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Introduction
Muscle wasting (with or without fat loss) is a 
pivotal feature of cancer cachexia, a multifacto-
rial condition that negatively impacts patients’ 
prognosis and quality of life.1,2 The severity and 
phenotypic presentation of cancer cachexia may 
vary, and often muscle wasting may be an occult 
condition.3 Regardless of body mass index 
(BMI), skeletal muscle depletion is considered a 
meaningful prognostic factor during cancer4 and 
has been associated with higher incidence of 
chemotherapy toxicity, shorter time to tumor 
progression, poorer surgical outcome, physical 
impairment and shorter survival.4–8

Cancer cachexia may result from reduced nutrient 
intake and/or availability (secondary to anorexia, 

malabsorption or mechanical obstruction) and 
metabolic abnormalities, triggered by a complex 
network of cytokines, hormones and other tumor- 
and host-derived humoral factors. Apart from the 
consequences of cancer per se, the adverse effects 
of anti-neoplastic therapies may also contribute to 
exacerbation of this condition.3,9,10

The molecular mechanisms underlying cancer-
related muscle wasting have not been fully eluci-
dated. Available evidence suggests that a 
prominent role is played by increased muscle pro-
tein degradation, although impaired muscle pro-
tein synthesis and defective myogenesis may 
contribute as well. In addition, alterations in 
energy metabolism involving mitochondrial dys-
function have been implicated in the wasting 
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process.11,12 The prevalence of muscle loss has 
been reported as between 20% and 70%, depend-
ing on the type of tumor and the criteria used for 
assessment.13 In advanced cancer patients the 
prevalence of muscle loss was found to be variable 
and dependent upon tumor type, stage and 
assessment tool. In early cancer patients undergo-
ing curative treatment, prevalence of muscle loss 
ranged from 16% in breast,14 to 33% in cholan-
giocarcinoma15 and to 40.3% in hepatocellular 
carcinoma patients.16 Loss of strength secondary 
to muscle loss is also frequent in cancer patients. 
Chemotherapy may induce fatigue and a severe 
decrease in muscle strength, especially in striated 
muscles,17 which may be further aggravated by 
reduced physical activity. In patients not training 
and receiving chemotherapy for lymphoma, a 
decrease of up to 14.6% in muscle strength was 
reported.18 The loss of contractile strength and 
function associated to muscle wasting and the 
onset of chronic fatigue may result in reduced 
physical activity, which in turn can further exac-
erbate muscle loss by instigating a vicious cycle.19

Although muscle mass depletion is a common 
feature of experimental and human cancer 
cachexia, discrepancies in the mechanisms under-
lying cancer-related muscle wasting have been 
reported between different experimental models 
as well as in patients with different tumor types, 
data available in human cancer cachexia still 
being scanty.11,20 These diversities challenge the 
development of effective therapeutic strategies 
and underscore the need to implement research 
on patients and to design pre-clinical systems 
which as much as possible model the clinical sce-
nario,21 in order to identify the categories of 
patients who are more likely to respond to drugs 
targeting specific intracellular pathways.20 
Further, the development of effective treatments 
has been hampered by the high variability in clini-
cal study design, including different patient selec-
tion criteria, clinical endpoints, analysis plans and 
definition of best supportive care.22 Time of ther-
apy administration is also critical: to date, most 
clinical trials on cancer cachexia have been con-
ducted in patients very advanced in their disease 
trajectory, and experts have speculated that this 
could be a reason why many drugs, deemed effec-
tive at the pre-clinical phase, failed to show any 
benefits at the clinical evaluation.23,24 Indeed, 
according to an international panel of experts, 
cancer cachexia may evolve in three stages of clin-
ical relevance: pre-cachexia, cachexia and refrac-
tory cachexia. Although not all patients necessarily 

experience all of these stages, treatments should 
begin early in order to prevent or delay the pro-
gression to refractory cachexia.1,2

Despite these obstacles, several promising agents 
acting on specific molecular targets are currently 
under investigation. Results obtained so far sug-
gest that a single therapy may be insufficient to 
counteract cancer cachexia and that early multi-
modal interventions (including targeted nutri-
tional supplementation, physical exercise and 
pharmacological interventions) should be consid-
ered the best modality to manage the multifac-
eted aspects of this cancer comorbidity.1,9,25,26

The present article aims at reviewing the latest 
findings in the prevention and treatment of can-
cer-related muscle wasting that may represent the 
basis for the development of future cachexia 
therapies.

Options for prevention and treatment

The role of nutritional support
Nutritional interventions should be an essential 
part of the multimodal approach to cancer 
cachexia, as in the absence of an adequate energy 
and nutrient supply it is unlikely that muscle mass 
and body weight will be increased or stabilized. 
Since the reduction in food intake is an important 
yet reversible pathogenic mechanism accounting 
for cancer-related muscle wasting, the nutritional 
and metabolic support should be started early 
rather than delayed until there is an advanced 
degree of body weight loss.1,2,27 This implies that 
when the diagnosis of cancer is made, any single 
patient should be nutritionally monitored in paral-
lel with the oncologist by a clinical nutrition unit.1 
During this ‘parallel pathway’ continuous nutri-
tional and metabolic support should be provided, 
which, accordingly to patients’ needs, may include 
nutritional counseling, administration of oral sup-
plements, nutraceuticals and artificial nutrition.1

Overcoming anabolic resistance: is it a clinical 
issue? A defining feature of cancer cachexia is that 
it cannot be fully reversed by conventional nutri-
tional support.2 Cancer cachexia, indeed, is differ-
ent from simple starvation since, conceptually, 
both inflammation and metabolic abnormalities 
may alter the anabolic response of the skeletal 
muscle after meal ingestion. Recent evidence, how-
ever, suggests that cancer patients have an exploit-
able anabolic potential prior to reaching the 
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refractory phase of cachexia, thus creating a strong 
rationale for early nutritional interventions.23,28,29 
In this respect, a euglycemic, hyperinsulinemic 
clamp study in stage III and IV non-small cell lung 
cancer (NSCLC) patients showed a blunted 
whole-body anabolic response in conditions of iso-
aminoacidemia, but a normal whole-body anabolic 
response to hyperaminoacidemia, suggesting that a 
significant protein intake is necessary to induce 
whole-body anabolism during cancer.30 Consis-
tently, another study reported that a high-protein 
formula containing high leucine levels, specific oli-
gosaccharides and fish oil was able to stimulate 
muscle protein anabolism in advanced cancer 
patients compared to a conventional nutritional 
supplement.31 In further support of a preserved 
anabolic potential, a recent study reported that the 
intake of 14 g of essential amino acids determined 
a high whole-body anabolic response in patients 
with stage III/IV NSCLC. Such effect was compa-
rable to that observed in healthy matched controls 
and independent of recent weight loss, muscle 
mass, mild-to-moderate systemic inflammation 
and survival.32 A comparable positive net balance 
during oral sip feeding of a commercially available 
formula was also observed in cachectic pancreatic 
cancer patients and controls, although with a dif-
ferent protein kinetic: indeed, while in cachectic 
patients only protein breakdown was reduced; in 
control patients both protein breakdown and syn-
thesis were modulated.33

On the whole, these studies suggest that the fail-
ing anabolic response associated with cancer 
cachexia, if present, may be at least in part cir-
cumvented by providing an adequate nutritional 
support. Additional, in vivo, clinical investiga-
tions, however, are needed to determine to what 
extent in the long term cancer-related muscle 
wasting can be attenuated and reversed by an 
early and appropriate nutritional intervention, 
and to establish the optimal dose, timing and 
composition of the nutritional support.

Can nutrients act as metabolic modulators in can-
cer cachexia? Besides providing energy and pro-
tein requirements, the nutritional intervention 
could also represent a potential strategy to coun-
teract inflammation and interfere with molecular 
mechanisms involved in the pathogenesis of can-
cer cachexia through the use of specific nutrients/
nutraceuticals.34

Many studies examined the effects of fish oil-
derived fatty acids [either eicosapentaenoic acid 

(EPA) or docosahexaenoic acid] in the preven-
tion and treatment of cancer cachexia, given their 
potential ability to modulate pro-inflammatory 
cytokines and increase insulin sensitivity.35 As 
recently reviewed, although not all studies in the 
past reported a benefit of fish oil supplementation 
on cancer cachexia, promising results were 
obtained in recent trials.36,37 Since it has been 
suggested that possible reasons for such inconsist-
encies among trials could be the variability in 
study design, compliance with the supplement, 
contamination between study arms and different 
methodologies used to evaluate body composi-
tion,36 future well-designed trials are needed to 
clarify the therapeutic potential of n-3 fatty acids 
for cancer-related muscle wasting.

Branched chain amino acids (BCAAs) have been 
shown to attenuate muscle wasting in experimen-
tal cancer cachexia, possibly by stimulating pro-
tein synthesis and attenuating protein 
degradation.38 Besides their proposed role in 
ameliorating cancer anorexia,39 a few clinical 
studies seem to support the hypothesis that 
BCAAs can ameliorate muscle protein metabo-
lism, but larger randomized, blind, placebo-con-
trolled trials are needed to confirm the beneficial 
effects of BCAAs in cancer patients and indicate 
the optimal dosage.26,28,40

Beta-hydroxy-beta-methylbutyrate (HMB) is a 
metabolite of the BCAA leucine that, according 
to previous experimental studies, may attenuate 
muscle wasting during cancer cachexia by inhibit-
ing protein degradation and/or stimulating pro-
tein synthesis.41–43 The therapeutic role of HMB 
in human cancer cachexia, however, is still uncer-
tain and deserves further investigation, as was 
noted in a recent systematic review on this topic.44

L-carnitine is an amino acid derivative involved in 
fatty acids metabolism and in energy production 
processes.45,46 Carnitine supplementation has 
been proven beneficial in experimental cancer 
cachexia,47,48 as well as in clinical trials on cancer 
patients, where it has been tested alone49 or in 
combination with other drugs;50 additional inves-
tigations are needed to clarify its therapeutic 
potential for cancer-related muscle wasting.

The role of physical exercise
In addition to nutritional interventions, physical 
exercise has been proposed as another crucial 
component of the multimodal approach to cancer 
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cachexia. Indeed, physical activity may modulate 
inflammation and skeletal muscle metabolism,51 
with substantial differences in relation to the exer-
cise modality. In particular, while endurance train-
ing stimulates oxidative metabolic adaptations 
(with little effect on muscle mass), resistance train-
ing exerts an anabolic action resulting in muscle 
hypertrophy.52 Moreover, exercise improves insu-
lin sensitivity,53 regulates cellular homeostasis by 
stimulating proteins and organelles turnover54 and 
promotes myogenesis.55 Particularly relevant, in 
this regard, is the ability of exercise to induce 
autophagy and mitophagy, enhancing the disposal 
of damaged/aged mitochondria, thus improving 
muscle energy balance.56

Experimental studies have shown that treadmill 
exercise training attenuates the initiation and pro-
gression of cancer cachexia in mice,57 and that 
both endurance and resistance exercise can mod-
ulate the inflammatory response in tumor-bearing 
rats.58,59 In addition, it has been recently reported 
that voluntary wheel running may prevent 
cachexia and increase survival in tumor-bearing 
mice,60 and also alleviate cisplatin-induced mus-
cle wasting in mice undergoing chemotherapy.61

Is physical exercise feasible in cancer 
patients? During cancer, exercise programs are 
frequently difficult to implement and factors lim-
iting the exercise capacity (such as chronic fatigue, 
anemia, cardiac dysfunction and other comorbid-
ities) should be carefully considered.62 Indeed, in 
a recent experimental study, 2 weeks of low-inten-
sity endurance exercise did not improve, and even 
worsened, muscle wasting in mice bearing the 
C26 carcinoma (an experimental model of cancer 
cachexia associated with anemia and cardiac dys-
function). Conversely, erythropoietin (EPO) 
treatment in combination with exercise normal-
ized hematocrit rescued atrophy of oxidative myo-
fibers, prevented the oxidative to glycolytic shift 
of muscle fibers and induced the expression of the 
peroxisome proliferator activated receptor 
(PPAR)-γ coactivator-1α (PGC-1α), a factor 
involved in mitochondrial biogenesis and func-
tion.63 These results suggest that exercise could 
be an effective tool to be included in the multi-
modal approach to cancer cachexia, provided the 
exercise programs are adapted to the individual 
needs and that comorbidities such as anemia are 
promptly detected and appropriately treated.

Exercise and nutrition: a strategic interac-
tion? Nutrient and energy availability play an 

important role in the modulation of acute and 
chronic adaptations to both endurance and resis-
tance training,64 suggesting that an adequate 
nutritional support should be provided to 
patients in order to preserve the potential bene-
fits of exercise.62 Vice versa, unloading blunts the 
amino acid-induced increase in myofibrillar pro-
tein synthesis, further supporting the concept 
that nutrition and exercise may have potential 
additive effects,65 although this aspect deserves 
further investigation in cancer cachexia. It is 
important to investigate which nutrients/nutra-
ceuticals could boost the effect of exercise in 
cancer-related muscle wasting. In this respect, 
EPA in combination with endurance exercise 
has been shown to improve muscle mass and 
strength in mice bearing the Lewis lung carci-
noma (LLC).66 Unfortunately, data in humans 
with cancer are not available.

Is exercise cost-effective? Available evidence 
suggests that physical exercise may have benefi-
cial effects on cancer patients during and after 
active treatment, such as improving quality of life 
and reducing fatigue.67–70 According to a recent 
systematic review, both aerobic and resistance 
exercise, or a combination, may contribute to 
improving muscle strength in cancer patients 
more than usual care, while muscle mass would 
seem to be more favorably affected by resistance 
exercise, although supporting evidence in this 
respect is still insufficient. Moreover, many of the 
studies included in this systematic review were 
conducted in patients with early-stage cancer 
(the majority with breast and prostate cancer, 
and only a few with other solid tumors) and con-
clusions cannot be extended to patients with 
advanced diseases.71 Of note, a recent Cochrane 
review pointed out that evidences from random-
ized controlled trials proving the safety and effec-
tiveness of exercise in patients with cancer 
cachexia are still lacking. Indeed, available data 
do not allow establishing whether cancer patients 
included in studies testing the effect of exercise 
were affected by pre-cachexia or cachexia. Ongo-
ing clinical trials, however, are exploring the 
potential benefits of exercise for cancer cachexia 
within a multimodal approach.72

In summary, considering the heterogeneity of 
cancer cachexia and the possible presence of 
comorbidities limiting exercise capacity, addi-
tional investigation would be necessary to test the 
effects of personalized exercise programs, possi-
bly designed according to the principles of 
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training,73 in order to optimize the safety and 
effectiveness of exercise prescriptions within the 
multimodal approach to cancer cachexia.

The role of pharmacologic treatments
The development of pharmacologic therapies for 
muscle wasting effects of cancer cachexia have 
been focused on improving appetite, modulating 
inflammation and interfering with anabolic and 
catabolic pathways involved in the modulation 
of skeletal muscle. In addition, novel suitable 
therapeutic targets are continuously emerging at 
the experimental level. No single agent, how-
ever, has yet been proven to be completely effec-
tive, underscoring the need to integrate 
pharmacologic therapies into a multimodal 
approach able to cope with the complex patho-
genesis of cancer cachexia.74

Appetite stimulants. Several potential appetite 
stimulants have been tested to counteract cancer 
anorexia. A recent Cochrane review analyzed data 
on megestrol acetate, and concluded that it 
improves appetite and body weight in cancer 
patients, although it is associated with adverse 
events.75 In addition, weight gain is mostly due to 
an increase in fat and water rather than in lean 
body mass (LBM), although data in experimental 
cancer cachexia suggest a possible effect on skel-
etal muscle.76

Cannabinoids have also been evaluated. In this 
regard, a phase III trial on advanced cancer 
patients did not show any significant difference 
on appetite with respect to placebo,77 while a pilot 
study suggested some potential beneficial effects 
that should be tested in larger trials.78

Agents targeting inflammation. Since inflamma-
tion is a major driver of cancer-related muscle 
wasting, many anti-inflammatory agents have 
been evaluated in the last few years.

Non-steroidal anti-inflammatory drugs (NSAIDs) 
have been tested alone or in combination, and a 
recent systematic review concluded that they may 
improve body weight or LBM, although the evi-
dence to recommend NSAIDs outside clinical tri-
als is still insufficient and deserves further 
investigations.79 Interestingly, NSAIDs are cur-
rently being studied within a multimodal approach 
for cancer cachexia that includes exercise and 
nutrition. Preliminary results (presented as 
abstract) of a multi-center, randomized phase II 

trial (pre-MENAC [ClinicalTrials.gov identifier: 
NCT01419145]) suggest that a multimodal 
cachexia intervention (including exercise, 
NSAID, energy-dense nutritional supplements 
combined with dietary advice) may improve 
weight in patients with incurable lung or pancre-
atic cancer versus standard of care. Based on these 
findings, a phase III trial called MENAC 
[ClinicalTrials.gov identifier: NCT02330926] is 
currently enrolling patients.80

Corticosteroids are potent anti-inflammatory 
drugs frequently used in cancer patients; results 
obtained in two randomized, placebo-controlled 
trials suggest that in the short term they may 
improve fatigue and appetite.81,82 Extended ther-
apy with corticosteroids, however, is not recom-
mended since they may cause side-effects 
including muscle wasting.83,84

Thalidomide, an agent with immunomodulatory 
and anti-inflammatory properties, has also been 
tested in the last few years, despite its serious 
side-effects, but evidence is still insufficient to 
recommend this agent for the clinical manage-
ment of cancer cachexia.85–87

A more selective anti-inflammatory approach has 
been attempted using monoclonal antibodies tar-
geting cytokines, but inconsistent results have 
been reported from different studies.20,88 Such 
discrepancies could be due, at least in part, to the 
variety and heterogeneity of the cytokines involved 
in different types of cancer and patients.20 Despite 
these limitations, targeting cytokines may have 
some potential therapeutic effects on cancer 
cachexia, as suggested by recent trials using new 
biological agents89 such as MABp1 (a first-in-
class true-human monoclonal antibody targeting 
IL-1α).90 Further clinical investigation would 
therefore be necessary to clarify the role of anti-
cytokine blockade in cancer-related muscle wast-
ing within a multimodal approach.74

Agents targeting muscle catabolic path-
ways. Much attention in the last few years has 
been given to the development of agents targeting 
myostatin and the activin type II B receptor 
(ActRIIB) pathway, a negative regulator of mus-
cle mass, which is activated upon binding of myo-
statin as well as other transforming growth 
factor-β (TGF-β) family members, including 
Activin A and growth differentiation factor 11 
(GDF-11).88 Modulation of myostatin signaling 
was described in both cancer-bearing animals and 
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patients.91,92 Blockade of this pathway with the 
administration of ActRIIB decoy receptors in 
experimental cancer cachexia has been shown to 
counteract muscle wasting, improve muscle 
strength and prolong survival without influencing 
tumor growth.93,94 Unfortunately, bleeding issues 
associated with the use of decoy receptors in ini-
tial clinical trials on patients with muscular dys-
trophy caused the termination of these studies. 
However, more selective anti-ActRIIB antibodies 
such as Bimagrumab (BYM338) are under devel-
opment and being tested in patients with lung or 
pancreatic cancer [ClinicalTrials.gov identifier: 
NCT01433263]. Moreover, a phase II trial is 
testing the myostatin-specific mAb LY2495655 in 
patients with pancreatic cancer [ClinicalTrials.
gov identifier: NCT01505530].88

Inhibition of proteolytic pathways (such as the 
ubiquitin proteasome system) has also been inves-
tigated as a possible therapeutic strategy. However, 
the administration of bortezomib, a potent revers-
ible and selective proteasome and NF-κB inhibi-
tor, has not so far showed a beneficial effect on 
cancer-related muscle wasting.95–97 By contrast, 
MG132, a different proteasome inhibitor, 
improved body and muscle weight loss in tumor-
bearing mice, possibly due to a different mecha-
nism of action of this drug compared to 
bortezomib.98 However, it should be recognized 
that in human muscle, evidence of increased ubiq-
uitin-mediated proteolysis during cancer cachexia 
is not as robust as that seen in animal models – 
this is particularly true for NSCLC.99 Moreover, it 
has been observed in gastrointestinal cancer that 
the well-documented upregulation of markers of 
ubiquitin proteasome system activity100,101 may 
occur for only a small window during the progres-
sion of cachexia.102 This could in part be responsi-
ble for why proteasome inhibitors have largely 
failed in clinical trials. Taken together, the availa-
ble evidence suggests that further studies are 
needed before the ubiquitin proteasome system 
may be definitely identified as a possible therapeu-
tic target for muscle wasting in cancer.

Beta2-agonists have also been evaluated as a poten-
tial anti-catabolic therapy for cancer cachexia, 
although their possible cardiovascular effects have 
limited their application. Researchers focused in 
particular on formoterol, a β2-agonist with a high 
degree of selectivity for skeletal muscle β2-receptors 
and a relatively low toxicity. In experimental can-
cer cachexia, formoterol has been shown to ame-
liorate muscle wasting,103–105 without negatively 

altering heart function.106 Formoterol fumarate 
has been tested also in combination with megestrol 
acetate in a single-arm, uncontrolled pilot study on 
a small cohort of advanced cachectic cancer 
patients. Although some encouraging results were 
reported for those completing the 8-week course, 
further investigations in larger and controlled ran-
domized trials are necessary to better assess this 
treatment in cancer cachexia.107

Agents targeting muscle anabolic pathways. Exten-
sive efforts during the last few years have been 
directed toward the study of anamorelin, an oral 
selective agonist of the ghrelin receptor GHSR-1a 
(growth hormone segretagogue receptor) with 
orexigenic and anabolic effects.108,109 Ghrelin 
induces the release of growth hormone (GH), 
stimulates appetite, regulates energy homeostasis 
and decreases inflammation.110,111 Based on the 
promising results obtained in several phase II 
studies,112–114 anamorelin was recently tested in 
two large double-blind, phase III trials (ROMANA 
1, n = 484; ROMANA 2, n = 495). In these trials, 
patients with incurable stage III/IV NSCLC and 
cachexia were randomized 2:1 to receive anamo-
relin 100 mg or placebo over 12 weeks. In both 
studies, anamorelin significantly improved LBM, 
body weight and anorexia-cachexia-related symp-
toms, but failed to significantly improve handgrip 
strength, a co-primary endpoint of the study.115 In 
this regard, the lack of effect of anamorelin on 
muscle strength in face of improved LBM might 
reflect the not necessarily linear relationship 
between skeletal muscle mass and strength, the 
latter also depending on myofiber quality.116,117 
Moreover, in these studies food intake was not 
recorded and it is not known whether the improve-
ment in anorexia translated into an adequate 
nutritional intake, which is likely to be important 
to support (and maybe enhance) the anabolic 
action of anamorelin.118

Patients who completed ROMANA 1 or 
ROMANA 2 trials had the option to continue 
their assigned treatment for another 12 weeks to 
further evaluate efficacy and safety of anamorelin 
(ROMANA 3 [ClinicalTrials.gov identifier: 
NCT01395914]). In this extension study, anamo-
relin treatment over 24 weeks was well tolerated 
and the incidence of adverse events was similar in 
both anamorelin- and placebo-treated patients.119

Besides anamorelin, other novel ghrelin agonists 
(such as macimorelin) are currently under 
investigation.120
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Other emerging anabolic agents for the prevention 
and treatment of cancer-related muscle wasting 
are the selective androgen receptor modulators 
(SARM), a new class of non-steroidal, tissue-spe-
cific, anabolic drugs that can increase muscle mass 
and ameliorate physical function without the side-
effects commonly associated with testosterone or 
other nonselective, synthetic anabolic steroids.121 
In particular, Enobosarm, an orally bioavailable 
SARM, was recently tested in a double-blind, ran-
domized, controlled phase II trial on cancer 
patients who had at least 2% weight loss in the 
previous 6 months. Results obtained showed a sig-
nificant increase, compared with baseline, in total 
LBM and in mean stair-climb power among 
patients who received enobosarm 1 mg and 3 mg, 
while no significant changes were observed for 
handgrip strength.121 The 3 mg dose of enobo-
sarm was next evaluated in two placebo-con-
trolled, double-blind, phase III clinical trials, 
named POWER 1 and POWER 2 [ClinicalTrials.
gov identifiers: NCT01355484, NCT01355497], 
in which stage III or IV NSCLC have been rand-
omized to receive for 5 months an oral daily dose 
of enobosarm 3 mg or placebo at the initiation of 
first-line chemotherapy (platinum + taxane in 
POWER 1; platinum + non-taxane in POWER 
2).122 Preliminary results reported that enobosarm 
treatment was associated with an increase in LBM 
and stair-climb power (co-primary endpoints) in 
the POWER 1 trial, while in the POWER 2 trial 
there was only a significant increase in LBM.123

Many drugs, however, may affect both anabolism 
and catabolism. Espindolol (MT-102), for exam-
ple, may decrease catabolism (through nonselec-
tive β-blockade), reduce fatigue and thermogenesis 
(through central 5-HT1a antagonism) and 
increase anabolism (through partial β2-receptor 
agonism). The ACT-ONE phase II trial in stage 
III/IV NSCLC or colorectal cancer patients 
showed that espindolol 10 mg twice daily improved 
body weight, LBM and handgrip strength.124

New scenarios in pharmacological treat-
ment. Insights into the molecular basis of cancer 
cachexia suggest that counteracting intracellular 
kinases such as the mitogen-activated protein 
kinase (MEK), the extracellular signal protein 
kinase (ERK) and the Janus kinase/signal trans-
ducers and activators of transcription (JAK/
STAT) pathway,125–127 could represent a promis-
ing approach. In experimental cancer cachexia, 
administration of PD98059, a MEK inhibitor 
able to block ERK activation, has been shown to 

restore myogenesis and attenuate muscle deple-
tion and weakness.125 Consistently, selumetinib, 
an MEK inhibitor with tumor-suppressive activ-
ity and inhibitory effects on IL-6 production, in a 
phase II trial induced gain of skeletal muscle in 
cholangiocarcinoma patients.127 Pharmacologic 
or genetic inhibition of the JAK/STAT3 pathways 
has been reported to reduce muscle wasting in 
experimental cancer cachexia.126 Ruxolitinib is an 
oral, potent and selective JAK1/2 inhibitor; use in 
a clinical trial on patients with myelofibrosis has 
been associated with an increase in body weight.128 
Currently, an open-label phase II trial [Clinical-
Trials.gov identifier: NCT02072057] is investi-
gating the safety and efficacy of ruxolitinib for the 
treatment of cachexia in patients with tumor-
associated chronic wasting diseases.26,120 Suni-
tinib, a tyrosine kinase inhibitor used for the 
treatment of renal cell carcinoma, has been shown 
to prevent experimental cancer cachexia by inhib-
iting STAT3 activation and muscle RING Finger 
1 protein (MuRF1) upregulation in the skeletal 
muscle.129 More controversial results are available 
for sorafenib, a multi-kinase inhibitor that has 
been proven effective in attenuating experimental 
cancer cachexia by inhibiting both STAT3 and 
ERK activity in the skeletal muscle,129,130 but 
shown to cause muscle wasting in patients with 
advanced renal cell carcinoma.131

Targeting the alterations in fat and energy metab-
olism underlying cancer cachexia is also gaining 
attention as a potential therapeutic strategy. 
Recently, pharmacological inhibition of fatty acid 
oxidation by etoxomir (a specific inhibitor of car-
nitine palmitoyltransferase-1) has been shown to 
rescue muscle wasting in experimental cancer 
cachexia.132 Inhibition of white adipose tissue 
browning, a process involved in increasing energy 
expenditure and thermogenesis, has also been 
shown to ameliorate experimental cancer 
cachexia.133 Consistently, treatment with an anti-
body neutralizing the parathyroid-hormone-
related protein (PTHrP), a tumor-derived factor 
promoting thermogenic gene expression, pre-
vented adipose tissue loss and browning as well as 
muscle wasting and dysfunction in LLC-bearing 
mice.134 Similar results were recently obtained by 
implanting the LLC in mice with fat-specific 
knockout of PTHR (the receptor for parathyroid 
hormone and PTHrP).135

Besides the aforementioned approaches, target-
ing mitochondrial dysfunction is emerging as 
another potential therapeutic opportunity to 

https://journals.sagepub.com/home/tam


Therapeutic Advances in Medical Oncology 9(5)

376 journals.sagepub.com/home/tam

normalize energy metabolism in catabolic condi-
tions, but available data are still scanty.136

Exercise is an important regulator of mitochon-
drial dynamics and skeletal muscle metabolism, 
but training programs are not always easy to 
implement, therefore scientists are working on the 
development of exercise mimetics.137 In this 
regard, the administration of the exercise mimetic 
5-aminoimidazole-4-carboxamide-1-beta-D-ribo-
furanoside (AICAR), an adenosine monophos-
phate-activated protein kinase (AMPK) activator, 
has been shown to counteract cachexia and restore 
the autophagic flux in the skeletal muscle of C-26 
bearing mice, similarly to rapamycin (an mTOR 
inhibitor able to trigger autophagy) and voluntary 
wheel running.60

Other novel agents targeting different molecular 
mechanisms are also currently under investigation 
in experimental cancer cachexia, and very promis-
ing results were recently reported for the adminis-
tration of the histone deacetylase (HDAC) inhibitor 
AR-42138 and the antibodies targeting the fibroblast 
growth factor-inducible 14 (Fn-14), a member of 
the TNF family.139 Both treatments indeed pre-
vented cancer cachexia and prolonged survival in 
tumor-bearing mice. It should be noted, however, 
that not all HDAC inhibitors share the same ability 
to treat cancer cachexia,138,140 suggesting that 
AR-42 beneficial effects are presumably mediated 
by specific effects intrinsic to this drug, which at the 
moment are only partially understood.

Finally, modulation of gut microbiota has been 
recently proposed as a potential therapeutic 
opportunity to counteract cancer-related muscle 
wasting, but data available are still scarce and 
more insights on the mechanisms linking skeletal 
muscle homeostasis to gut microbiota are neces-
sary to ascertain whether this could represent a 
suitable therapeutic target.141

Overall, experimental studies seem to indicate a 
vast array of promising therapeutic opportunities 
for cancer-related muscle wasting, but additional 
investigations are needed to better understand the 
therapeutic potential of all these new pharmaco-
logical approaches.

Conclusions and perspectives
No effective therapy against cancer cachexia is 
available at present. For this reason, it is manda-
tory to implement strategies aimed at preventing 

or at least delaying this condition. In this regard, 
the increasing knowledge about the molecular 
mechanisms underlying cancer-related muscle 
wasting has allowed the identification of several 
potential therapeutic targets and the develop-
ment of many promising drugs, some of which 
reached the clinical trial phase. At the same 
time, however, it is becoming clear that a multi-
modal approach is mandatory to successfully 
manage patients with cancer cachexia. Another 
crucial point is the early recognition and treat-
ment of the nutritional and metabolic alterations 
occurring during cancer. Several evidences, 
indeed, suggest that cancer patients have an 
exploitable anabolic potential. For this reason, 
adequate nutritional support should be provided 
to slow the wasting process. Along this line, 
exercise training, compatible with the exercise 
capacity of cancer patients, could represent 
another important tool to boost the anabolic 
effects of the nutritional support and to prevent 
the detrimental consequences of physical inac-
tivity on muscle mass and function.

Additional clinical trials are therefore necessary in 
the next few years to optimize multimodal inter-
ventions to counteract cancer cachexia and deliver 
the best of care to patients.
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