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ABSTRACT
Sepsis-induced acute respiratory distress syndrome (ARDS) remains a major threat to human health 
without effective therapeutic drugs. Previous studies demonstrated the power of gene expression 
profiling to reveal pathological changes associated with sepsis-induced ARDS. However, there is still 
a lack of systematic data mining framework for identifying potential targets for treatment. In this 
study, we demonstrated the feasibility of druggable targets prediction based on gene expression 
data. Through the functional enrichment analysis of microarray-based expression profiles between 
sepsis-induced ARDS and non-sepsis ARDS samples, we revealed genes involved in anti-microbial 
infection immunity were significantly altered in sepsis-induced ARDS. Protein–protein interaction 
(PPI) network analysis highlighted TOP2A gene as the key regulator in the dysregulated gene 
network of sepsis-induced ARDS. We were also able to predict several therapeutic drug candidates 
for sepsis-induced ARDS using Connectivity Map (Cmap) database, among which doxorubicin was 
identified to interact with TOP2A with a high affinity similar to its endogenous ligand. Overall, our 
findings suggest that doxorubicin could be a potential therapeutic for sepsis-induced ARDS by 
targeting TOP2A, which requires further investigation and validation. The whole study relies on 
publicly available dataset and publicly accessible database or bioinformatic tools for data mining. 
Therefore, our study benchmarks a workflow for druggable target prediction which can be widely 
applicable in the search of targets in other pathological conditions.
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Introduction

Acute respiratory distress syndrome (ARDS) is 
a prevalent disease with high mortality, which 
seriously compromises the quality of life of the 
patient. Even if the condition of some patients 
can be ameliorated, there is significant number of 
sequelae in ARDS survivors, including persistent 
functional and neurocognitive defects such as cog-
nitive deficits and post-traumatic stress disorder 
[1]. ARDS imposes health threats to human life 
quality and is drawing increasing attention. As 
a major cause of acute respiratory failure, ARDS 
is a serious consequences of acute inflammatory 
lung injury. ARDS patients vary in symptom 
severity and survival longevity, and the identifica-
tion of mechanisms regulating the variability in 
disease progression may contribute to the devel-
opment of efficient personalized treatment [2]. 
Numerous pathological conditions such as sepsis, 
pneumonia, multiple blood transfusions, lung con-
tusion, aspiration of stomach contents and drug 
abuse could result in ARDS. The major predispos-
ing factor is pneumonia or sepsis, which leads to 
massive neutrophil accumulation within pulmon-
ary vasculatures [3]. Clinical research reveals that 
sepsis-induced ARDS has poorer recovery from 
lung injury, higher disease severity and mortality 
than those induced by other risk factors. Although 
the research into the pathophysiology of ARDS 
progresses in recent years, the molecular mechan-
isms of sepsis-induced ARDS remain to be fully 
elucidated [4]. On the other hand, in spite of 
several decades of efforts, there is still a lack of 
effective pharmacologic interventions to ARDS 
[5]. The most commonly used medications for 
ARDS are neuromuscular blocking agents [6], 
which only functions as an adjuvant to prevent 
ventilation-related lung injury. Thus, there is an 
imperative need to develop specific therapeutic 
drug for treating ARDS.

Over the past decade, research has been focused 
on the identification of genetic factors correlated 
with ARDS. With the advancement of molecular 
biology technology, transcriptome analysis by 
microarray and RNA-seq become a leading tool 

for analyzing the global gene expression profile. 
There are accumulating transcriptome data avail-
able in public database such as gene expression 
omnibus (GEO) [7], and these studies provide 
novel insights into the pathogenesis of ARDS. 
For example, study by Kangelaris et al. [8] revealed 
the contribution of neutrophils in progression to 
ARDS through comparing the transcriptomes 
between patient with sepsis-induced ARDS and 
patients with sepsis alone. Another transcriptomic 
study demonstrated that the elevated expression of 
interferon-stimulated genes (ISGs) is associated 
with worse clinical outcomes in ARDS [2]. The 
recent single cell RNA-seq analysis unveiled dis-
tinguishing gene expression profiles in monocyte 
from patients with sepsis-ARDS [9]. Thorough 
data mining in transcriptome profile of clinical 
samples from sepsis-induced ARDS holds great 
potential to identify bioprocesses and pathways 
contributing to pathological progression of 
ARDS, and provide insights into the development 
of novel therapeutic strategies. However, there is 
still a lack of systematic data mining workflow for 
identifying the druggable targets for potential 
treatment of sepsis-induced ARDS.

In order to survey the molecular mechanism 
and druggable targets underlying sepsis-induced 
ARDS, we leveraged the publicly available data 
and a handful of publicly available database and 
bioinformatic tools to predict the druggable targets 
using microarray gene expression data from sep-
sis-induced ARDS and non-sepsis ARDS samples. 
Our analysis revealed that anti-microbial infection 
programs are the key biological process altered in 
sepsis-induced ARDS. Through protein-protein- 
interaction (PPI) analysis of the dysregulated 
genes, we found that TOP2A gene is located at 
the central hub of the dysregulated gene network, 
indicating a key regulatory role in sepsis-induced 
ARDS. Using Connectivity Map (Cmap) database 
and molecular docking analysis, we further 
showed that doxorubicin could target TOP2A 
with a high affinity similar to its endogenous 
ligand. Collectively, our study benchmarks an in- 
silico strategy to predict the druggable targets and 
provides novel insights into drug usage in sepsis- 
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induced ARDS. Our in-silico analysis framework 
can be beneficial for other researchers in search for 
potential treatment targets of other disease 
conditions.

Materials and methods

GEO data acquisition

Gene chip data GSE32707 provided by Dolinay 
T et al. was downloaded firstly from GEO database 
(http:www.ncbi.nlm.nih.gov/geo) in NCBI [10]. 
GSE32707 data came from the GPL10558 platform 
and contained 144 patients in the Brigham and 
Women’s Hospital medical ICU, among which 
were systemic inflammatory response syndrome 
(SIRS), sepsis, non-sepsis ARDS (control/untreated), 
and sepsis-induced ARDS. Given the focus of this 
analysis was sepsis-induced ARDS, 18 samples from 
sepsis-induced ARDS patients and 34 untreated 
samples (non-sepsis ARDS) were retained for the 
entire analysis. In all the samples, total mRNA was 
isolated from whole blood samples f on the day of 
patient admission for microarray analysis. The 
microarray chip contained 47,220 probes, and 
43,951 probes corresponding to 31,326 protein- 
coding genes were retained. Probes with no detected 
signals were filtered and the gene level was deter-
mined by calculating the median values of multiple 
probes mapped to the same gene. Finally, expression 
profiles of 19,565 coding genes in 18 sepsis-induced 
ARDS samples and 34 untreated samples were 
retained for the following analysis.

Analysis of differential-expressed genes (DEGs) 
between sepsis-induced ARDS and control 
samples

The DEGs between sepsis-induced ARDS patients 
and control samples were analyzed using ‘edgeR’ 
package in R software [11]. The false discovery 
rate (FDR) and fold change (FC) was calculated. 
Genes with an FDR< 0.05 and the |log2FC| ≥ 1.5 
were considered as DEGs.

Functional enrichment analysis by DAVID

The Database for annotation, visualization and 
integrated discovery (DAVID, http://David.abcc. 

ncifcrf.gov/) collects and integrates a variety of 
gene identifiers and more than 40 known publicly 
available resources, which serves as 
a comprehensive annotation tool for data mining 
in transcriptomic data [12]. DEGs between sepsis- 
induced ARDS group and controls were submitted 
to DAVID, Gene Ontology (GO) and Kyoto ency-
clopedia of genes and genomes (KEGG) functional 
enrichment analysis were performed. Fisher ‘s 
accurate probability method was selected for of 
p value calculation. Terms with p value <0.05 
were considered as significantly overrepresented 
in the DEGs. The ‘ggplot2� package in 
R software was used for visualizing the Top25 
pathways significant enriched in the DEGs.

Gene set enrichment analysis (GSEA)

GSEA (http://www.broadinstitute.org/gsea/index. 
jsp) computationally determines whether a priori 
defined gene set shows concordant differences 
between two biological states [13]. In this study, 
GSEA was performed with expression profiles of 
all genes identified in sepsis-induced ARDS and 
control group. All gene sets in molecular signa-
tures database (MsigDB), including canonical 
pathways, KEGG gene sets, GO gene sets and 
GO biological process, were selected for GSEA 
analysis. According to the default weighted enrich-
ment statistical method, 1000 times’ permutation 
were selected for each analysis and pathways or 
GO terms with p value <0.05 was considered as 
significant enrichment gene sets.

Analysis of protein–protein interaction of DEGs

STRING 9.1 (http://www.string-db.org/) database 
[14] was utilized for identifying the protein–pro-
tein interaction network of DEGs with the com-
prehensive confidence value ≥0.4, which was the 
default median confidence value in STRING data-
base. The PPI network was visualized using 
Cytoscape software (http://www.cytoscape.org/).

Prediction of potential therapeutic drugs for 
sepsis-induced ARDS

The connectivity map database (Cmap, www.broad 
institute.org/cmap/) was a joint development 

CANDIDATE DRUG PREDICTION FOR SEPSIS-INDUCED ARDS 1371

http://www.ncbi.nlm.nih.gov/geo
http://David.abcc.ncifcrf.gov/
http://David.abcc.ncifcrf.gov/
http://www.broadinstitute.org/gsea/index.jsp
http://www.broadinstitute.org/gsea/index.jsp
http://www.string-db.org/
http://www.cytoscape.org/
http://www.broadinstitute.org/cmap/
http://www.broadinstitute.org/cmap/


database of the Massachusetts Institute of 
Technology (MIT), Harvard University and its 
affiliated hospitals [15]. At present, Cmap (build 
02) contains 6,100 gene expression profiles from 
7,056 microarray datasets which cover a total num-
ber of 1,309 FDA-approved small molecule drugs. It 
can be used to predict the mechanisms of actions of 
novel drugs and perform in-silico screening of exist-
ing drugs for drug repurposing. To conduct an in- 
silico screen of potential therapeutic drugs of sepsis- 
induced ARDS by querying Cmap, the names of up- 
regulated and down-regulated genes were converted 
into standard probes of ‘Affymetrix GeneChip 
Human Genome U133A Array’ and the query sig-
nature format files were constructed according to 
instructions. The connectivity score has a value 
between +1 and −1, representing the relative 
strength of a drug based on the query. Positive 
connectivity score indicates that a specific drug can 
induce the expression pattern of sepsis-induced 
ARDS, and a negative connectivity score indicates 
the reversion of sepsis-induced ARDS expression 
pattern. Since we aimed at drug candidates with 
potential to ameliorate the signatures of sepsis- 
induced ARDS, the top 20 negatively-regulated 
drugs were the selected in the downstream analysis.

Molecular docking

Molecular docking is becoming an important 
method for drug discovery and structure opti-
mization. Chemical structures of the top 20 
candidate drugs were retrieved from the 
PubChem database and the connectivity map 
database. Structural format files of SDF were 
downloaded for subsequent molecular docking. 
Uniprot was utilized for protein structure 

query. SystemsDock, a web server for network 
pharmacology-based prediction and analysis, 
was used for molecular docking in this study 
[16]. The PKd/PKi (dissociation constant) was 
calculated based on in silico molecular docking.

Results

Identification of signature genes in 
sepsis-induced ARDS samples

In order to find genes dysregulated in sepsis- 
induced ARDS, we retrieved microarray data 
from GEO database, which contains 18 sepsis- 
induced ARDS samples and 34 control samples 
(untreated, non-sepsis ARDS). With a threshold 
of FDR < 0.05 and |log2FC| ≥ 1.5, 330 up- 
regulated genes and 190 down-regulated genes 
were identified in sepsis-induced ARDS patients 
in comparison with control samples. Top 5 up- 
regulated genes are PURG, ADAMTS6, WDR66, 
B3GNT7, KRTAP20-3 and the mostly down- 
regulated genes are CPS1, TM4SF1, GAGE2B, 
KRT17, NTS (Table 1). All these genes showed 
a |log2FC| >3, which is equivalent to 8-fold 
changes in the expression. Bidirectional hier-
archical clustering analysis demonstrated that 
sepsis-induced ARDS samples tend to cluster 
together, with distinctive gene expression pattern 
(Figure 1a). Volcano plot demonstrated there are 
more genes showing significant up-regulation 
than the down-regulated ones (Figure 1b). We 
next selected these genes with significant 
changes (DEGs) as the signature genes for func-
tional enrichment analysis.

Functional enrichment analysis revealed altered 
innate immune responses in sepsis-induced ARDS

We next performed functional enrichment analysis 
based on GO and KEGG annotations in DAVID 
online tools. We identified 32 biological processes 
that are significantly enriched in the DEGs. Sepsis- 
induced ARDS seems to affect gene expressions in 
a wide spectrum of biological processes including 
translation (GO:0006412), rRNA processing 
(GO:0006364), cobalamin metabolic process 
(GO:0009235). Notably, genes involved in innate 
immunity against pathogens such as defense 

Table 1. Top ranking list of up-related and down-related genes 
sepsis-induced ARDS.

Gene logFC pValue FDR

PURG 3.582800226 4.51E-17 8.82E-13
ADAMTS6 3.740993555 2.45E-16 2.24E-12
WDR66 3.716725258 3.43E-16 2.24E-12
B3GNT7 3.820669571 4.92E-16 2.41E-12
KRTAP20-3 3.236491687 6.48E-16 2.53E-12
CPS1 −4.742218398 3.32E-11 1.10E-08
TM4SF1 −4.994941596 1.60E-10 3.68E-08
GAGE2B −3.854115188 4.68E-10 8.72E-08
KRT17 −3.462657465 6.84E-10 1.23E-07
NTS −3.585856923 1.03E-09 1.62E-07
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response to fungus (GO:0050832), defense 
response to gram-negative bacterium 
(GO:0050829), cellular response to interleukin-4 
(GO:0071353) are also overrepresented in the 
DEGs (Figure 2). Meanwhile, genes related to the 
response to oxidative stress (GO:0006979) are also 
significantly enriched.

The DAVID functional enrichment analysis is 
based on the hypergeometric testing of the over-
lapping of detected genes and the genes annotated 
in a specific term, without considering the gene 
expression level [12]. To incorporate the relative 
expression information into the enrichment ana-
lysis, we next performed Gene Set Enrichment 
Analysis (GSEA). 23 biological processes were sig-
nificantly enriched, which also contains innate 
immunity terms such as ‘defense response to fun-
gus’, ‘defense response to gram negative bacter-
ium’, ‘defense response to bacterium’ and 
‘negative regulation of tumor necrosis factor 
superfamily cytokine production’ (Figure 3). It is 
important to note that those gene sets show up- 
regulation (positive correlation) with the sepsis- 
induced ARDS status. Therefore, GSEA analysis 
results are highly consistent with that of GO 
enrichment analysis by DAVID tool, indicating 
that genes involved in innate immune response 

against pathogen tend to be up-regulated in sepsis- 
induced ARDS samples.

Protein–protein interaction (PPI) analysis 
identified TOP2A as the top regulator in gene 
network

To decipher the systematic correlation among the 
DEGs and the key regulators, we next constructed 
the PPI network for differentially expressed genes. 
Based on a combined score >0.4, a total of 332 protein 
(nodes) with 1,361 protein interaction pairs (edges) 
were obtained. The PPI network was visualized in the 
Cytoscape software (Figure 4), which displayed the 
topological structures for all interactions. Proteins 
sharing many interaction pairs are located at the 
hubs, which possibly a critical role in PPI network. 
The significance degree of the node defined as the 
number of connections it shares with other proteins 
is displayed by the size of node. The analysis revealed 
that five genes (TOP2A, PAICS, HSPE1, HSP90AA1 
and ACACA) were at the hubs to interact with many 
other proteins (Figure 4). Among them TOP2A 
showed the highest degree of interactions, suggesting 
that TOP2A gene could be a key regulator in the DEGs 
network of sepsis-induced ARDS samples.

Figure 1. Differential gene expression analysis of sepsis-induced ARDS and control samples. (a) Bidirectional hierarchical clustering of 
sepsis-induced ARDS and control samples. Each row represented a gene, each column represented a sample. Sepsis-induced ARDS 
samples are labeled as red and the control samples are labeled as blue. The heatmap shows the Z-score of relative gene expression 
of each samples; (b) Volcano plot for DEGs between sepsis-induced ARDS and control samples. X-axes indicates -log (FDR) and y-axes 
showes the log2 fold change. Red dots represent significantly up-regulated genes and green ones represents the down-regulated 
genes.
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In silico screening of potential therapeutic 
drugs for sepsis-induced ARDS

To predict the potential therapeutics from existing 
drugs for sepsis-induced ARDS treatment, we car-
ried out in silico analysis of the DEGs using the 
Connectivity Map (Cmap) analysis [15]. The ratio-
nale is to evaluate the gene expression profile of 
the existing drugs for its potential to reverse the 
gene expression patterns in sepsis-induced ARDS 
samples. Both up- and down-regulated DEGs were 
submitted in Cmap database as query. Top 20 hits 
with negative connectivity score (indicating the 
reversion of sepsis-induced ARDS gene expression 
pattern) are listed in Table 2. Interestingly, drugs 
such as doxorubicin, meteneprost, chlorpropamide 
and trichostatin A were reported to be implicated 
in controlling fungi or bacterial infections [17–19], 

suggesting a consistence between the functional 
enrichment analysis and the drug effect prediction.

Molecular docking validated doxorubicin as 
a high affinity drug for TOP2A

Our PPI network analysis identified TOP2A as 
a key regulator in gene network of sepsis-induced 
ARDS. We hypothesized that some of the top 20 
candidate drugs from Cmap analysis may target 
reverse the gene expression by targeting TOP2A. 
Therefore, we applied molecular docking analysis 
to model the interactions between 20 candidate 
drugs and TOP2A, respectively (Figure 5). We 
found that doxorubicin showed the highest dock-
ing core (PKd = 8.09) with TOP2A. Doxorubicin 
also displayed a similar affinity toward TOP2A as 
its endogenous negative ligand. Collectively, our 

Figure 2. Functional enrichment analysis of the DEGs between sepsis-induced ARDS and control samples. DAVID bioinformatic tools 
were used for functional enrichment analysis of the DEGs between sepsis-induced ARDS and control samples. Gene number, 
enrichment score (rich factor) and the enrichment p value of each biological process were displayed in the bubble plot.
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data unveil the potential of doxorubicin as 
a candidate treatment for sepsis-induced ARDS 
by targeting TOP2A.

Discussion

Since the initial description by Ashbaugh et al. in 
1967 [20], sepsis-induced ARDS has been recog-
nized as a major clinical problem worldwide, 
which is posing a high morbidity and mortality 
burden [21,22]. Although intensive efforts have 
been made to understand the molecular mechan-
ism of sepsis-induced ARDS, the key defining fac-
tors underlying its pathophysiological onset 
remain elusive [23–25]. Recent studies using single 

cell RNA-seq approach have revealed the contri-
bution of different immune cell types and immune 
responses in sepsis-induced ARDS [9,26]. In this 
study, we utilized the published microarray data 
from sepsis-induced ARDS samples to probe for 
the molecular signatures and potential druggable 
targets. The differential gene expression analysis 
and function enrichment analysis show that the 
biological processes of defense to fungal and bac-
terial infection are overrepresented in the dysregu-
lated genes of sepsis-induced ARDS. These results 
seem to be consistent with a recent study that 
RNA-seq analysis from the whole blood sample 
of ARDS patients shows an elevated innate immu-
nity response [27].

Figure 3. GSEA analysis shows significant up-regulation of genes in anti-bacterial and anti-fungus defense response in sepsis- 
induced ARDS samples.
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Our PPI network analysis further unveils several 
key regulators like TOP2A, PAICS, HSPE1, 
HSP90AA1 and ACACA in the central hubs of 
dysregulated gene network in sepsis-induced 
ARDS. TOP2A encodes a Type II DNA topoi-
somerase which regulates the topological state of 
DNA during the transcriptional process [28]. It 
also functions in the process of chromatin modu-
lation in DNA replication and DNA damage 
repair. Recent studies have reported that TOP2α, 
as the encoded protein of TOP2A, is the cause of 
genomic DNA damage [29,30]. Interestingly, DNA 
damage and repair process has been implicated in 
a variety of pulmonary diseases, including acute 
lung injury [31,32]. Since Type II DNA topoi-
somerase can induce spontaneous double-strand 

break in genome [29], our data suggest that 
TOP2A mediated DNA damage response may be 
involved in the development of sepsis-induced 
ARDS, which required further experimental 
validation.

Transcriptome profiling draws increasing atten-
tion in drug discovery because it can greatly shorten 
the time of predicting candidate drugs and mode of 
actions [33,34]. Lamb et al. pioneered the usage of 
transcriptome data by creating a repertoire of refer-
ence transcriptomes of existing drugs [35]. This 
platform (Cmap) can help reveal the relationship 
among diseases, drugs and genes, which is of great 
value in drug repurposing [35,36]. Our analysis 
using Cmap database identified a variety of candi-
date drugs for the treatment of sepsis-induced 

Figure 4. Protein-protein interaction (PPI) network analysis of DEGs between sepsis-induced ARDS and control samples. Each node 
represents a gene each edge represents an interaction pair. The size and color of each node shows the importance of the gene in the 
network.
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ARDS, including doxorubicin, metampicillin and 
trichostatin A. Many of these drugs have previously 
been shown to have effect in controlling fungi or 
bacterial infections. Since our GSEA analysis results 
demonstrated that the anti-bacterial and anti-fungal 
response process are dysregulated in sepsis-induced 
ARDS, these drugs can potentially reverse the dys-
regulation of genes involved in anti-fungi or bacter-
ial infection response, thereby ameliorating the 
conditions of sepsis-induced ARDS. Intestinally, 
the top-ranked candidate drug doxorubicin is an 
inhibitor of DNA Topoisomerase II [37] and it 
also shows high affinity to the top regulator 
TOP2A protein. Therefore, doxorubicin can be 
prioritized to evaluate its treatment potential in 
sepsis-induced ARDS.

Our study is the first to use RNA-Seq data to 
predict the potential druggable targets in sepsis- 
induced ARDS. This proof-of-concept study pro-
vides insights that are valuable to design future 
studies to investigate the candidate drugs for treat-
ing sepsis-induced ARDS. We also believe that our 
analysis pipeline using a variety of publicly avail-
able database and tools forms a reliable framework 
for predicting druggable targets based on tran-
scriptome data. However, one confounding factor 
in the clinical dataset is the heterogeneity amongst 
different ARDS patients. For example, within the 
sepsis-induced ARDS samples, we did observe that 
some samples do not display the same signature 

gene patterns as the majority. This may be due to 
the differential immunological status of the 
patients recruited, and increasing the sample size 
can reduce the variability introduced by sample 
heterogeneity. In addition, the expression profiles 
were extracted from blood cells, which will not 
capture the changes of lung epithelial cells and 
endothelial cells. Finally, proteomic analysis of 
sepsis-induced ARDS samples could generate 
more insight into the changes at protein level, 
which can provide solid support of the changes 
observed at gene expression profiles.

Conclusions

This study aims to predict the druggable targets of 
sepsis-induced ARDS based on the analysis of the 
microarray data. We revealed signatures genes that 
are significantly dysregulated in sepsis-induced 
ARDS which may play critical roles in the pathogen-
esis of sepsis-induced ARDS. Importantly, we 
further predicted multiple candidate drugs with the 
potential to reverse the signature of gene expression 
changes in sepsis-induced ARDS, among which 
doxorubicin may contribute to reverse the expres-
sion mode in ARDS by targeting TOP2A. However, 
further investigation using ARDS animal model is 
required to evaluate the in vivo effect of these drugs 
for treat sepsis-induced ARDS treatment. Overall, 
our analysis benchmarks a workflow for druggable 
target prediction, which can be widely applicable in 
other pathological conditions.

Highlights

(1) Transcriptome profiling identified signature genes dysre-
gulated in sepsis-induced ARDS.
(2) GSEA revealed that genes in anti-microbial response is 
dysregulated in sepsis-induced ARDS.
(3) TOP2A was at the center of dysregulated gene network in 
sepsis-induced ARDS.
(4) Doxorubicin as a strong candidate targeting TOP2A for 
reversing transcriptome signature.

Abbreviation

ARDS acute respiratory distress syndrome;
PPI protein-protein interaction
Cmap Connectivity map

Table 2. Prediction of potential therapeutic drugs for sepsis- 
induced ARDS by connectivity map.

No. Cmap name Dose Cell Score Up Down

1 SC-19,220 10 µM PC3 −1 −0.148 0.296
2 meteneprost 10 µM PC3 −0.982 −0.15 0.286
3 doxorubicin 7 µM MCF7 −0.913 −0.126 0.279
4 BCB000040 10 µM PC3 −0.906 −0.136 0.266
5 articaine 12 µM PC3 −0.892 −0.124 0.272
6 isoflupredone 10 µM PC3 −0.888 −0.14 0.254
7 vinblastine 100 nM PC3 −0.879 −0.123 0.267
8 heptaminol 22 µM PC3 −0.87 −0.149 0.238
9 AR-A014418 10 µM PC3 −0.864 −0.145 0.239
10 3-acetamidocoumarin 20 µM PC3 −0.864 −0.172 0.211
11 5,253,409 17 µM MCF7 −0.86 −0.133 0.249
12 alsterpaullone 10 µM PC3 −0.859 −0.106 0.275
13 bacampicillin 8 µM MCF7 −0.858 −0.163 0.218
14 chlorpropamide 100 µM MCF7 −0.857 −0.108 0.272
15 metampicillin 10 µM PC3 −0.855 −0.128 0.251
16 estropipate 9 µM MCF7 −0.852 −0.149 0.229
17 etilefrine 18 µM PC3 −0.848 −0.138 0.239
18 homatropine 11 µM MCF7 −0.845 −0.132 0.243
19 trichostatin A 100 nM MCF7 −0.844 −0.132 0.243
20 fursultiamine 9 µM MCF7 −0.843 −0.127 0.247
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SIRS Systemic Inflammatory Response Syndrome
DAVID the Database for annotation, visualization and inte-

grated discovery
GESA Gene Set Enrichment Analysis
TOP2A DNA topoisomerase 2-alpha;
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