites from the gut microbiota activate AhR, inhibit the NF-κB 
pathway, suppress the formation of NLRP3 inflammasomes, 
and reduce the production of inflammatory cytokines, thereby 
improving gastrointestinal function, modulating microglial re-
activity, and alleviating neuroinflammation in APP/PS1 mice 
[92, 93]. Kyn can traverse the BBB to exert its effects within the 
brain [94]. Furthermore, Kyn treatment has been shown to up-
regulate the expression of NLRP2 inflammasomes in astrocytes, 
resulting in the secretion of IL-1β and IL-18 [95]. Although the 
neuroinflammatory role of gut-mediated Trp metabolites in AD 
has been explored to some extent, further research is necessary 
to elucidate the precise mechanisms underlying the actions of 
different tryptophan metabolites in AD.

3.1.3   |   Trimethylamine N-Oxide

Trimethylamine (TMA) is synthesized by the gut microbiota 
during the metabolism of methylamine-containing dietary 

nutrients [96]. This compound subsequently undergoes hepatic 
metabolism to form trimethylamine N-oxide (TMAO) via fla-
vin monooxygenase. TMAO crosses the blood–brain barrier, 
triggering neurodegeneration by activating microglia and as-
trocytes and enhancing the release of inflammatory mediators 
[97, 98]. TMAO promotes inflammation and worsens Aβ and tau 
pathology in D-galactose/AlCl3-induced AD mice through the 
PI3K/AKT/mTOR signaling pathway [99]. Conversely, adminis-
tration of the TMA formation inhibitor 3,3-dimethyl-1-butanol 
diminishes circulating TMAO levels and improves cognitive 
deficits in APP/PS1 mice by attenuating Aβ pathology and neu-
roinflammation [100].

3.2   |   The Immune Pathway

The immune and CNS are intricate networks that regulate var-
ious physiological functions in the organism [101]. They exhibit 
shared characteristics in their function and development, poten-
tially contributing to the pathogenesis of neuropsychiatric dis-
orders. Around 70%–80% of immune cells in the human body 
reside within the gastrointestinal tract, facilitating direct inter-
actions between gut and immune cells [102]. Microbe-associated 
molecular patterns produced by pathogenic microbes engage 
pattern recognition receptors (e.g., TLRs) on host cell surfaces, 
modulating the production of both pro- and anti-inflammatory 
cytokines [103]. These cytokines cross the BBB and influence 
CNS cells, including microglia, thereby shaping the brain's in-
flammatory environment [104]. The resultant chronic inflam-
mation significantly impacts neurodegeneration [104].

3.2.1   |   Immune Regulation

Dysregulation of the pro-inflammatory gut microbiota in AD 
patients may initiate inflammation and promote the forma-
tion and aggregation of Aβ proteins [101]. Accumulation of 
Aβ in the brain triggers intracerebral immune-inflammatory 
responses via TLRs and CD14, predominantly mediated by 
microglial cells. This cascade results in the release of various 
cytokines and the upregulation of antigenic markers, precipi-
tating a neuroinflammatory response [105]. This acute and 
transient inflammation supports Aβ clearance and neuronal 
protection [105]. Systemic inflammation resulting from intes-
tinal dysregulation may exacerbate microglial hyperactiva-
tion and impair hippocampal plasticity, worsening the onset 
and progression of AD [106]. Disruption of intestinal barrier 
(IB) function increases permeability to commensal microbes, 
microbial-derived products (e.g., metabolites, virulence factors), 
and other intestinal constituents, leading to aberrant immune-
inflammatory responses such as inflammation, allergies, and 
autoimmune diseases mediated by molecular mimicry and 
dysregulated T-cell responses [66]. T cells play a crucial role in 
systemic and mucosal immune responses, initiated by dendritic 
cells continually sampling the intestinal lumen. This process 
primarily contributes to the proliferation of regulatory T cells 
(Treg) [107]. Furthermore, the altered composition of gut mi-
crobes and their derived metabolites may stimulate or inhibit 
the differentiation of initial CD4+ T cells into TH17 cells, which 
are highly abundant at the mucosal barrier and play a key role 
in regulating tissue homeostasis. Specific intestinal bacteria 
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induce distinct T-cell subsets; for example, segmented filamen-
tous bacteria drive the differentiation of Th17 cells, while frag-
ile Bacteroides generate Treg expressing the transcription factor 
Foxp3 [108, 109]. Some commensal microorganisms, such as 
Bacteroides fragilis, Bifidobacterium infantis, and Firmicutes, 
as well as certain microbial metabolites, can influence immune 
responses by affecting different cell types in the immune en-
vironment [106]. They induce the differentiation of Treg into 
effector cells, such as Th1 and Th17 cells, or IL-10 regulatory 
T cells, promoting either immune activation or tolerance [110]. 
They induce the differentiation of Treg into effector cells, such 
as Th1 and Th17 cells, or IL-10 regulatory T cells, promoting ei-
ther immune activation or tolerance [111–115]. Bacillus-derived 
poly-γ-glutamic acid specifically signals CD4+ T cells, facilitat-
ing selective Treg differentiation [116]. Increased microbiota-
induced Th17 differentiation has been linked to behavioral 
abnormalities from maternal immune activation, potentially 
migrating from intestines to meninges [107, 117–119]. Intestinal 
microbe–immune cell interactions regulate T-cell and B-cell 
dynamics, impacting immune responses in both peripheral 
and CNS. Gut T and B cell subsets may migrate from gut to me-
ninges, influencing local neuroimmune environments through 
cytokine production such as IL-17a, IL-10, and IgA antibodies, 
thereby modulating neuroinflammation [120]. Additionally, 
microbiota-derived metabolic products like taurocholic acid, 
histamine, indole, and spermine influence downstream neuro-
peptides, regulating NLRP6 inflammasomes, IL-10, and IL-18 
secretion, which correlate with inflammatory factor levels and 
Alzheimer's severity [14, 121].

3.2.2   |   5-Hydroxytryptamine

Serotonin, also known as 5-hydroxytryptamine (5-HT), acts 
as a neurotransmitter with multifaceted roles in the brain and 
gut, particularly in orchestrating the gut microbiota-brain axis 
[122]. The gut microbiota influences systemic immune function 
through modulation of 5-HT production and release from gut 
enterochromaffin cells [122, 123]. 5-HT impacts the functional-
ity of monocytes and macrophages, governing inflammatory re-
sponses and potentially influencing neuroinflammation [124]. 
Research indicates that 5-HT regulates neuroinflammation by 
activating the 5HT2AR/cAMP/PKA/CREB/Sirt1 pathway and 
the NF-κB pathway, controlling the transcription of TLR2 and 
TLR4 in response to microglial phagocytic stimuli and thereby 
influencing neuroinflammation [125–127]. Additionally, 5-HT 
modulates the release of inflammatory cytokines, affecting the 
activation of immune cells and inflammatory responses, such 
as TNF-α, IFNγ, IL-1β, IL-17, and IL-6 [128]. Moreover, 5-HT 
binding to its receptors on microglia triggers the release of 
cytokine-laden exosomes, providing an alternative mechanism 
for the modulation of gut-induced neuroinflammation [129]. 
The synthesis, metabolism, or transport of 5-HT, critical in the 
inflammatory response, may offer novel avenues for mitigating 
neuroinflammation in AD.

3.2.3   |   Serum Amyloid A

Serum amyloid A (SAA), a product of the inflammatory cascade 
in intestinal epithelial cells, serves as a prominent acute-phase 

reactant, with the gut microbiota potentially modulating neu-
roinflammation through the regulation of SAA levels [130, 131]. 
In the brain tissues of AD patients, SAA localizes with the dis-
tribution of senile plaques [132]. A recent study reported that 
SAA expression in the brains of APP/PS1 mice exacerbates 
neuroinflammation by hindering astrocyte activation and mi-
gration toward Aβ plaques via the p38 MAPK pathway [133]. 
In vitro, recombinant SAA treatment modulates the functions 
of astrocytes and microglia, decreasing astrocyte viability while 
enhancing microglial activity  [132]. There are also differences 
in cytokines and inducible iNOS between the two cell types 
[132]. PI3K is a common pathway mediating the effects of SAA 
on astrocytes and microglia, whereas the c-JNK pathway is se-
lectively induced in microglia, and the NF-kB pathway is selec-
tively activated in astrocytes [132]. Furthermore, SAA promotes 
the differentiation of Th17 cells, increasing the expression of the 
pro-inflammatory cytokine IL-17, which induces the production 
of cytokines such as IL-1β, IL-6, TNF-α, and IL-22 [131, 134]. 
SAA orchestrates neuroinflammation, regulates cholesterol me-
tabolism, and activates glial cells, impacting AD [135].

In this immune pathway, the intestinal microbiota has a role be-
yond immune system modulation. Its regulation of 5-HT, medi-
ation of inflammatory responses through SAA and interactions 
with neurons provide insights into the complex pathogenesis of 
neuroinflammation (Figure 4). These findings not only enhance 
our understanding of neuroimmune interactions but also sug-
gest new avenues for potential therapeutic strategies to mitigate 
neuroinflammatory processes.

3.3   |   The Vagus Nerve Pathway

The vagus nerve (VN), a pivotal component of the autonomic 
nervous system, comprises 80% afferent fibers and 20% efferent 
fibers. It intricately traverses the gastrointestinal tract, func-
tioning as a critical neural pathway [136]. By facilitating bidirec-
tional information transmission with visceral organs via motor 
and sensory fibers, the VN regulates organ function and main-
tains internal organismal homeostasis [137]. This nerve serves 
as a pivotal link between the intestinal microbiota and the brain, 
playing a crucial role in the neural-immune and gut–brain axes 
(Figure 5) [137].

Intestinal endocrine cells interact directly with VN afferent 
fibers, transmitting information to the central autonomic net-
work for analysis and integration (including the paraventricular 
nucleus, locus coeruleus, hypothalamus, and limbic system en-
compassing the thalamus, amygdala, and hippocampus) [138]. 
Research indicates that chronic VN stimulation in rats with AD 
can enhance their memory, likely through modulation of gluta-
mate receptors [139]. VN stimulation activates the locus coeru-
leus, triggering catecholamine release in the hippocampus and 
neocortex, enhancing synaptic plasticity, and reducing levels 
of inflammatory signaling factors (such as TNF-α, IL-1β, and 
IL-6) [140–142]. These pro-inflammatory molecules may access 
the CNS via the bloodstream or VN afferent fibers, triggering 
neuroinflammatory responses, activating microglial cells and 
astrocytes, and leading to neuronal damage and cognitive im-
pairment [143–145]. Furthermore, VN efferent fibers can syn-
thesize and release acetylcholine (ACh), influencing cholinergic 
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neurons. Activation of ACh released by VN efferent fibers in-
hibits TNF-α secretion, demonstrating an anti-inflammatory 
effect through binding to α-7 nicotinic ACh receptors on macro-
phages [146]. While the VN's role in the gastrointestinal domain 
is clear, the exact operational pathways and complex processes 
are still under investigation. Concurrently, increasing research 
underscores the VN's significant role in elucidating the interplay 
between gut microbiota and neuroinflammation.

3.4   |   The Gut–Brain Barrier

The IB consists of the epithelial layer that lines the intestinal 
tract, along with associated elements such as the mucous layer, 
tight junctions, and immune cells, orchestrating the selective 
passage of intestinal contents to safeguard against pathogens 
and toxins [147]. The BBB is constituted by specialized brain en-
dothelial cells within microvessels, meticulously regulating the 
exchange of molecules and nutrients between the bloodstream 
and brain tissue [148]. Dysbiosis of the intestinal microbiota, 
characterized by reduced diversity, inflammation, and toxic-
ity, compromises IB integrity, potentially triggering or exacer-
bating inflammation at the IB and permitting the unchecked 

translocation of pathogenic microbiota across the BBB (Figure 6) 
[149]. Persistent systemic inflammation can perturb BBB struc-
ture, increasing permeability and precipitating neuroinflam-
mation, neurodegeneration, and age-related cerebral changes 
[150, 151].

Specific Gram-negative bacteria in the gut can produce sub-
stantial quantities of amyloids, lipopolysaccharides (LPS), 
or endotoxins, breaching the IB and BBB to provoke robust 
pro-inflammatory and innate immune responses within 
the CNS, potentially modulating signaling pathways and 
pro-inflammatory cytokine production associated with AD 
[152–154]. LPS, a prevalent endotoxin, acts as an immunostimu-
lant by being transported to the surface of myeloid cells via LBP, 
where they bind to membrane-bound CD14, forming a complex 
that subsequently activates the TLR4-MD2 complex. The acti-
vation of TLR4 initiates a signaling cascade involving MyD88, 
IRAK, and TRAF6, ultimately leading to the activation of NF-
κB and MAPK through the NIK and TAK1 pathways. This 
cascade results in the release of inflammatory cytokines such 
as IL-1β, IL-6, and TNF-α, thereby instigating an inflamma-
tory response [155]. Research has identified the accumulation 
of bacterial-derived LPS within the neuronal parenchyma and 

FIGURE 4    |    The immune pathway of the gut microbiota in AD. The gut microbiota and its produces (5-HT and SAA), which affect the immune 
system and glias cells via immune pathway. This figure was created with BioRe​nder.​com. 5-HT, 5-Hydroxytryptamine (Serotonin); 5HT2AR, 
5-Hydroxytryptamine 2A Receptor; cAMP, Cyclic Adenosine Monophosphate; CREB, CAMP Response Element-Binding Protein; NF-κB, Nuclear 
Factor kappa-light-chain-enhancer of activated B cells; PKA, Protein Kinase A; SAA, Serum Amyloid A; Sirt1, Sirtuin 1; TLRs, Toll-Like Receptors.

http://biorender.com
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around the periphery of neuronal nuclei in the hippocampus 
and superior temporal gyrus of AD patients [156, 157]. This oc-
currence is attributed to the synergistic effects of bacterial LPS 
and amyloid-like proteins, which may exacerbate intestinal per-
meability, leading to elevated cytokine levels such as IL-17A and 
IL-22, known to correlate with AD [158, 159]. Moreover, LPS 
stimulation of the enteric nervous system induces the produc-
tion of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6, se-
lectively activating TLR4 on astrocytes and microglia, triggering 
NF-κB pathway activation, escalating cytokine production, in-
ducing neuroinflammation, and fostering Aβ deposition, crucial 
in inflammatory signaling associated with AD [160–162]. This 
triggers NF-κB pathway activation, increasing cytokine produc-
tion, inducing neuroinflammation, and Aβ deposition, playing a 
key role in the inflammatory signaling cascade in AD patients 
[163–165]. Additionally, during aging, vascular impairments, 
or degenerative diseases, harmful metabolites originating from 
the gut microbiota may permeate into the systemic circulation 
and cerebrovascular system, accumulating at both systemic and 
cerebral levels [166]. This accumulation can elevate ROS and 
activate the NF-κB signaling pathway, thereby upregulating pro-
inflammatory miRNA-34a. Consequently, this downregulates 

TREM2 expression, impairing microglial phagocytic function 
and resulting in Aβ accumulation [158, 159].

4   |   Prospective Therapeutic Strategies for AD

The intricate mechanisms by which the gut microbiota influences 
AD pathogenesis offer promising avenues for future therapeutic in-
terventions. Compared to conventional brain-targeted treatments, 
strategies focusing on the gut microbiota possess unique advan-
tages, not only circumventing the challenge of the BBB but also al-
lowing for more precise modulation of host–microbe interactions, 
thereby achieving faster therapeutic outcomes. These approaches 
are also regarded as safer, given their lower side effect profile, 
particularly through interventions such as dietary modifications, 
supplementation with probiotics and prebiotics, fecal microbiota 
transplantation, and other microbiota modulators, which can ef-
fectively reshape the composition of the gut microbiome, yielding 
beneficial effects on neurological disorders and alleviating patho-
logical conditions (Figure  7; Table  2) [10, 35, 38, 138, 167–178]. 
Moreover, an increasing body of research suggests that certain 
traditional Chinese herbal monomers, extracts, and compound 

FIGURE 5    |    The vagus nerve pathway of the gut microbiota in AD. Gut endocrine cells relay information to the central autonomic network of 
the brain through interactions with afferent fibers of the vagus nerve. Activation of the vagus nerve modulates the levels of inflammatory signaling 
molecules, which govern the function of microglia and astrocytes. This figure was created with BioRe​nder.​com.

http://biorender.com
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formulations may exert potential preventive and therapeutic effects 
in AD by modulating the composition, diversity, and abundance of 
the gut microbiota. This further underscores the importance of the 
gut–brain axis in neurodegenerative diseases and highlights that 
gut microbiota-targeted therapies represent not only an emerging 
field in AD treatment but also a novel perspective for enhancing 
overall health.

5   |   Conclusions and Discussion

AD is witnessing an alarming global surge in prevalence, with 
the foremost challenge to treatment lying in the incomplete 

elucidation of its pathogenesis. Current FDA-approved ther-
apies offer only marginal benefits, emphasizing the critical 
need to explore innovative therapeutic strategies and targets. 
Inflammatory signals are central to AD pathogenesis, mediated 
by the bidirectional communication of the gut–brain axis. This 
study delves into the intricate ways in which gut microbiota 
modulates AD progression through diverse mechanisms such as 
metabolite production, immune regulation, preservation of in-
testinal and BBB integrity, and neurotransmitter synthesis.

The vital role of a healthy gut microbiota in maintaining im-
mune homeostasis includes: (i) fermenting dietary fibers to 
produce SCFAs, which regulate immune responses by binding 
to receptors on both intestinal and peripheral immune cells, 
thereby promoting the secretion of anti-inflammatory cyto-
kines and inhibiting pro-inflammatory factors. This immu-
nomodulatory effect reduces systemic inflammation, which 
in turn alleviates neuroinflammation; (ii) It helps preserve 
the integrity of the intestinal epithelial barrier, preventing 
harmful substances such as pathogens and toxins from en-
tering the bloodstream; (iii) It fosters the generation of Tregs, 
reducing the release of pro-inflammatory cytokines; and (iv) 
Through the BBB, it modulates microglial activation, keeping 
them in an anti-inflammatory and tissue repair mode, thereby 
diminishing neuroinflammation. Conversely, dysbiosis pro-
motes chronic, low-grade inflammation, exacerbating neu-
roinflammatory pathways linked to attention deficit disorder 
[37, 157, 169, 170]. These mechanisms underscore the pivotal 
role of the gut microbiota in regulating both local and systemic 
immune responses, thus influencing the trajectory of neuroin-
flammation and attention deficit disorder. A well-balanced 
gut microbiota supports anti-inflammatory processes and 
preserves the integrity of the gut barrier, which is crucial in 
preventing systemic inflammation from impacting the brain 
[155, 179, 180]. These mechanisms highlight the critical role of 
gut microbiota in modulating both local and systemic immune 
responses, consequently shaping neuroinflammation and the 
trajectory of AD progression. Dysbiosis has been linked to 
the promotion of neuroinflammation, while a balanced mi-
crobiome appears to offer neuronal protection and mitigate 
the advancement of AD. Although this paper predominantly 
focuses on bacteria, it is imperative to recognize that the gut 
microbiota encompasses viruses, phages, fungi, and other mi-
croorganisms, whose roles in AD pathogenesis merit further 
investigation. Mechanistic insights into how gut microbiota 
metabolites impact human health, alongside translational re-
search and multifactorial studies—including age, diet, ethnic-
ity, environment, and physical activity—remain crucial areas 
for future exploration [181].

In conclusion, this study underscores the fundamental influence 
of gut microbiota on AD pathogenesis, advocating for a deeper 
investigation into its diversity and impact as a driver for more 
efficacious therapeutic interventions. In particular, further clar-
ification of the interplay between gut microbiota and immune 
homeostasis is necessary, as chronic inflammation stemming 
from dysbiosis plays a central role in exacerbating neuroinflam-
mation and neuronal damage in AD. Future studies should aim 
to establish causal links between gut microbiota and AD, paving 
the way for novel microbiome-targeted treatments that may alter 
the disease's course.

FIGURE 6    |    The gut–brain barrier pathway of the gut microbiota 
in AD. The dysbiosis of gut microbiota results in the production 
of lipopolysaccharides (LPS) and other toxins, which compromise 
intestinal barrier integrity, thereby increasing gut permeability. 
Consequently, these toxins enter the bloodstream and ultimately disrupt 
the blood–brain barrier, heightening its permeability and allowing more 
inflammatory mediators and toxins to infiltrate the brain. LPS activates 
astrocytes and microglia, eliciting the release of various cytokines 
and chemokines, culminating in neuroinflammation. This figure was 
created with BioRe​nder.​com.

http://biorender.com
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6   |   Current Challenges and Future Perspectives

The significance of the gut microbiota to human health was 
recognized by scientists over a century ago, but research was 
hindered by limited methodologies, particularly the inabil-
ity to culture anaerobic bacteria within the gut microbiome. 
The advent of modern technologies, such as anaerobic cul-
turing, DNA fingerprinting, next-generation sequencing, and 
real-time quantitative PCR, has significantly advanced the 
study of the gut microbiota [182, 183]. At this stage, defining 
a healthy microbiota is exceedingly challenging. The abun-
dance and diversity of gut microbiota exhibit considerable 
individual variability (e.g., gender, race, genetic background, 
environmental factors, dietary habits, etc.), necessitating fur-
ther research employing metagenomic analysis and integrat-
ing multiple omics approaches such as proteomics, genomics, 
and metabolomics, rather than solely relying on 16S rRNA 
gene sequencing to elucidate the regularity of gut microbiota 
structure and strain levels in AD patients. For high-risk pop-
ulations, such as individuals with a family history of AD and 
the elderly, more research on the effects of microbiota-based 
interventions for AD, potential interactions with other ther-
apies, appropriate sample sizes, and longer follow-up studies 
should be considered. Currently, methods for modulating the 

gut microbiota mainly include probiotics, prebiotics, fecal 
microbiota transplantation, antibiotics, etc. However, the ef-
ficacy and safety of these methods require further clinical 
trials and long-term observations for validation. Additionally, 
when administering drugs, it is crucial to consider the im-
pact of the medication on other microbiota interventions. It is 
worth noting that although therapeutic approaches targeting 
the gut microbiota have certain advantages, strategies for gut 
microbiota modulation in AD are still in the research stage. 
Despite some preliminary research suggesting the potential 
benefits of gut microbiota modulation for AD, the clinical 
translation of microbiome-based therapies remains challeng-
ing, thus requiring continuous research efforts to unravel the 
complexity of the microbiota–gut–brain axis and fully exploit 
its potential. With the increasing maturity of technology and 
methodological innovations, further exploration of the causal 
relationship between the gut microbiota and AD, elucida-
tion of the molecular mechanisms of microbiota–gut–brain 
axis neuroinflammation regulation, discovery of more gut 
microbiota-related AD biomarkers, and development of more 
effective and personalized gut microbiota modulation thera-
pies are warranted. The plasticity of the human gut microbi-
ome provides an exciting opportunity for the development of 
personalized microbiota-based therapies for AD.

FIGURE 7    |    Microbiome-targeted therapeutic approaches for AD. Emerging evidence from both murine and human studies indicates that 
interventions such as probiotics, prebiotics, fecal microbiota transplantation from healthy donors to AD patients, microbiome-modulating 
pharmacological agents, and the direct targeting of gut microbiota-regulated neuroinflammatory pathways hold promise as potential disease-
modifying therapies with the capacity to mitigate neurodegeneration. This figure was created with BioRe​nder.​com.

http://biorender.com
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