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ABSTRACT

Background and Purpose: Alzheimer's disease (AD) is characterized by progressive cognitive decline and neuronal loss, com-

monly linked to amyloid-@ plaques, neurofibrillary tangles, and neuroinflammation. Recent research highlights the gut micro-
biota as a key player in modulating neuroinflammation, a critical pathological feature of AD. Understanding the role of the gut
microbiota in this process is essential for uncovering new therapeutic avenues and gaining deeper insights into AD pathogenesis.

Methods: This review provides a comprehensive analysis of how gut microbiota influences neuroinflammation and glial cell
function in AD. A systematic literature search was conducted, covering studies from 2014 to 2024, including reviews, clinical

trials, and animal studies. Keywords such as “gut microbiota,” “Alzheimer’s disease,

barrier” were used.

”

neuroinflammation,” and “blood-brain

Results: Dysbiosis, or the imbalance in gut microbiota composition, has been implicated in the modulation of key AD-related

mechanisms, including neuroinflammation, blood-brain barrier integrity, and neurotransmitter regulation. These disruptions
may accelerate the onset and progression of AD. Additionally, therapeutic strategies targeting gut microbiota, such as probiotics,
prebiotics, and fecal microbiota transplantation, show promise in modulating AD pathology.

Conclusions: The gut microbiota is a pivotal factor in AD pathogenesis, influencing neuroinflammation and disease progression.

Understanding the role of gut microbiota in AD opens avenues for innovative diagnostic, preventive, and therapeutic strategies.

1 | Introduction

Alzheimer's disease (AD) manifests as a relentless neurodegen-
erative disorder marked by progressive memory impairment
and cognitive deterioration, coupled with the accumulation of
amyloid-beta (AB) plaques and neurofibrillary tangles (NFTs)
within the brain [1]. Epidemiological investigations indicate
a notable surge in AD-related mortality over the past two de-
cades, cementing its status as the foremost neurodegenerative

affliction among the elderly globally [2]. Despite extensive
research efforts, the precise pathogenesis of AD remains
enigmatic; however, burgeoning evidence implicates neuroin-
flammation as a central factor in its pathological advancement
[3]. Neuroinflammation, predominantly driven by activated
neuroglial cells—the innate immune cells of the central ner-
vous system (CNS)—is pivotal in AD [4]. Dysregulation and
hyperactivation of neuroglia lead to the excessive secretion of
pro-inflammatory cytokines, reactive oxygen species (ROS),
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and nitric oxide (NO), thereby exacerbating neuroinflamma-
tion and neurotoxicity [4-6].

The gut microbiota orchestrates cerebral function and influ-
ences the onset and progression of AD. It modulates the equi-
librium of the gut-brain axis by interacting with the CNS,
including the vagus nerve, immune system, and endocrine sys-
tem [7]. Alterations in the gut microbiota are associated with
elevated levels of inflammatory cytokines, oxidative stress, and
neurotoxicity in the brains of both AD patients and animal mod-
els [8, 9]. The gut microbiota may impact AD by regulating neu-
roinflammation, as its metabolites may cross the blood-brain
barrier (BBB), eliciting anti-inflammatory and neuroprotective
effects on glial cells [10-12]. Furthermore, the gut microbiota
influences the infiltration of peripheral immune cells and the ex-
posure of glial cells to systemic inflammatory stimuli, regulates
the expression and activity of pattern recognition receptors, and
modulates the production and metabolism of neurotransmitters
[13-15].

This paper aims to provide a comprehensive analysis of the
current role of the gut microbiota in modulating neuroinflam-
mation and glial cell function in AD. Its objective is to enhance
our understanding of AD's pathogenesis and to deliberate on the
potential advantages and challenges of manipulating the gut mi-
crobiota as a novel approach for diagnosing, treating, and pre-
venting AD.

2 | Gut Microbiota and AD
2.1 | Pathogenesis of AD

Current investigations propose that the etiology and pathogen-
esis of AD may be influenced by myriad risk factors (Figure 1):
(i) The AP cascade hypothesis assumes a central role in AD pa-
thology [16]. (ii) The inflammatory response is pivotal in AD
pathogenesis, wherein the resultant inflammatory process can
precipitate neuronal damage [17, 18]. (iii) The integrity of the
BBB is crucial in AD progression, and its compromised state
incites inflammatory and neurodegenerative processes [19, 20].
(iv) Other pathological mechanisms [3, 21]: Apart from the afore-
mentioned factors, various elements such as tau protein mod-
ifications, the autophagy-lysosomal pathway, mitochondrial
function, cholinergic transmission, oxidative stress, and genetic
susceptibility may influence AD progression. Notably, disrup-
tions in the gut microbiota may serve as significant factors in
AD pathogenesis, influencing Af deposition and neuroinflam-
mation [22]. These interwoven factors collectively contribute to
AD progression.

2.2 | Gut Microbiota and the Brain

High-throughput sequencing technologies have provided us
with a deeper understanding of the diversity and abundance of

AP plaque AP peptides

Tau pathology T

&Ieurotoxicity}

W/

Lipid metabolism disorder

R

Oxidative stress

Mitochondrial Dysfunction

Genetic factors

FIGURE1 |

S

Alzheimer’s Disease

Cholinergic system

Ao %%%

m\\
(Y

Glial cell reactivity

Cytokines

. ®—
."

Vascular Pghology

Cell apoptosis

tm\ ,},‘
\\\,/‘,‘

Gut dysbiosis

Primary hypotheses concerning the pathogenesis of AD. Risk factors for AD are postulated to correlate with at least one of seven

primary pathologies: Apoptosis, oxidative stress, hyperphosphorylation of Tau proteins, Af aggregation, pro-inflammatory cytokines released by

reactive glial cells, cerebrovascular pathology, and alterations in the gut microbiota. Each of these primary pathologies may ultimately exacerbate

and contribute to the burden of the other major AD pathologies. These pathologies may eventually converge, precipitating insufficient neuronal

sustenance, synaptic decay, and demise, culminating in neurodegeneration that clinically manifests as cognitive decline.
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human gut microbes. The magnitude and composition of these
microbiota are shaped by various factors, including gender,
age, diet, and geography [23]. Gut microbes not only colonize
the body's surfaces and fluids but predominantly inhabit the
digestive tract [24]. They form an extensive chemical factory
that impacts host health through the synthesis of diverse com-
pounds. The gut microbiome plays a pivotal role in modulating
host immunity, digestion, and neural signaling and its associa-
tion with brain function, potentially offering novel insights into
the exploration, comprehension, and treatment of neurodegen-
erative conditions like AD [25]. The microbial-gut-brain axis
represents a complex network of connections between the gut
and the brain through the nervous, endocrine, and immune sys-
tems via multiple pathways (e.g., metabolite pathways, immune
response pathways, neurotransmission pathways, neuroendo-
crine-hypothalamic axis pathways, and gut and BBB), which
may act autonomously or synergistically to influence the onset
and progression of AD [22, 26].

2.3 | Alterations in the Gut Microbiome in AD

Recent studies have revealed significant discrepancies in the
gut microbiota among individuals suffering from AD [27-36]
or analogous animal models [37-46], juxtaposed with those of
robust health (Table 1). These investigations propose that the
alterations noted in the gut microbiome, encompassing reduced
microbial diversity, abnormal proliferation or depletion of par-
ticular bacterial groups, decreased abundance of probiotics, and
variances in microbial metabolites, could represent a pivotal as-
pect in the pathogenesis of AD [47-51].

3 | Gut Microbiota and Neuroinflammation

Neuroinflammation is the immune response elicited by glial
cells within the CNS, typically in reaction to stimuli such as
neural injury, infections, toxins, or autoimmunity [52]. In
AD, neuroinflammation constitutes the third primary patho-
logical hallmark following Af accumulation and NFT for-
mation [53]. Among the principal glial cell types, microglia
are distinguished as the predominant innate immune cells
of the CNS, serving as the primary responders to A plaques
by aggregating in their vicinity [54, 55]. Numerous genome-
wide association studies have further identified microglia
as the principal cell type expressing AD-related genes [56].
Microglia play a pivotal role in detecting and reacting to en-
vironmental changes, eliminating harmful stimuli, and pre-
senting antigens to T lymphocytes, ultimately contributing
to neurodegeneration [18]. Astrocytes are integral in main-
taining the integrity and metabolic coupling of the BBB, reg-
ulating ion and neurotransmitter homeostasis, producing
neurotrophic factors, and supporting neuronal activity and
synaptic function [6]. Under normal circumstances, microg-
lia and astrocytes perform neuroprotective functions, limiting
the extent of neuroinflammation. However, in pathological
conditions such as AD, the chronic activation of microglia
and astrocytes becomes dysregulated and overactivated, lead-
ing to sustained low-grade neuroinflammation and excessive
production of pro-inflammatory cytokines, ROS, and NO,
which can be detrimental to neurons and synapses [4]. Indeed,

neuroinflammation and the activation of glial cells are hall-
mark features of AD [57].

Neuroinflammation plays a key role in the pathogenic mech-
anisms of AD, influencing the metabolism of Af and tau, the
functionality of neurons and synapses, and accelerating the
progression and deterioration of AD. It augments the pro-
duction and deposition of AB, a hydrophobic peptide that, if
not cleared, aggregates into neurotoxic oligomers and fibrils,
leading to neuronal death and synaptic dysfunction [58].
Neuroinflammation activates (-secretase and y-secretase
pathways, enhancing Af production while releasing oxida-
tive stress factors, metalloproteinases, and inflammatory
cytokines that impair Af degradation and clearance [59].
Additionally, neuroinflammation disrupts Af transport and
elimination, causing its accumulation at the blood-brain
barrier. It also catalyzes the aberrant phosphorylation and
aggregation of tau [60]. In AD pathology, aberrant tau phos-
phorylation leads to its detachment from microtubules, cul-
minating in the formation of NFTs and disrupting neuronal
metabolism and signal transduction. The activation of various
kinases, such as GSK-3§3, CDK5, MAPK, and PKA, induced
by neuroinflammation, elevates tau phosphorylation levels
[54]. Moreover, the secretion of inflammatory cytokines like
tumor necrosis factor-a (TNF-a), interleukin-1g (IL-18), and
IL-6 during neuroinflammation exacerbates tau aggregation
and dissemination [18]. Neuroinflammation inflicts damage
on neurons and synapses, both directly and indirectly, by in-
ducing apoptosis and necrosis through the release of oxida-
tive stress factors, inflammatory cytokines, nitric oxide, and
glutamate [4]. Additionally, neuroinflammation disrupts the
synthesis, release, and reuptake of neurotransmitters, precip-
itating synaptic dysfunction and degeneration. The altered
expression and signaling pathways of neurotrophic factors fur-
ther impair neuronal survival and plasticity [61]. Hence, miti-
gating neuroinflammation emerges as a promising strategy for
the prevention and treatment of AD.

Furthermore, the gut microbiota serves as a significant source
of amyloid proteins. Bacterial strains such as Escherichia coli,
Bacteroides fragilis, Salmonella typhi, Pseudomonas fluorescens,
and Staphylococcus aureus are known to produce amyloid pro-
teins. These strains synthesize proteins like curli, TasA, CsgA,
FapC, and phenol-soluble modulators, which facilitate the mis-
folding of A fibrils and oligomers. This aberration may com-
promise the host's immune system [62]. Additionally, these
bacteria can produce endotoxins such as lipopolysaccharides
(LPS), whose levels rise following bacterial infection or alter-
ations in gut microbial metabolic activity due to inflammation,
potentially exacerbating neurodegeneration [63]. Notably, this
process may impair brain cell function, initiating a vicious cycle
between the gut and the brain [64, 65]. Presently, the compre-
hension of the mechanisms by which the gut microbiota modu-
lates neuroinflammatory processes in AD remains in its nascent
stages. Nonetheless, preliminary evidence from extant research
indicates that the gut microbiota exerts a substantial modula-
tory influence on neuroinflammation via four discernible path-
ways: the metabolite pathways of the gut microbiota, immune
response pathways, neural transmission pathways, and the gut-
brain barrier (Figure 2). These pathways, either independently
or synergistically, impact the onset and progression of AD.
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TABLE1 | Metamorphosis of gut microbiota in AD context.

Category Methodology Major findings Refs
AD patients 16S rRNA sequencing Bacterial population in the brain 1 [27]
16S rRNA sequencing Firmicutes and Bifidobacterium |, Bacteroidetest [28]
qPCR Escherichia/Shigella 1 and E. rectale | [29]
Metabolic phenotyping Metabolite concentrations of tryptophan [30]
pathway metabolites in urine and serum |
PCR for DNA and DNA sequencing LPS and gram-negative Escherichia coli [31]
fragments colocalize with amyloid plaque
16S rRNA sequencing Various changes in microbial populations associated [32]
with amyloid positivity and p-tau status
Behavioral assessment FMT from healthy donors showed [35]
improvements in MMSE score, memory,
cognition, mood, and socialization
MCI patients 16S rRNA sequencing The abundance of the genus Ruminococcus, [36]
Butyricimonas, and Oxalobacter |
GC-MS and PET Fecal levels of acetic acid, butyric acid, [50]
and caproic acid |; Fecal SCFAs in MCI
group were negatively associated with A
deposition in cognition-related regions
CSF biomarker quantification TMAO levels in CSF 1 [51]
Adults (4 Age qPCR Bifidobacterium, Faecalibacterium, [33]
Groups) Bacteroides group, and Clostridium cluster
XIVa | with age up to 66-80years
Animal models
GF mice RNA-seq GF animals display global defects in microglia [37]
APP/PS1 16S rRNA sequencing and 'H Proteobacteria and Verrucomicrobia 1, Bacteroidetes [38]
transgenic mice nuclear magnetic resonance and key metabolic components of SCFAs |
Thyl-C/EBPf Immunofluorescent staining FMT from AD donors induces Af and Tau [46]
transgenic mice and ELISA assays aggregation, associated with upregulation
of the C/EBPB/AEP pathway, microglia
activation, and cognitive impairment
APP/PS1 16S rRNA sequencing Microbiota composition and diversity perturbed [39]
transgenic mice
5xFAD mice 16S rRNA sequencing and Dysbiosis of gut flora (Af in gut; trypsin |; [40,
Immunofluorescent staining Firmicutes: Bacteroidetes ratio 1; Clostridium leptum 41]
1); C/EBPR/AEP pathway active in gut with age
3xTg mice Immunofluorescent staining Microbiota accelerates AD pathology with [41]
active C/EBPB/AEP signaling in brain
3xTg mice 16S rRNA sequencing and FMT from SPF mice and AD patients to GF 3xTg [42]
Immunostaining mice activates C/EBPB/AEP signaling, promoting
microglial activation and cognitive deficits
P301L mice 16S rRNA sequencing Firmicutes: Bacteroidetes ratio| [43]
5xFAD mice Amyloid quantification and 7-day FMT regimen improved the “plaque-busting” [44]
behavioral assessment and cognitive behavior shown in 5xFAD mice
APP/PS1 ELISA assays and FMT from AD donors worsened behavior and [45]
transgenic mice behavioral assessment increased neuroinflammation; FMT from AD
and WT mice donors to WT increased neuroinflammation
(Continues)
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TABLE1 | (Continued)

Category Methodology Major findings

APP/PS1
transgenic mice

ELISA assays and
behavioral assessment

FMT from WT donors improved cognitive [38]
function, decreased Af plaque burden, and
decreased levels of soluble AB40 and A{342

Note: Arrows: 1: Increase or higher levels;|: Decrease or lower levels.

Abbreviations: A3, amyloid-beta; AD, Alzheimer's Disease; AEP, aspartic endopeptidase; C/EBP@, CCAAT/enhancer-binding protein beta; CSF, cerebrospinal fluid;
FMT, fecal microbiota transplantation; GC-MS, gas chromatography-mass spectrometry; GF, germ-free; LPS, lipopolysaccharide; MCI, mild cognitive impairment;
MMSE, mini-mental state examination; NMR, nuclear magnetic resonance; PCR, polymerase chain reaction; PET, positron emission tomography; qPCR, quantitative

polymerase chain reaction; SPF, specific pathogen-free.
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FIGURE 2 | Neuroinflammatory signaling cascades propagated through the intricate network of the gut-brain axis. Bidirectional transmission
of inflammatory signals between the intestinal tract and the central nervous system occurs via four predominant avenues: (I) Microbial metabolic
pathways; (ii) Immune regulatory pathways; (iii) Neurologic circuits of the Vagus Nerve; and (iv) Induction of compromise in the blood-brain barrier.

This figure was created with BioRender.com. Ach, acetylcholine; Kyn, kynurenine; LPS, lipopolysaccharide; SAA, Serum amyloid A; SCFAs, short-

chain fatty acids; TMAO, trimethylamine N-oxide; Trp, tryptophan; VN, vagus nerve; 5-HT, 5-hydroxytryptamine.

Continued research endeavors hold the promise of enhancing
the understanding of the intricate and interrelated interactions
between the gut microbiota and AD, thereby offering a novel
vantage point for the development of innovative therapeutic
strategies.

3.1 | The Metabolite Pathway

The gut microbiota plays an important role in the function and
behavior of the neuroinflammatory system, affecting it through
the direct or indirect production of metabolites such as short-
chain fatty acids (SCFAs), amino acids, lipopolysaccharides
(LPS), and trimethylamine (Figure 3) [66].

3.1.1 | Short-Chain Fatty Acids

SCFAs, primarily composed of butyrate, propionate, and ac-
etate, are fermentation by-products of the gut microbiota,
predominantly derived from the phylum Bacteroidetes and indi-
gestible carbohydrates such as dietary fibers [67]. These SCFAs
permeate the BBB via monocarboxylate transporters on endo-
thelial cells and contribute to maintaining BBB integrity by sup-
pressing pathways associated with non-specific inflammatory
responses to microbial infections in vitro [68, 69]. Studies have
demonstrated that SCFA mixtures restore the expression levels
of claudin-5, occludin, and ZO-1 in the hippocampus, thereby
improving BBB permeability [70, 71]. Similarly, using hCMEC/
D3 cells as an in vitro model of the human BBB, it was observed
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FIGURE 3 | Metabolic pathways of the gut microbiota in AD. Key metabolites produced by the gut microbiota, such as SCFAs, Trp and indole
derivatives, and TMAO, influence microglial activity via specific signaling pathways and receptors. This figure was created with BioRender.com.
AhR, Aryl Hydrocarbon Receptor; GPCRs, G-Protein-Coupled Receptors; HDCA, Hydroxy-3-ox0-4,6,8,11,13-icosapentaenoic acid; NF-xB, Nuclear
Factor kappa-light-chain-enhancer of activated B cells; PI3K/AKT/mTOR, Phosphoinositide 3-Kinase/Protein Kinase B/Mechanistic Target of
Rapamycin; SCFAs, Short-Chain Fatty Acids; TMAO, Trimethylamine N-oxide; Trp, Tryptophan.

that propionate mitigated the LPS-induced disruption of occlu-
din, claudin-5, and ZO-1 localization within cells [69]. Thus,
dysbiosis of the gut microbiota may compromise the protective
role of SCFAs on the BBB, leading to increased permeability
and the infiltration of peripheral inflammatory factors into the
brain, ultimately contributing to neuroinflammation [72, 73].

SCFAs exert their physiological effects by acting as endog-
enous ligands for G-protein-coupled receptors (GPCRs),
particularly GPR43 and GPR41, and by modulating gene ex-
pression through inhibition of histone deacetylase (HDAC)
activity [12]. In vitro studies have demonstrated that acetate
displays anti-inflammatory properties in Af-induced BV-2
microglia by enhancing GPR41 expression and inhibiting
the ERK/INK/NF-xB signaling pathway [74]. Furthermore,

in vitro experiments have indicated that SCFAs can dimin-
ish histone deacetylase activity and hinder NF-xB nuclear
translocation, thereby directly modulating LPS-induced pri-
mary microglial cells [75]. Animal studies have shown that
genetic deletion of microglial Hdacl and Hdac2 significantly
ameliorates cognitive deficits in 5XFAD mice by enhancing
microglial Af phagocytosis [76]. Meanwhile, augmenting
butyrate levels through Clostridium butyricum intervention
has demonstrated its capacity to suppress microglial activa-
tion and reduce pro-inflammatory cytokine levels in APP/
PS1 mice [77]. SCFAs directly interact with microglia, atten-
uating their antigen-capturing capabilities and consequently
reducing the production of pro-inflammatory cytokines such
as IL-12 and TNF-a [78, 79]. These cytokines play a crucial
role in regulating the neuroinflammatory response and Af
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deposition in the brain [75]. Despite numerous studies high-
lighting the pivotal role of SCFAs in mediating communica-
tion between gut microbiota and glial cells, a more exhaustive
understanding of the mechanisms underlying SCFA actions
in AD, including their effects on other neural cells within the
brain, necessitates further meticulous exploration.

3.1.2 | Tryptophan and Indole Derivatives

Amino acids, as precursors of bioactive molecules, play a pivotal
role, with mounting evidence highlighting the critical involvement
of the gut microbiota in the metabolic processing and utilization
of essential amino acids, particularly tryptophan (Trp) [80]. The
majority of dietary L-tryptophan released in the gut is transferred
into circulation via epithelial transport; approximately 10%-20%
of L-tryptophan is metabolized by intestinal epithelial cells and
the gut microbiota within the intestinal lumen [81]. The gut mi-
crobiota can degrade dietary L-tryptophan into bioactive metabo-
lites, namely (i) indoles, (ii) kynurenine (Kyn), (iii) serotonin, and
(iv) tryptamine pathways [82-85]. Enterochromaffin cells in the
gut are capable of converting dietary L-tryptophan into serotonin,
while the gut microbiota can also modulate the synthesis and re-
lease of serotonin from enterochromaffin cells [86]. For instance,
Reigstad et al. [87] demonstrated that SCFAs produced by the
microbiota promote serotonin production in human enterochro-
maffin cells. Tryptophan hydroxylase 1 (TPH1), the rate-limiting
enzyme in serotonin biosynthesis, catalyzes the conversion of
L-tryptophan into 5-hydroxytryptophan, which is subsequently
decarboxylated to produce 5-hydroxytryptamine (5-HT), or sero-
tonin. Consequently, 5-HT can be further metabolized into mela-
tonin, regulating various features of the gut microbiota, including
oxidative stress and inflammation [88].

Gut microorganism-mediated Trp metabolism encompasses
pathways such as the aryl hydrocarbon receptor (AhR) li-
gand pathway, the indole pathway, the Kyn pathway, and the
5-hydroxytryptophan pathway [89]. Metabolites of Trp derived
from the gut, such as indole or bacterial tryptophanase, influence
astrocytes and microglia via AhR signaling, thereby significantly
impacting neuroinflammation in experimental autoimmune
encephalomyelitis mice [90, 91]. Additionally, indole metabo-
lites from the gut microbiota activate AhR, inhibit the NF-xB
pathway, suppress the formation of NLRP3 inflammasomes,
and reduce the production of inflammatory cytokines, thereby
improving gastrointestinal function, modulating microglial re-
activity, and alleviating neuroinflammation in APP/PS1 mice
[92, 93]. Kyn can traverse the BBB to exert its effects within the
brain [94]. Furthermore, Kyn treatment has been shown to up-
regulate the expression of NLRP2 inflammasomes in astrocytes,
resulting in the secretion of IL-1f and IL-18 [95]. Although the
neuroinflammatory role of gut-mediated Trp metabolites in AD
has been explored to some extent, further research is necessary
to elucidate the precise mechanisms underlying the actions of
different tryptophan metabolites in AD.

3.1.3 | Trimethylamine N-Oxide

Trimethylamine (TMA) is synthesized by the gut microbiota
during the metabolism of methylamine-containing dietary

nutrients [96]. This compound subsequently undergoes hepatic
metabolism to form trimethylamine N-oxide (TMAO) via fla-
vin monooxygenase. TMAO crosses the blood-brain barrier,
triggering neurodegeneration by activating microglia and as-
trocytes and enhancing the release of inflammatory mediators
[97,98]. TMAO promotes inflammation and worsens Af and tau
pathology in D-galactose/AlClI3-induced AD mice through the
PI3K/AKT/mTOR signaling pathway [99]. Conversely, adminis-
tration of the TMA formation inhibitor 3,3-dimethyl-1-butanol
diminishes circulating TMAO levels and improves cognitive
deficits in APP/PS1 mice by attenuating A pathology and neu-
roinflammation [100].

3.2 | The Immune Pathway

The immune and CNS are intricate networks that regulate var-
ious physiological functions in the organism [101]. They exhibit
shared characteristics in their function and development, poten-
tially contributing to the pathogenesis of neuropsychiatric dis-
orders. Around 70%-80% of immune cells in the human body
reside within the gastrointestinal tract, facilitating direct inter-
actions between gut and immune cells [102]. Microbe-associated
molecular patterns produced by pathogenic microbes engage
pattern recognition receptors (e.g., TLRs) on host cell surfaces,
modulating the production of both pro- and anti-inflammatory
cytokines [103]. These cytokines cross the BBB and influence
CNS cells, including microglia, thereby shaping the brain's in-
flammatory environment [104]. The resultant chronic inflam-
mation significantly impacts neurodegeneration [104].

3.2.1 | Immune Regulation

Dysregulation of the pro-inflammatory gut microbiota in AD
patients may initiate inflammation and promote the forma-
tion and aggregation of Af proteins [101]. Accumulation of
A in the brain triggers intracerebral immune-inflammatory
responses via TLRs and CD14, predominantly mediated by
microglial cells. This cascade results in the release of various
cytokines and the upregulation of antigenic markers, precipi-
tating a neuroinflammatory response [105]. This acute and
transient inflammation supports Af clearance and neuronal
protection [105]. Systemic inflammation resulting from intes-
tinal dysregulation may exacerbate microglial hyperactiva-
tion and impair hippocampal plasticity, worsening the onset
and progression of AD [106]. Disruption of intestinal barrier
(IB) function increases permeability to commensal microbes,
microbial-derived products (e.g., metabolites, virulence factors),
and other intestinal constituents, leading to aberrant immune-
inflammatory responses such as inflammation, allergies, and
autoimmune diseases mediated by molecular mimicry and
dysregulated T-cell responses [66]. T cells play a crucial role in
systemic and mucosal immune responses, initiated by dendritic
cells continually sampling the intestinal lumen. This process
primarily contributes to the proliferation of regulatory T cells
(Treg) [107]. Furthermore, the altered composition of gut mi-
crobes and their derived metabolites may stimulate or inhibit
the differentiation of initial CD4+ T cells into TH17 cells, which
are highly abundant at the mucosal barrier and play a key role
in regulating tissue homeostasis. Specific intestinal bacteria
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induce distinct T-cell subsets; for example, segmented filamen-
tous bacteria drive the differentiation of Th17 cells, while frag-
ile Bacteroides generate Treg expressing the transcription factor
Foxp3 [108, 109]. Some commensal microorganisms, such as
Bacteroides fragilis, Bifidobacterium infantis, and Firmicutes,
as well as certain microbial metabolites, can influence immune
responses by affecting different cell types in the immune en-
vironment [106]. They induce the differentiation of Treg into
effector cells, such as Thl and Th17 cells, or IL-10 regulatory
T cells, promoting either immune activation or tolerance [110].
They induce the differentiation of Treg into effector cells, such
as Thl and Th17 cells, or IL-10 regulatory T cells, promoting ei-
ther immune activation or tolerance [111-115]. Bacillus-derived
poly-y-glutamic acid specifically signals CD4+ T cells, facilitat-
ing selective Treg differentiation [116]. Increased microbiota-
induced Thl17 differentiation has been linked to behavioral
abnormalities from maternal immune activation, potentially
migrating from intestines to meninges [107, 117-119]. Intestinal
microbe-immune cell interactions regulate T-cell and B-cell
dynamics, impacting immune responses in both peripheral
and CNS. Gut T and B cell subsets may migrate from gut to me-
ninges, influencing local neuroimmune environments through
cytokine production such as IL-17a, IL-10, and IgA antibodies,
thereby modulating neuroinflammation [120]. Additionally,
microbiota-derived metabolic products like taurocholic acid,
histamine, indole, and spermine influence downstream neuro-
peptides, regulating NLRP6 inflammasomes, IL-10, and IL-18
secretion, which correlate with inflammatory factor levels and
Alzheimer's severity [14, 121].

3.2.2 | 5-Hydroxytryptamine

Serotonin, also known as 5-hydroxytryptamine (5-HT), acts
as a neurotransmitter with multifaceted roles in the brain and
gut, particularly in orchestrating the gut microbiota-brain axis
[122]. The gut microbiota influences systemic immune function
through modulation of 5-HT production and release from gut
enterochromaffin cells [122, 123]. 5-HT impacts the functional-
ity of monocytes and macrophages, governing inflammatory re-
sponses and potentially influencing neuroinflammation [124].
Research indicates that 5-HT regulates neuroinflammation by
activating the SHT2AR/cAMP/PKA/CREB/Sirtl pathway and
the NF-xB pathway, controlling the transcription of TLR2 and
TLR4 in response to microglial phagocytic stimuli and thereby
influencing neuroinflammation [125-127]. Additionally, 5-HT
modulates the release of inflammatory cytokines, affecting the
activation of immune cells and inflammatory responses, such
as TNF-a, IFNy, IL-18, IL-17, and IL-6 [128]. Moreover, 5-HT
binding to its receptors on microglia triggers the release of
cytokine-laden exosomes, providing an alternative mechanism
for the modulation of gut-induced neuroinflammation [129].
The synthesis, metabolism, or transport of 5-HT, critical in the
inflammatory response, may offer novel avenues for mitigating
neuroinflammation in AD.

3.2.3 | Serum Amyloid A

Serum amyloid A (SAA), a product of the inflammatory cascade
in intestinal epithelial cells, serves as a prominent acute-phase

reactant, with the gut microbiota potentially modulating neu-
roinflammation through the regulation of SAA levels [130, 131].
In the brain tissues of AD patients, SAA localizes with the dis-
tribution of senile plaques [132]. A recent study reported that
SAA expression in the brains of APP/PS1 mice exacerbates
neuroinflammation by hindering astrocyte activation and mi-
gration toward AP plaques via the p38 MAPK pathway [133].
In vitro, recombinant SAA treatment modulates the functions
of astrocytes and microglia, decreasing astrocyte viability while
enhancing microglial activity [132]. There are also differences
in cytokines and inducible iNOS between the two cell types
[132]. PI3K is a common pathway mediating the effects of SAA
on astrocytes and microglia, whereas the c-JNK pathway is se-
lectively induced in microglia, and the NF-kB pathway is selec-
tively activated in astrocytes [132]. Furthermore, SAA promotes
the differentiation of Th17 cells, increasing the expression of the
pro-inflammatory cytokine IL-17, which induces the production
of cytokines such as IL-1f3, IL-6, TNF-a, and IL-22 [131, 134].
SAA orchestrates neuroinflammation, regulates cholesterol me-
tabolism, and activates glial cells, impacting AD [135].

In this immune pathway, the intestinal microbiota has a role be-
yond immune system modulation. Its regulation of 5-HT, medi-
ation of inflammatory responses through SAA and interactions
with neurons provide insights into the complex pathogenesis of
neuroinflammation (Figure 4). These findings not only enhance
our understanding of neuroimmune interactions but also sug-
gest new avenues for potential therapeutic strategies to mitigate
neuroinflammatory processes.

3.3 | The Vagus Nerve Pathway

The vagus nerve (VN), a pivotal component of the autonomic
nervous system, comprises 80% afferent fibers and 20% efferent
fibers. It intricately traverses the gastrointestinal tract, func-
tioning as a critical neural pathway [136]. By facilitating bidirec-
tional information transmission with visceral organs via motor
and sensory fibers, the VN regulates organ function and main-
tains internal organismal homeostasis [137]. This nerve serves
as a pivotal link between the intestinal microbiota and the brain,
playing a crucial role in the neural-immune and gut-brain axes
(Figure 5) [137].

Intestinal endocrine cells interact directly with VN afferent
fibers, transmitting information to the central autonomic net-
work for analysis and integration (including the paraventricular
nucleus, locus coeruleus, hypothalamus, and limbic system en-
compassing the thalamus, amygdala, and hippocampus) [138].
Research indicates that chronic VN stimulation in rats with AD
can enhance their memory, likely through modulation of gluta-
mate receptors [139]. VN stimulation activates the locus coeru-
leus, triggering catecholamine release in the hippocampus and
neocortex, enhancing synaptic plasticity, and reducing levels
of inflammatory signaling factors (such as TNF-«, IL-13, and
IL-6) [140-142]. These pro-inflammatory molecules may access
the CNS via the bloodstream or VN afferent fibers, triggering
neuroinflammatory responses, activating microglial cells and
astrocytes, and leading to neuronal damage and cognitive im-
pairment [143-145]. Furthermore, VN efferent fibers can syn-
thesize and release acetylcholine (ACh), influencing cholinergic
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neurons. Activation of ACh released by VN efferent fibers in-
hibits TNF-a secretion, demonstrating an anti-inflammatory
effect through binding to a-7 nicotinic ACh receptors on macro-
phages [146]. While the VN's role in the gastrointestinal domain
is clear, the exact operational pathways and complex processes
are still under investigation. Concurrently, increasing research
underscores the VN's significant role in elucidating the interplay
between gut microbiota and neuroinflammation.

3.4 | The Gut-Brain Barrier

The IB consists of the epithelial layer that lines the intestinal
tract, along with associated elements such as the mucous layer,
tight junctions, and immune cells, orchestrating the selective
passage of intestinal contents to safeguard against pathogens
and toxins [147]. The BBB is constituted by specialized brain en-
dothelial cells within microvessels, meticulously regulating the
exchange of molecules and nutrients between the bloodstream
and brain tissue [148]. Dysbiosis of the intestinal microbiota,
characterized by reduced diversity, inflammation, and toxic-
ity, compromises IB integrity, potentially triggering or exacer-
bating inflammation at the IB and permitting the unchecked

translocation of pathogenic microbiota across the BBB (Figure 6)
[149]. Persistent systemic inflammation can perturb BBB struc-
ture, increasing permeability and precipitating neuroinflam-
mation, neurodegeneration, and age-related cerebral changes
[150, 151].

Specific Gram-negative bacteria in the gut can produce sub-
stantial quantities of amyloids, lipopolysaccharides (LPS),
or endotoxins, breaching the IB and BBB to provoke robust
pro-inflammatory and innate immune responses within
the CNS, potentially modulating signaling pathways and
pro-inflammatory cytokine production associated with AD
[152-154]. LPS, a prevalent endotoxin, acts as an immunostimu-
lant by being transported to the surface of myeloid cells via LBP,
where they bind to membrane-bound CD14, forming a complex
that subsequently activates the TLR4-MD2 complex. The acti-
vation of TLR4 initiates a signaling cascade involving MyD88,
IRAK, and TRAF6, ultimately leading to the activation of NF-
xB and MAPK through the NIK and TAK1 pathways. This
cascade results in the release of inflammatory cytokines such
as IL-1B, IL-6, and TNF-a, thereby instigating an inflamma-
tory response [155]. Research has identified the accumulation
of bacterial-derived LPS within the neuronal parenchyma and
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around the periphery of neuronal nuclei in the hippocampus
and superior temporal gyrus of AD patients [156, 157]. This oc-
currence is attributed to the synergistic effects of bacterial LPS
and amyloid-like proteins, which may exacerbate intestinal per-
meability, leading to elevated cytokine levels such as IL-17A and
1L-22, known to correlate with AD [158, 159]. Moreover, LPS
stimulation of the enteric nervous system induces the produc-
tion of pro-inflammatory cytokines TNF-o, IL-1f3, and IL-6, se-
lectively activating TLR4 on astrocytes and microglia, triggering
NF-xB pathway activation, escalating cytokine production, in-
ducing neuroinflammation, and fostering A deposition, crucial
in inflammatory signaling associated with AD [160-162]. This
triggers NF-xB pathway activation, increasing cytokine produc-
tion, inducing neuroinflammation, and A deposition, playing a
key role in the inflammatory signaling cascade in AD patients
[163-165]. Additionally, during aging, vascular impairments,
or degenerative diseases, harmful metabolites originating from
the gut microbiota may permeate into the systemic circulation
and cerebrovascular system, accumulating at both systemic and
cerebral levels [166]. This accumulation can elevate ROS and
activate the NF-xB signaling pathway, thereby upregulating pro-
inflammatory miRNA-34a. Consequently, this downregulates

TREM2 expression, impairing microglial phagocytic function
and resulting in Af accumulation [158, 159].

4 | Prospective Therapeutic Strategies for AD

The intricate mechanisms by which the gut microbiota influences
AD pathogenesis offer promising avenues for future therapeutic in-
terventions. Compared to conventional brain-targeted treatments,
strategies focusing on the gut microbiota possess unique advan-
tages, not only circumventing the challenge of the BBB but also al-
lowing for more precise modulation of host-microbe interactions,
thereby achieving faster therapeutic outcomes. These approaches
are also regarded as safer, given their lower side effect profile,
particularly through interventions such as dietary modifications,
supplementation with probiotics and prebiotics, fecal microbiota
transplantation, and other microbiota modulators, which can ef-
fectively reshape the composition of the gut microbiome, yielding
beneficial effects on neurological disorders and alleviating patho-
logical conditions (Figure 7; Table 2) [10, 35, 38, 138, 167-178|.
Moreover, an increasing body of research suggests that certain
traditional Chinese herbal monomers, extracts, and compound

10 of 18

CNS Neuroscience & Therapeutics, 2024


http://biorender.com

Glia cells (mlcroglla astrocytes)

e W

Disruption of blood-brain barrier
Permeability increase

Q O Leaky gut

AR w m J.&:"JMH‘HJ

Dlsruptlon of intestinal barner

ol)o
Microbial toxins (e.g. LPS)

)
/

/
e )

e

Gut microbiota

FIGURE 6 | The gut-brain barrier pathway of the gut microbiota
in AD. The dysbiosis of gut microbiota results in the production
of lipopolysaccharides (LPS) and other toxins, which compromise
intestinal barrier integrity, thereby increasing gut permeability.
Consequently, these toxins enter the bloodstream and ultimately disrupt
the blood-brain barrier, heightening its permeability and allowing more
inflammatory mediators and toxins to infiltrate the brain. LPS activates
astrocytes and microglia, eliciting the release of various cytokines
and chemokines, culminating in neuroinflammation. This figure was
created with BioRender.com.

formulations may exert potential preventive and therapeutic effects
in AD by modulating the composition, diversity, and abundance of
the gut microbiota. This further underscores the importance of the
gut-brain axis in neurodegenerative diseases and highlights that
gut microbiota-targeted therapies represent not only an emerging
field in AD treatment but also a novel perspective for enhancing
overall health.

5 | Conclusions and Discussion

AD is witnessing an alarming global surge in prevalence, with
the foremost challenge to treatment lying in the incomplete

elucidation of its pathogenesis. Current FDA-approved ther-
apies offer only marginal benefits, emphasizing the critical
need to explore innovative therapeutic strategies and targets.
Inflammatory signals are central to AD pathogenesis, mediated
by the bidirectional communication of the gut-brain axis. This
study delves into the intricate ways in which gut microbiota
modulates AD progression through diverse mechanisms such as
metabolite production, immune regulation, preservation of in-
testinal and BBB integrity, and neurotransmitter synthesis.

The vital role of a healthy gut microbiota in maintaining im-
mune homeostasis includes: (i) fermenting dietary fibers to
produce SCFAs, which regulate immune responses by binding
to receptors on both intestinal and peripheral immune cells,
thereby promoting the secretion of anti-inflammatory cyto-
kines and inhibiting pro-inflammatory factors. This immu-
nomodulatory effect reduces systemic inflammation, which
in turn alleviates neuroinflammation; (ii) It helps preserve
the integrity of the intestinal epithelial barrier, preventing
harmful substances such as pathogens and toxins from en-
tering the bloodstream; (iii) It fosters the generation of Tregs,
reducing the release of pro-inflammatory cytokines; and (iv)
Through the BBB, it modulates microglial activation, keeping
them in an anti-inflammatory and tissue repair mode, thereby
diminishing neuroinflammation. Conversely, dysbiosis pro-
motes chronic, low-grade inflammation, exacerbating neu-
roinflammatory pathways linked to attention deficit disorder
[37, 157, 169, 170]. These mechanisms underscore the pivotal
role of the gut microbiota in regulating both local and systemic
immune responses, thus influencing the trajectory of neuroin-
flammation and attention deficit disorder. A well-balanced
gut microbiota supports anti-inflammatory processes and
preserves the integrity of the gut barrier, which is crucial in
preventing systemic inflammation from impacting the brain
[155,179, 180]. These mechanisms highlight the critical role of
gut microbiota in modulating both local and systemic immune
responses, consequently shaping neuroinflammation and the
trajectory of AD progression. Dysbiosis has been linked to
the promotion of neuroinflammation, while a balanced mi-
crobiome appears to offer neuronal protection and mitigate
the advancement of AD. Although this paper predominantly
focuses on bacteria, it is imperative to recognize that the gut
microbiota encompasses viruses, phages, fungi, and other mi-
croorganisms, whose roles in AD pathogenesis merit further
investigation. Mechanistic insights into how gut microbiota
metabolites impact human health, alongside translational re-
search and multifactorial studies—including age, diet, ethnic-
ity, environment, and physical activity—remain crucial areas
for future exploration [181].

In conclusion, this study underscores the fundamental influence
of gut microbiota on AD pathogenesis, advocating for a deeper
investigation into its diversity and impact as a driver for more
efficacious therapeutic interventions. In particular, further clar-
ification of the interplay between gut microbiota and immune
homeostasis is necessary, as chronic inflammation stemming
from dysbiosis plays a central role in exacerbating neuroinflam-
mation and neuronal damage in AD. Future studies should aim
to establish causal links between gut microbiota and AD, paving
the way for novel microbiome-targeted treatments that may alter
the disease's course.
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6 | Current Challenges and Future Perspectives

The significance of the gut microbiota to human health was
recognized by scientists over a century ago, but research was
hindered by limited methodologies, particularly the inabil-
ity to culture anaerobic bacteria within the gut microbiome.
The advent of modern technologies, such as anaerobic cul-
turing, DNA fingerprinting, next-generation sequencing, and
real-time quantitative PCR, has significantly advanced the
study of the gut microbiota [182, 183]. At this stage, defining
a healthy microbiota is exceedingly challenging. The abun-
dance and diversity of gut microbiota exhibit considerable
individual variability (e.g., gender, race, genetic background,
environmental factors, dietary habits, etc.), necessitating fur-
ther research employing metagenomic analysis and integrat-
ing multiple omics approaches such as proteomics, genomics,
and metabolomics, rather than solely relying on 16S rRNA
gene sequencing to elucidate the regularity of gut microbiota
structure and strain levels in AD patients. For high-risk pop-
ulations, such as individuals with a family history of AD and
the elderly, more research on the effects of microbiota-based
interventions for AD, potential interactions with other ther-
apies, appropriate sample sizes, and longer follow-up studies
should be considered. Currently, methods for modulating the

gut microbiota mainly include probiotics, prebiotics, fecal
microbiota transplantation, antibiotics, etc. However, the ef-
ficacy and safety of these methods require further clinical
trials and long-term observations for validation. Additionally,
when administering drugs, it is crucial to consider the im-
pact of the medication on other microbiota interventions. It is
worth noting that although therapeutic approaches targeting
the gut microbiota have certain advantages, strategies for gut
microbiota modulation in AD are still in the research stage.
Despite some preliminary research suggesting the potential
benefits of gut microbiota modulation for AD, the clinical
translation of microbiome-based therapies remains challeng-
ing, thus requiring continuous research efforts to unravel the
complexity of the microbiota—gut-brain axis and fully exploit
its potential. With the increasing maturity of technology and
methodological innovations, further exploration of the causal
relationship between the gut microbiota and AD, elucida-
tion of the molecular mechanisms of microbiota-gut-brain
axis neuroinflammation regulation, discovery of more gut
microbiota-related AD biomarkers, and development of more
effective and personalized gut microbiota modulation thera-
pies are warranted. The plasticity of the human gut microbi-
ome provides an exciting opportunity for the development of
personalized microbiota-based therapies for AD.
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