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Abstract

Background: RNA editing generates modifications to the RNA sequences, thereby
increasing protein diversity and shaping various layers of gene regulation. Recent
studies have revealed global shifts in editing levels across many cancer types, as well
as a few specific mechanisms implicating individual sites in tumorigenesis or
metastasis. However, most tumor-associated sites, predominantly in noncoding
regions, have unknown functional relevance.

Results: Here, we carry out integrative analysis of RNA editing profiles between
epithelial and mesenchymal tumors, since epithelial-mesenchymal transition is a key
paradigm for metastasis. We identify distinct editing patterns between epithelial and
mesenchymal tumors in seven cancer types using TCGA data, an observation further
supported by single-cell RNA sequencing data and ADAR perturbation experiments
in cell culture. Through computational analyses and experimental validations, we
show that differential editing sites between epithelial and mesenchymal phenotypes
function by regulating mRNA abundance of their respective genes. Our analysis of
RNA-binding proteins reveals ILF3 as a potential regulator of this process, supported
by experimental validations. Consistent with the known roles of ILF3 in immune
response, epithelial-mesenchymal differential editing sites are enriched in genes
involved in immune and viral processes. The strongest target of editing-dependent
ILF3 regulation is the transcript encoding PKR, a crucial player in immune and viral
response.

Conclusions: Our study reports widespread differences in RNA editing between
epithelial and mesenchymal tumors and a novel mechanism of editing-dependent
regulation of mRNA abundance. It reveals the broad impact of RNA editing in cancer
and its relevance to cancer-related immune pathways.

Introduction
RNA editing, the modification of specific nucleotides in RNA sequences, expands di-

versity in proteins and gene regulatory mechanisms [1, 2]. The most frequent type of

RNA editing in human cells is A-to-I editing, which refers to the deamination of ad-

enosine (A) to inosine (I) and is catalyzed by the adenosine deaminases acting on RNA

(ADAR) family of enzymes [3]. Three ADAR genes are encoded in the human genome,
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namely ADAR1, ADAR2, and ADAR3. Catalytically active ADAR1 and ADAR2 are

widely expressed across tissues. In contrast, ADAR3 is exclusively expressed in certain

brain regions and is catalytically inactive [4]. As inosine is recognized as guanosine (G) in

translation and sequencing, A-to-I editing is also referred to as A-to-G editing. Though

millions of editing events have been revealed across the human transcriptome, only a

small proportion of editing events have been functionally characterized. The effects of

most editing sites, primarily within noncoding regions, have yet to be discovered [5, 6].

Increasing evidence has established the importance of RNA editing dysregulation in cancer.

A number of studies have delineated mechanisms through which individual RNA editing sites,

mostly causing recoding events (i.e., amino acid changes), promote or suppress tumor devel-

opment [7–10]. Besides functioning in tumorigenesis, edited RNA transcripts can be

translated into edited peptides, which may be recognized as cancer antigens and activate an

anti-tumor immune response [11, 12]. Furthermore, across various cancer types, genome-

wide aberrations in RNA editing were observed and associated with clinical features [13–15].

Within each cancer type, editing levels generally increased or decreased in tumors, compared

to matched normal samples. Editing levels of specific sites were correlated with tumor stage,

subtype, and patient survival, and for a smaller subset of nonsynonymous sites, editing altered

cell proliferation and drug sensitivity in cell line experiments [13]. As RNA editing has the po-

tential to inform development of improved cancer diagnostics and patient-specific treatments,

thorough investigation of the precise functions and regulatory mechanisms of the many

cancer-type-specific RNA editing changes is needed [10].

In cancer progression, activation of epithelial-mesenchymal transition (EMT) facilitates me-

tastasis by enabling tumor cells to gain an invasive phenotype, infiltrate the circulatory and

lymphatic systems, and reach distant sites for colonization [16–18]. A few RNA editing sites

have been associated with this process so far. Specifically, editing events in SLC22A3, FAK,

COPA, RHOQ, and miR-200b were demonstrated to accelerate metastasis [12, 19–23]. While

miR-200b normally targets ZEB1 and ZEB2, which are key EMT-inducing transcription fac-

tors, editing alters its targets and enhances cell invasiveness and motility [23]. The SLC22A3

recoding event also promoted EMT, causing expression changes in EMT marker genes [19].

In contrast, a recoding event in GABRA3 inhibited metastasis and was present only in non-

invasive cell lines and non-metastatic tumors [22]. These studies highlight the functional rele-

vance of RNA editing in metastasis and the merit of a more comprehensive investigation.

Here, we present a global analysis and comparison of RNA editing profiles between epi-

thelial (E) and mesenchymal (M) phenotypes of primary tumors across multiple cancer

types. Using RNA-seq data derived from bulk tumors and single cells, we observed dis-

tinct editing patterns between phenotypes, with editing differences often enriched among

immune response pathway genes. Supported by experimental evidence, we show that dif-

ferential editing sites affect host gene mRNA abundance and identify a novel mechanism

of editing-dependent stabilization of mRNAs by ILF3. One of the target genes of ILF3 is

EIF2AK2, coding for protein kinase R (PKR), a key player in immune and viral response.

Results
Altered RNA editing profiles between epithelial and mesenchymal tumors

EMT is known to be accompanied by substantial transcriptome remodeling [17, 24–28].

Given the previously reported functional relevance of RNA editing in EMT [19, 23, 29],
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we hypothesized that epithelial and mesenchymal tumors possess different transcriptome-

wide RNA editing profiles. Thus, we analyzed RNA-seq datasets of primary tumors from

The Cancer Genome Atlas (TCGA). We focused on seven cancer types that have been

previously studied in the context of EMT and have relatively large sample sizes available

from TCGA (Fig. 1a). To classify tumors into epithelial (E) and mesenchymal (M) pheno-

types, we utilized a well-established EMT scoring system, where scoring and

categorization of tumors into these E and M phenotypes enabled systematic identification

of cancer-specific differences in treatment response between phenotypes, as well as associ-

ations with survival [30]. Of all categorized tumors for each cancer type, we further re-

fined the subset of tumors such that metadata were matched between the two groups

(Additional file 1: Table S1).

Applying our previously published methods [1, 31, 32], we quantified editing levels at

over 4 million editing sites recorded in the REDIportal database [33]. We then identi-

fied sites that were differentially edited between E and M tumors in each cancer type.

To control for false discoveries, we filtered out predicted differential editing sites that

repeatedly exhibited differences in editing when phenotype labels were shuffled ran-

domly. Principal component analysis on differential editing levels showed that E and M

tumors could be well separated by the first two principal components of editing

Fig. 1 Overview of differential editing in cancer EMT. The following cancer types were studied: breast
invasive carcinoma (BRCA), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), prostate
adenocarcinoma (PRAD), ovarian serous cystadenocarcinoma (OV), kidney renal clear cell carcinoma (KIRC),
head and neck squamous cell carcinoma (HNSC). a First two principal components of differential editing
profiles separate tumor samples into epithelial (E) and mesenchymal (M) phenotypes across cancer types. b
Distributions of differences in mean editing levels between E and M tumors in each cancer type. The
number of differential editing sites is listed on top of each distribution. c Differential editing sites are mostly
found in 3′ UTR and intronic regions in all cancer types, with higher proportions of 3′ UTR sites compared
to that of all editing sites from the REDIportal database
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(Fig. 1a). These first two principal components did not appear to be confounded by

sample metadata and suggest that most of the variation in editing is explained by the

distinction of E and M phenotypes (Additional file 2: Fig. S1).

Based on the differential editing sites, most cancer types, including LUAD, LUSC,

PRAD, KIRC, and HNSC, demonstrated a hyperediting trend in the M phenotype

(Fig. 1b). In contrast, two cancer types, BRCA and OV, had a trend of hypoediting in

the M samples. The majority of differential editing sites in all cancer types were located

in the 3′ untranslated regions (UTRs) or introns (Fig. 1c). The above results suggest

that distinct RNA editing profiles exist between E and M phenotypes.

Editing patterns are shared among cancer types and distinct from differential expression

Given dominant trends of hyperediting or hypoediting that distinguished E and M phe-

notypes in an individual cancer type, we asked whether genes with differential editing

patterns were shared or distinct across cancer types. We examined the statistical sig-

nificance of overlap in differentially edited genes between pairs of cancer types by

Rank-rank Hypergeometric Overlap (RRHO). Extending Gene Set Enrichment Analysis

(GSEA) to two dimensions, RRHO tests the significance of the intersection of gene lists,

ranked by a metric of differential expression, across two genome-wide datasets [34].

We applied RRHO to RNA editing here by ranking genes according to the significance

of tested editing differences between E and M and the direction of editing differences

(“Methods”). In addition to shared directionality of global editing trends, we found sig-

nificant overlap in genes with editing changes among multiple cancer types (Fig. 2a).

Within pairs of cancer types, most significant overlaps were enriched at the bottom left

or top right corners, where genes were hyperedited or hypoedited in both cancer types,

respectively. These significant overlaps in genes based on differential editing suggest

that editing changes in EMT may affect common pathways across cancer types.

It should be noted that differentially edited genes do not overlap with differentially

expressed genes (Fig. 2b). This observation indicates that gene expression changes in

EMT did not confound the RNA editing differences observed. Thus, altered editing po-

tentially represents a distinct layer of molecular changes in EMT.

Differential editing occurs in genes of immune relevance

Next, we examined the gene ontologies enriched among genes with differential editing

in EMT. In this analysis, background control genes were chosen randomly from those

that did not have differential editing sites but had similar gene length and GC content

as the differentially edited genes (“Methods”). Across multiple cancer types, differen-

tially edited genes were enriched with viral-host interaction features, interferon (IFN),

and other immune response pathways, metabolic processes, and translational regulation

(Fig. 2c, Additional file 2: Fig. S2).

The observation of immune-relevant categories is of particular interest. RNA editing

has been described as a mechanism to label endogenous double-stranded RNAs and

consequently prevent IFN induction [35–39]. However, the roles of editing events in

genes directly associated with immune response, such as those in the IFN response

pathways, have not been well characterized. Our observation indicates that RNA editing

may directly affect immune response genes in EMT.
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Contribution of cell types to differential editing

Given the observed enrichment of differential editing in immune-relevant genes, we

asked whether our identified differential editing events primarily occur in cancer cells

or in other cell types in the tumor microenvironment. To address this question, we an-

alyzed single-cell (sc) RNA-seq data from three non-small cell lung cancer (NSCLC)

patients, each with three tumor samples from the tumor edge, core, and in-between

[40]. Following quality control measures, we clustered the cells in two rounds and la-

beled cell types based on marker genes to obtain T cells, B cells, myeloid cells, endothe-

lial cells (EC), fibroblasts (Fibro), epithelial cells (Epi), mast cells, alveolar cells, and

cancer cells (Additional file 2: Fig. S3A-C, “Methods”). Supporting the accuracy of this

clustering, expression of marker genes was generally highest in their expected cell types

when RPKM was calculated from pooled cells and when a signature gene expression

matrix was predicted by CIBERSORTx [41] (Additional file 2: Fig. S3D).

To gauge the contribution of individual cell types to bulk tumor differential editing, we

examined gene expression and editing profiles of each cell type. Specifically, we pooled

cells of each type and calculated the percent of differentially edited genes from the bulk

tumor analysis that were expressed in each cell type. Cancer cells expressed the highest

Fig. 2 Differential editing patterns are shared among cancer types yet distinct from differential gene
expression. a Rank-rank hypergeometric overlap (RRHO) map of RNA editing across pairs of cancer types.
Each heatmap (for two cancer types) represents the matrix of log10-transformed adjusted p values that
indicate the extent of overlap in two gene lists at each possible pair of ranks. For an individual cancer type,
genes were ranked by the signed significance of RNA editing differences (M-E). Genes with higher editing
in the M phenotype are at lower ranks, while those with higher editing levels in E tumors are at higher
ranks. Higher pixel darkness indicates stronger enrichment of overlapping genes within the rank thresholds
given by the x and y coordinates. The step size between ranks was 30 genes. b RRHO map of editing and
gene expression within each cancer type. Each heatmap contains log10-transformed adjusted p values of
hypergeometric overlap between genes ranked by editing differences (x-axis) and genes ranked by
expression differences (y-axis) in a single cancer type. Similar to ranking genes by differential editing, genes
were ranked by the signed significance of expression differences, such that genes at lower ranks have
higher expression in M tumors, while genes at higher ranks have higher expression in the E phenotype. The
step size between ranks was 30 genes. c Significance of enrichment of gene ontology (GO) terms in
differentially edited genes of each cancer type represented by point size (log10-transformed adjusted p
value). Terms significantly enriched in at least two cancer types are shown. Check mark on the right
indicates terms that were also significantly enriched in differentially expressed genes in at least two cancer
types. Text color indicates category of biological relevance

Chan et al. Genome Biology          (2020) 21:268 Page 5 of 25



proportion of genes that were differentially edited (Fig. 3a). We then measured the extent

of editing in each cell type by calculating the percent of bulk tumor differential editing

sites that were edited. Consistent with the expression analysis, the highest proportion of

differential sites was edited in cancer cells (Fig. 3b). Therefore, the editing differences ob-

served among bulk tumors may be mainly attributable to the cancer cells.

We next separated cancer cells to epithelial and mesenchymal cell clusters (Fig. 3c,

“Methods”). Sampling epithelial cells to match mesenchymal cells in terms of cell num-

ber (200 cells) and metadata, we pooled cells within each phenotype together and de-

tected RNA editing events (Additional file 2: Fig. S4). Although the scRNA-seq

primarily sequences the 3′ ends of mRNAs, a relatively small number of RNA editing

events were still captured. We identified nine editing sites with significant differences

between E and M (Fig. 3d). All nine differential sites exhibited higher editing levels in

the M phenotype, which is consistent with the hyperediting trend in M observed in

bulk LUAD and LUSC tumors (Fig. 1b). Two sites overlapped with differentially edited

sites in LUAD or LUSC and both had hyperediting in M cells, consistent with the dir-

ection in bulk tumors (Additional file 2: Fig. S5). This small overlap likely reflects the

low coverage on editing sites in the single-cell data, and/or the possibility that more dif-

ferential editing sites, which were not identified in our study due to limits in power,

exist in the bulk tumors.

Notable differentially edited genes include RHOA, which is active in cell migra-

tion and is associated with metastasis in multiple cancer types [42–44], and

ARL16, a reported negative regulator of RIG-I activity [45], consistent with the ob-

served enrichment of immune-relevant genes that were differentially edited in bulk

tumors. Overall, the findings from single-cell data support the hypothesis that edit-

ing differences between bulk E and M tumors mainly reflect changes occurring in

cancer cells.

ADAR1 or ADAR2 knockdown induced EMT

Given the differential editing profiles between E and M tumors, an important ques-

tion is whether the editing changes are functionally relevant to EMT. To address

this question, we first examined if changes in ADAR expression affect EMT. Using

cell culture systems commonly employed in EMT studies, we carried out knock-

down (KD) experiments of ADAR1 or ADAR2 in two cell lines, A549 and

MCF10A, via siRNAs. Upon ADAR1 KD, A549 cells showed elongated spindle-like

mesenchymal morphology (Fig. 4a). We also confirmed the loss of epithelial

markers (E-cadherin and γ-Catenin) and gain of mesenchymal marker (Vimentin)

in ADAR1 KD A549 cells (Fig. 4b). Similar results were observed upon ADAR2

KD in A549 cells (Fig. 4c, d) and reproducible in MCF10A cells (Fig. 4e, f). These

findings suggest that loss of either catalytically active ADAR enabled EMT in the

two cell lines. The phenotypic changes following ADAR2 KD are consistent with a

previous report that ADAR2 deficiency can induce EMT in SW480 cells [29]. To-

gether, these results indicate that knockdown of ADARs promotes EMT.

As expected, ADAR KD induced significant editing changes measured by RNA-

seq in A549 cells (Additional file 2: Fig. S6A-B), with ADAR1 KD affecting a large

number of editing sites but ADAR2 having fewer targets. A minority of ADAR2-
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responding sites had increased editing upon ADAR2 KD, reflecting the likely com-

pensation by ADAR1. The reverse, compensation of ADAR1 loss by ADAR2, was

not observed. Among the lung cancer E-M differential editing sites that were test-

able in the above A549 RNA-seq data, the vast majority responded to KD of either

ADAR or double KD (Additional file 2: Fig. S6C). These results confirm the im-

pairment of RNA editing at genome scale upon the loss of ADARs.

We next examined mRNA expression of ADARs in the bulk E and M tumors

across cancer types. In several cancer types with a hyperediting trend in M, higher

mRNA expression of ADAR1 or ADAR2 likely contributed to increased editing

levels in M tumors (Additional file 2: Fig. S7). However, ADAR expression was not

consistent with RNA editing differences for some cancer types. Thus, although

ADAR KD caused EMT in cell culture models, ADAR expression alone may not

sufficiently explain the global editing trends observed in bulk tumors.

Fig. 3 Contribution of cell types to differential editing. a Proportions of differentially edited (DE) genes from
bulk tumor analysis that were expressed in cell types identified in lung cancer single-cell RNA-seq data.
Each point represents the proportion of genes from one cancer type. A gene was considered as expressed
in a cell type if its expression ≥ 1 RPKM. RPKM values were calculated within each cell type by pooling
reads of the same cell type together. Proportions were compared for top cell types by Mann Whitney U
test, with significance of p values shown. **p≤ 0.01. EC stands for endothelial cells. b Proportion of
differential editing sites from bulk tumor analysis that were edited in individual cell types. A site was
considered as edited in a cell type if the site was covered by at least 5 reads and editing was supported by
at least 2 reads. Each point represents the proportion of sites from one cancer type. Proportions for top cell
types were compared by Mann Whitney U test, with p value significance shown. **p≤ 0.01. c UMAP
projection of 6526 tumor cells based on expression profiles, colored by cluster assignment (scatterplot, left).
By differential expression of epithelial or mesenchymal markers (table, right), green and purple clusters were
labeled as epithelial and mesenchymal, respectively. d Scatterplot of editing levels of pooled E and M cells,
with y = x line. Editing sites exhibiting significant differences between E and M were labeled in red.
Differences were considered significant if the difference between editing levels ≥ 0.05 and Fisher’s exact p
value < 0.05
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Impact of RNA editing on mRNA abundance

Given ADAR’s primary role in RNA editing, we next asked how RNA editing may affect

genes relevant to EMT, especially those related to immune response (Fig. 2c). Since a

relatively large fraction of differential editing sites is located in 3′ UTRs, we examined

the hypothesis that these sites may affect mRNA abundance of their respective genes.

Thus, we first calculated the correlation between editing levels and mRNA abundance

for differentially edited sites observed in the E-M comparison. Using a regression model

Fig. 4 ADAR1 or ADAR2 knockdown induced EMT. a Images of A549 cells transfected with siRNAs for
ADAR1 knockdown (KD) (siADAR1) or control siRNAs (siControl). Scale bars, 100 μm. b Loss of epithelial
markers (E-cadherin and γ-Catenin) and induction of mesenchymal marker (Vimentin) in A549 cells upon
ADAR1 KD. Cells were treated with 100 nM siRNA for 72 h. Three biological replicates were used in each
condition. c Images of A549 cells transfected with siRNAs for ADAR2 KD (siADAR2) or control siRNAs
(siControl). Scale bars, 100 μm. d Loss of epithelial markers (E-cadherin and γ-Catenin) and induction of
mesenchymal marker (Vimentin) in A549 cells upon ADAR2 KD. Cells were treated with 11 nM siRNA for 72
h. Three biological replicates were used in each condition. e Images of MCF10A cells with ADAR1 or ADAR2
KD or control siRNAs. Scale bars, 100 μm. f Loss of epithelial markers (E-cadherin and γ-Catenin) and
induction of mesenchymal markers (Vimentin) in MCF10A cells upon ADAR1 KD or ADAR2 KD. Cells were
treated with 11 nM siRNA for 72 h. Three biological replicates were used in each condition
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accounting for confounding factors including age, gender and race, we observed a total

of 127 genes whose editing sites are significantly correlated with mRNA abundance

(FDR < 10%) in at least one type of cancer (Fig. 5a). In addition, among these genes,

77% (94 of 122 testable genes) demonstrated a significant correlation in at least one hu-

man tissue type based on a similar analysis of GTEx data, 78% (73/94 genes) of which

showed the same direction of correlation between cancer and at least one GTEx tissue.

To further evaluate the regulatory role of RNA editing on mRNA abundance, we next

examined the change in mRNA expression levels upon ADAR1 KD. We used ADAR1 KD

RNA-Seq data from 5 cell lines: U87, HepG2, K562, HeLa, and B cells [1, 46, 47], respect-

ively. Out of the 127 edited genes identified above, 126 of them were detectable at an ex-

pression level of at least 1 FPKM (and edited) in at least one cell line (control or ADAR1

KD condition). Among them, 71% (89 genes, red dots, Fig. 5b) showed inverse correlation

between ADAR1 KD and editing level coefficient in at least one cell line (Fig. 5b). These

genes showed an enrichment of negative expression changes upon ADAR1 KD, indicating

a likely stabilizing effect imposed by RNA editing (p = 2.7e−4, binomial test). Among

expression-correlated editing sites in the 89 genes, 64% are located in 3′ UTRs, a percent-

age that is significantly higher than that of E-M differential editing sites in general (p =

2.4e−4, Fig. 5c). We thus refer to the 89 genes as putative target genes whose expression

is modulated by RNA editing (Additional file 1: Table S2).

Next, we experimentally validated the regulation of mRNA abundance by six editing

sites within three genes: RNF24, RHOA, and MRPS16. We used a minigene reporter

with bi-directional promoters for mCherry and eYFP [48] and cloned edited and un-

edited versions of each editing site and its surrounding 3′ UTR region into the 3′ UTR

of mCherry. Using expression of eYFP as an internal control, we compared mCherry

expression between cells carrying the edited and unedited versions for each editing site.

All six editing sites induced significant expression differences in the direction consist-

ent with the editing-expression correlations observed in primary tumors (Fig. 5d, Add-

itional file 1: Table S3). While positive editing associations were dominant among

predicted target genes, there also exist negative associations between editing and ex-

pression levels. We tested one example of the latter category (RHOA).

ILF3 as an editing-dependent regulator of mRNA abundance

Since mRNA stability is closely regulated by RNA-binding proteins (RBPs) [49–52], we

next asked whether RBPs are involved in the modulation of mRNA abundance by RNA

editing sites. To this end, we analyzed enhanced ultraviolet crosslinking and immuno-

precipitation (eCLIP) datasets of 126 RBPs in two cell lines (HepG2 and K562) from

ENCODE [46, 53]. We asked whether RBP binding signals are enriched significantly

closer to editing sites in the 89 potential target genes than expected by chance. This

analysis identified ILF3 as a top protein with significantly short distances to the editing

sites in both cell lines (Additional file 2: Fig. S8A). To validate this finding and test this

relationship in a different cell type, we performed eCLIP-seq of ILF3 in A549 cells. The

same observation was made via this dataset (Fig. 6a). As observed in HepG2 and K562

cells, differential editing sites within predicted target genes were significantly closer to

ILF3 binding regions in A549 cells than random gene-matched control sites. Furthermore,

75 (84%) of the 89 genes showed a significant correlation between their gene expression
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and the expression of ILF3 (FDR < 10%), 37 of which had an absolute correlation coeffi-

cient of at least 0.2 (Fig. 6b). Importantly, the majority of the significant correlations were

positive, consistent with the known roles of ILF3 in stabilizing its target mRNAs [54–56].

Impact of ILF3 on immune-relevant genes

ILF3 promotes an antiviral response through its binding to RNAs [57–59]. Given the

fact that immune-relevant genes are differentially edited in E-M (Fig. 2c), we next asked

whether ILF3 regulates the mRNA abundance of these EMT-associated differentially

edited, immune-relevant genes. Among the 89 genes whose expression was affected by

RNA editing, 20 genes fall into the immune or viral GO categories. Interestingly, the

ILF3 binding sites were significantly closer to the differential editing sites of these 20

Fig. 5 Effects of editing on mRNA abundance. a Scatterplot of coefficient estimate and statistical
significance (log10-transformed adjusted p value) of editing level as a predictor of host mRNA expression in
linear regression, accounting for potential confounding variables. For genes with multiple editing sites
associated with expression, the most significantly associated site was used. Dashed line indicates
significance threshold based on 10% false discovery rate (FDR). b Scatterplot of editing level coefficient
estimate from multiple linear regression models used in A and log2-transformed fold change of the
corresponding gene observed in ADAR1 KD cells. Red points indicate expression changes in the direction
consistent with the sign of the editing association, in contrast to the gray points. c Editing sites associated
with host expression (Expression-Correlated) are more often found in 3′ UTR regions, compared to all
differential editing sites (Diff Edited, not including intergenic sites). d Validation of six editing sites affecting
host mRNA abundance. For each site, a scatterplot of editing level and log2-transformed mRNA expression
in the TCGA data is shown. On the right of each scatterplot is mCherry expression, normalized by eYFP
expression, of minigenes with A or G, corresponding to nonedited or edited versions of the sites in the 3′
UTR of each gene. All minigenes were tested in Hela cells with five biological replicates. Normalized
expression values (mean ± SD) were compared between edited and nonedited versions by two-sided t-test.
*p < 0.05, **p < 0.01, ***p < 0.001. Note that RHOA and MRPS16 editing sites were identified as differential
sites in the single-cell RNA-seq analysis (Fig. 3c)
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genes than differential sites in immune-related genes without editing-expression associ-

ations (Fig. 6c). Together, these results suggest that ILF3 binds close to the editing sites

of immune-related genes.

Since we observed that differential editing between bulk E and M tumors mainly

reflected changes occurring in cancer cells (Fig. 3a, b), we next asked whether the above

regulatory relationship between ILF3 and immune-related genes also occurs in cancer

cells. To this end, we analyzed gene expression of individual cell types identified in the

NSCLC scRNA-seq dataset. Within each cell type, we correlated ILF3 expression with

Fig. 6 ILF3 binds closely to the differential editing sites in editing-expression-correlated genes. a Histogram
of distances between differential editing sites in editing-correlated genes and the closest ILF3 eCLIP peaks
in A549 cells (turquoise), up to 10 kb. Gray curves represent distances for 10 sets of randomly picked A’s in
the same genes as differential editing sites. Number of differential editing sites is given by n. p value was
calculated by comparing the area under the curve (AUC) of the distance distribution for differential editing
sites to a normal distribution fit to the AUC values of 10,000 sets of random gene-matched A’s. b
Scatterplot of Pearson correlation coefficient and significance (log10-transformed adjusted p value) of
correlation between ILF3 mRNA expression and mRNA expression of editing-correlated genes. Genes
passing 10% FDR are labeled as significant (sig, turquoise), others as nonsig. c Cumulative distributions of
distances between ILF3 eCLIP peaks and differential editing sites within editing-expression-associated genes
(sig) or differential editing sites in genes without editing-expression associations (nonsig), up to 1 kb. Only
genes associated with immune and viral related GO terms were included. p value calculated by the
Kolmogorov-Smirnov test. d For each cell type in the lung cancer scRNA-seq dataset, ILF3 mRNA expression
was correlated with mRNA expression of editing-expression-correlated genes (identified in the TCGA data)
by Pearson correlation. Genes associated with any immune or viral-related GO term are shown. The size of
each point indicates significance of correlation and color corresponds to values of the correlation
coefficient. e Normalized mCherry expression (mean ± SD) for nonedited or edited versions of sites in the 3′
UTR of PKR in A549 cells. Five biological replicates were performed. p value calculated by two-sided t-test
(same below), *p < 0.05. f Normalized mRNA expression (mean ± SD) of endogenous PKR in siControl,
siADAR1, and siADAR2 A549 cells. Three biological replicates were performed. *p < 0.05. n.s., not significant.
g Read coverage of ILF3 eCLIP-seq in A549 cells for two biological replicates (ILF3 IP1 and ILF3 IP2,
turquoise) and size-matched input (SMInput, gray). The five validated 3′ UTR editing sites affecting PKR
mRNA abundance in A549 cells are labeled in magenta (left). Right: Validation of PKR eCLIP signal
overlapping two editing sites. PKR expression (mean ± SD) was measured by qRT-PCR in the IP or SMInput
samples and normalized against the expression of 18s rRNA, *p < 0.05. (n = 3)
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expression of the 20 immune-related target genes. In cancer cells, all 20 genes had ex-

pression levels positively correlated with ILF3 expression at 10% FDR (Fig. 6d). Though

significant correlations were also observed in other cell types, only cancer cells showed

correlation coefficients of at least 0.2 in magnitude. This result suggests that the mRNA

stabilizing function of ILF3 is prominent in cancer cells, in line with our observation

that E-M differential editing primarily occurs in cancer cells.

PKR expression is affected by 3′ UTR editing through ILF3 regulation

Among the 20 immune-related genes putatively regulated by ILF3, the gene EIF2AK2, cod-

ing for protein kinase R (PKR), had the most significant expression-editing correlation

(Additional file 1: Table S2) and expression correlation with ILF3 (Fig. 6d). Activated by

dsRNA, PKR suppresses translation and promotes apoptosis through its phosphorylation

activity [60, 61]. PKR also regulates various signaling pathways, such as NF-κB and p38

MAPK, in response to cellular stress [60]. Using the editing minigene reporter, we examined

the individual effects of seven 3′ UTR editing sites on PKR mRNA abundance in A549 cells.

Five of the seven editing sites showed significantly higher normalized mCherry expression

compared to their unedited counterparts (Fig. 6e, Additional file 2: Fig. S8B). To assess the

collective impact of multiple RNA editing sites on PKR mRNA abundance, we measured

endogenous PKR expression in A549 cells upon ADAR1 or ADAR2 KD. We first confirmed

that the 3′ UTR editing sites in PKR were edited endogenously in A549 cells. Importantly,

these editing sites are mainly regulated by ADAR1 instead of ADAR2 (Additional file 2: Fig.

S8C). Upon ADAR1 KD, PKR expression level was significantly reduced by about 40%

(Fig. 6f). In contrast, PKR expression did not change upon ADAR2 KD, as expected. These

results suggest that the editing sites enhanced PKR mRNA abundance, consistent with the

positive editing-expression correlation in primary tumors.

Based on the eCLIP data, the five editing sites that individually promoted PKR mRNA

abundance are located within ILF3 binding sites (Fig. 6g, Additional file 2: Fig. S8D-E).

To test the hypothesis that ILF3 regulates PKR mRNA abundance in an editing-

dependent manner, we generated ILF3 KD A549 cells (Fig. 7a). The edited and

unedited reporters, demonstrating differential expression in control cells, no longer

produced different expression levels upon ILF3 KD (Fig. 7b). Together, our data suggest

that ILF3 promotes PKR mRNA expression in an editing-dependent manner by binding

to the PKR mRNA.

ILF3 knockdown induced EMT in A549 cells

Since ILF3 was found to stabilize transcripts that were differentially edited between E

and M tumors, we next asked if ILF3 regulates the EMT process. We carried out ILF3

KD experiments via two different siRNAs in A549 cells. Upon ILF3 KD, cell morph-

ology changed from tightly connected, round cells towards more dispersed, spindle-

shaped cells (Fig. 7c), consistent with expected EMT phenotypes. Additionally, we

observed reduced expression of the epithelial marker E-cadherin along with increased

expression of the mesenchymal marker N-cadherin in the ILF3 KD cells (Fig. 7d, e for

protein and RNA levels, respectively). Thus, these data show that ILF3 deficiency in-

duces EMT in A549 cells, supporting a significant role of ILF3 in regulating EMT.
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Discussion
As most cancer patient deaths are due to metastasis, thorough understanding of the

molecular mechanisms underlying metastasis is crucial to developing effective pre-

ventative measures [62]. EMT plasticity is thought to underlie cell dissemination and

metastatic formation in many cancer types [18]. Supported by studies on primary tu-

mors and various model systems, features of EMT have been associated with metastasis

[16, 18, 63, 64]. For instance, higher expression of mesenchymal markers, with pre-

served epithelial markers in the absence of nearly all canonical EMT transcription fac-

tors, was detected in cells located at the leading edge of primary human HNSC tumors

[64]. Furthermore, this partial EMT program was correlated with multiple metastatic

characteristics, including abundance of lymph node metastases, lymphovascular inva-

sion, and tumor grade [64]. While mutations are understood to drive primary

Fig. 7 ILF3 regulates PKR mRNA abundance and EMT in A549 cells. a Western blot confirming shRNA-
mediated ILF3 KD in A549 cells (left). ILF3 mRNA levels (mean ± SD) were quantified in A549 shCtrl and ILF3
KD cells by qRT-PCR (right). ILF3 mRNA expression was normalized against gene TBP mRNA expression.
Three biological replicates were performed. p value calculated via t-test, ****p < 0.0001. b Normalized
mCherry expression (mean ± SD) for nonedited or edited versions of sites in the 3′ UTR of PKR in shCtrl or
ILF3 KD A549 cells. Five biological replicates were performed. Normalized expression values were compared
between edited and nonedited versions by two-sided t-test. *p < 0.05, **p < 0.01, n.s., not significant. c
Images of A549 cells transfected with siRNAs targeting ILF3 (two different siRNAs were used to KD ILF3,
siILF3_1, and siILF3_2) or control siRNAs (siControl). Scale bars: 100 μm. d Western blot detecting protein
levels of ILF3, E-Cadherin, N-Cadherin, and internal control β-Actin in the siControl, siILF3_1, and siILF3_2
A549 cells. Three biological replicates were carried out for each experiment. e Normalized mRNA expression
levels (mean ± SD) for ILF3, E-Cadherin, and N-Cadherin in the siControl, siILF3_1, and siILF3_2 A549 cells.
Three biological replicates were carried out for each experiment. The expression values were compared
between siILF3 and siControl via t-test. **p < 0.01, ***p < 0.001, ****p < 0.0001, n.s., not significant
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tumorigenesis and are often found in reported oncogenes and tumor suppressor genes,

the existence of recurrently mutated genes specific to metastasis is not clear [18]. Accord-

ingly, mechanisms regulating cell invasiveness beyond genetic variation need to be more

thoroughly investigated. Our study is the first to report a systematic characterization of

RNA editing in EMT phenotypes across several cancer types. Through a combination of

experimental and computational analyses, we observed many editing differences in EMT-

relevant genes, especially those related to immune and viral response, with the potential

of affecting mRNA abundance of these genes. We also show that higher expression levels

of these edited transcripts may be due to stabilization by ILF3.

Located in noncoding regions, most editing sites have unknown function. To assess

the contribution of differential editing to altered cell phenotypes in cancer, we focused

on the capacity of editing to regulate host gene mRNA abundance. To our knowledge,

very few studies have examined this question on the transcriptome-wide scale [65, 66].

Previously, several studies demonstrated this regulatory role for a handful of editing

sites through alteration of miRNA binding sequences or mRNA secondary structure or

otherwise unknown mechanisms [6, 20, 67–72]. Expanding on these previous studies,

we incorporated tissue-rich data from GTEx and ADAR KD expression changes from

five cell lines to computationally support associations of editing with mRNA abun-

dance. We also validated the effects of specific editing sites and explored the involve-

ment of RBPs in this regulatory mechanism. It should be noted that we were able to

detect associations between editing and mRNA abundance levels, even though differen-

tially expressed genes did not significantly overlap differentially edited genes. These

findings do not contradict each other because editing levels are relatively low. Conse-

quently, inosine may affect mRNA abundance, but when present at low levels, may not

necessarily lead to significant expression differences.

Considering tumor heterogeneity and the roles of stromal and immune cells in EMT,

it is important to examine the contributions of different cell types to differential editing

observed in the E-M comparisons. Our results using single-cell data supported that

cancer cells are a main cell type underlying differential editing between E and M phe-

notypes in lung cancer, although contributions by other cell types cannot be excluded.

Furthermore, cancer cells demonstrated the strongest expression correlation between

ILF3 and immune-relevant differentially edited genes among all cell types considered in

lung cancer. These findings suggest that RNA editing is likely an important aspect of

transcriptome remodeling of cancer cells in EMT, at least in lung cancer. Single-cell

analysis of RNA editing in other cancer types should be conducted in the future.

Our cell line experiments showed EMT induction upon KD of either ADAR1 or

ADAR2 in lung and breast cell lines. In contrast, we observed hyperediting in M tu-

mors of most cancer types. The seemingly opposite trends may reflect the complexity

of tumor biology that is not effectively recapitulated by cell culture models. Although

the cell culture models can support the likely importance of RNA editing in EMT, the

exact mechanisms and related regulation can only be investigated using in vivo models

in the future. In addition, we did not observe large differences in ADAR expression

levels that are consistent with observed editing differences between E and M tumors

for all cancer types. Other proteins that directly or indirectly affect ADAR function

likely contribute to the regulation of E-M RNA editing differences, which remains to be

investigated.
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RNA editing is known to be important to innate immunity by preventing viral dsRNA

sensors, such as MDA5 and RIG-I, from sensing host dsRNA [35, 39, 73]. In this study,

we provided multiple lines of evidence to support that RNA editing differences in EMT

may affect immune response genes directly, adding a new dimension to the relation-

ships between RNA editing and innate immunity. Interestingly, a major RBP that medi-

ates this relationship is ILF3. ILF3 was identified as a PKR substrate and serves as a

negative regulator of viral replication upon phosphorylation [57, 74]. Upon viral infec-

tion and sensing of viral dsRNA, PKR activates, suppresses translation, and promotes

apoptosis of affected cells [61]. Importantly, this mechanism has been targeted in onco-

lytic virotherapy for cancer. Cancer cells that have low PKR expression are sensitive to

oncolytic viruses [75–77]. Our study showed that ILF3 mediates the RNA editing-

dependent regulation of PKR expression. We also observed that ILF3 KD induced EMT

in A549 cells. These data reveal novel insights into the reciprocal regulation between

PKR and ILF3 and their potential contributions to EMT. Additional studies on their

interaction during viral infection or cancer treatment will also be informative for thera-

peutic development. Previously, ADAR1 loss has been shown to render tumor cells sen-

sitive to immunotherapy through enhanced inflammatory response [78, 79]. Our

findings on the regulation of immune response genes by RNA editing may add add-

itional mechanisms in this process that will need further investigation.

The functional roles of RNA editing in cancer have been increasingly recognized in

recent years. Highlighting the extensive editing differences between EMT phenotypes

and their impact on mRNA abundance, especially for genes involved in the immune re-

sponse, our work extends the basis for future studies on the contribution of editing to

metastasis and patient outcomes.

Methods
Plasmid construction

For bi-directional reporters, full-length or partial 3′ UTR regions (1~2 kb) of candidate

genes were cloned from the genomic DNA extracted from HMLE or A549 cells. Edited

versions of 3′ UTR inserts were generated using overlap-extension PCR (Supplemen-

tary Table 3). Edited and unedited versions of 3′ UTR regions were then cloned into

the pTRE-BI-red/yellow vector via ClaI and SalI-HF enzyme sites [48]. To obtain a len-

tiviral vector expressing ILF3 shRNA, oligos containing the target sequence (GGTCTT

CCTAGAGCGTATAAA, TRCN0000329788) were ordered from Integrated DNA

Technologies (IDT) and cloned into pLKO.1 via EcoRI and AgeI enzyme sites.

Cell culture and transfection

A549, Hela, and HEK293T cells were maintained in DMEM with 10% FBS and

antibiotic-antimycotic reagent (Gibco). MCF10A cells were maintained in DMEM/F12,

supplemented with 5% Horse serum, 20 ng/ml human EGF (PeproTech), 0.5 mg/ml

hydrocortisone (Sigma), 100 ng/ml cholera toxin (Sigma), 10 μg/ml insulin (Sigma), and

antibiotic-antimycotic reagent (Gibco). For siRNA treatment, A549 or MCF10A cells

were seeded at 1 × 105 cells per well in 6-well plates. After 24 h, siRNAs (Supplemen-

tary Table 3) were introduced at the final concentration of 10~100 nM using lipofecta-

mine RNAiMAX (Invitrogen) according to the manufacturer’s protocol. Media were
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changed 24 h post-transfection, and cells were harvested 72 h post-transfection. For

transfection of bi-directional reporters, Hela and HEK293T cells were seeded in 12-well

plates to reach 90% confluency by the time of transfection. A549 cells were seeded at

0.15 × 105 cells per well in 12-well plates 24 h before transfection. Reporter plasmids

were transfected at 200 ng per well with lipofectamine 3000 (Invitrogen), following the

manufacturer’s protocol. Cells were harvested 16 h post-transfection.

Western blot

Cells were lysed with RIPA buffer containing protease inhibitor (EDTA-free, Thermo

Fisher Scientific) at 4 °C for 30 min. The whole cell lysates were then centrifuged at 12,

000g, 4 °C for 15 min. The supernatants were collected for protein concentration meas-

urement using Bradford assay (Pierce™ Detergent Compatible Bradford Assay Kit,

Thermo Fisher Scientific). Protein samples were prepared by mixing protein lysates

with 4× SDS protein loading dye at 3:1 ratio. The mixture was boiled for 5 min. Ten

micrograms of each protein samples was loaded on SDS-PAGE gels and transferred to

nitrocellulose membranes for antibody incubations. Antibodies used were as follows:

ADAR1 antibody (Santa Cruz Biotechnology, sc-73408, 1:200), ADAR2 antibody (Santa

Cruz Biotechnology, sc-73409, 1:200), E-cadherin antibody (Cell Signaling Technology,

#3195, 1:1000), γ-Catenin antibody (BD Transduction Laboratories, 610253, 1:8000), N-

cadherin antibody (BD Transduction Laboratories, 610920, 1:500), Vimentin antibody

(Cell Signaling Technology, 5741, 1:1000), NF90(ILF3) antibody (BETHYL Laboratories,

A303-651A, 1:1000), β-actin-HRP antibody (Santa Cruz Biotechnology, sc-47778, 1:

2000), goat anti-rabbit IgG-HRP (Santa Cruz Biotechnology, sc-2004, 1:2000), goat

anti-mouse IgG-HRP (Santa Cruz Biotechnology, sc-2005, 1:2000). Membrane blots

were incubated with SuperSignal West Pico PLUS Chemiluminescent Substrate

(Thermo Fisher Scientific) and visualized under the imager (Syngene PXi). Uncropped

western blot images are provided in Additional file 2: Fig. S9–13.

RNA isolation and real-time qPCR

Cells were lysed using TRIzol (Thermo Fisher Scientific). Total RNA was isolated using

Direct-zol RNA Miniprep Plus kit (Zymo Research) following the manufacturer’s proto-

col. In total, 2 μg of total RNA was used for cDNA synthesis with SuperScript IV

(Thermo Fisher Scientific). The real-time qPCR reaction was assembled using the

PowerUp™ SYBR® Green Master Mix (Thermo Fisher Scientific). Primers used for qPCR

are listed in Supplementary Table 3. The reaction was performed in the CFX96 Touch

Real-Time PCR detection system (Bio-Rad) with the following settings: 50 °C for 10

min, 95 °C for 2 min, 95 °C for 15 s, 60 °C for 30 s, and with the last two steps repeated

for 45 cycles. For bi-directional reporter assays, mCherry expression was normalized

against eYFP expression within the same sample. ILF3 expression was normalized

against the expression of internal control gene TBP. For qPCR validating the eCLIP

peaks, the final libraries were diluted to the same concentration at 0.01 ng/μl. Five mi-

croliters of diluted libraries was used in each qPCR reaction. Around 80 bp upstream

each EIF2AK2 editing site was amplified. The expression of each EIF2AK2 region was

normalized against the expression of 18s.
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Quantification of RNA editing levels by Sanger sequencing

Regions of interest were amplified from cDNA using Thermo Scientific™ DreamTaq™

Green PCR Master Mix (2X). Primers used for PCR are listed in Supplementary Table 3.

The amplicons were gel extracted and premixed with the reverse primer for Sanger se-

quencing. The peak signals of A and G nucleotides were measured by 4Peaks for edit-

ing level calculation (G/(A + G)).

Categorization of tumors as epithelial and mesenchymal

We downloaded fragments per kilobase million (FPKM) data of primary tumors from pa-

tients across seven cancer types in TCGA: BRCA, LUAD, LUSC, PRAD, OV, KIRC, and

HNSC, from the Genomic Data Commons (GDC) Data Portal [80]. To assess E and M

phenotypes of the tumors of each cancer type, we quantified the enrichment of E and M

gene sets by applying gene set variation analysis (GSVA) [81]. We obtained pan-cancer E

and M gene sets from a 2014 publication by Tan and colleagues (Table S1A from their

publication) [30]. Tumors with high E scores and low M scores were considered to have

an E phenotype, while tumors with low E and high M scores were classified as M. Subsets

of E and M tumors were selected for each cancer type to minimize confounding of E and

M distinction by patient and sample metadata.

Quantification and comparison of RNA editing levels in TCGA tumors

We downloaded RNA-seq fastq files of categorized tumors from the GDC Legacy Arch-

ive. We mapped reads to hg19 with HISAT2, using default parameters. Dense clusters of

editing sites, or hyperedited regions, can lead to many mismatches in reads. Consequently,

these reads may be left unmapped and hinder accurate detection of editing in these re-

gions. To rescue reads that were originally unmapped due to high density of editing activ-

ity, we applied a hyperediting pipeline and combined the recovered reads with uniquely

mapped reads for downstream analyses [32, 82]. To analyze editing sites of high confi-

dence, we downloaded the REDIportal database, comprising over 4 million editing sites

identified across 55 tissues of 150 healthy humans from GTEx [33, 83]. We applied

methods used in our previous studies to detect editing at REDIportal sites in the tumor

samples. We filtered out editing sites found in dbSNP (version 147) and COSMIC (ver-

sion 81), except for reported cancer-related editing sites [8, 13, 19, 84–87], since editing

sites have been shown to be mistakenly recorded as SNPs [88, 89]. Within each sample,

we also filtered out editing events that overlapped with sample-specific somatic mutations

and copy number variants. Somatic variants were obtained from the publicly released

MC3 MAF [90], and copy number variants were obtained from copy number segment

data downloaded from the GDC data portal.

Differential editing sites were defined as editing sites with significantly different edit-

ing levels between E and M phenotypes. To identify such sites, we used an adaptive

coverage approach [32]. For an individual editing site, we determined the highest read

coverage threshold that was satisfied in at least five samples of both phenotypes, among

twenty, fifteen, and ten reads. If none of these thresholds was satisfied and fewer than

ten samples in each phenotype had at least five reads covering the site, we did not test

the site for differential editing. Using the highest coverage determined, we calculated

the mean editing levels among samples of each phenotype separately. We then
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consecutively lowered the read coverage threshold by 5 reads and compared the new

mean editing levels of each phenotype, when including additional samples, to the ori-

ginal high-coverage-only editing means. If the differences in mean editing levels were

less than 0.03, we used the lower read coverage threshold to delineate which samples

to include for the differential test. Editing levels between E and M samples were com-

pared by a Wilcoxon rank-sum test. Editing differences were considered significant if

the Wilcoxon p value < 0.05 and the magnitude of the difference ≥ 0.05. To account for

false positives, we shuffled phenotype labels and retested for significant differences for

each differential editing site, 100 times. If a site showed significant differences for shuf-

fled labels over ten times, it was filtered out and no longer considered a differential

editing site.

Identification of differentially expressed genes

HTSeq-Count data were downloaded from the GDC data portal. We identified genes

with significantly different mRNA expression levels between E and M tumors of each

cancer type, using limma-voom [91]. Metadata significantly correlated with the top two

principal components of expression were included as covariates in the linear models.

Expression differences were considered significant if log2-fold change was at least 1

and adjusted p value was less than 0.05.

Rank-rank hypergeometric overlap

To measure the similarity in patterns of editing changes across cancer types, we ranked

genes based on differential editing between E and M phenotypes for each cancer type.

More specifically, the ranking metric was the statistical significance of the differential

editing test (−log10(Wilcoxon p value)), multiplied by the sign of the editing difference

(mean of M editing levels −mean of E editing levels). Accordingly, genes at the top of

the ranked list had the highest increases in editing in M, while genes at the bottom had

the largest decreases in editing in M. For each gene with multiple editing sites tested,

the site with the most significant change in editing levels was used to represent the

gene. We used the RRHO package within Bioconductor in R to test for significance of

overlap between ranked gene lists, with a step size of 30 genes between each rank [92].

We also ran RRHO between gene rankings by differential editing and differential

gene expression for each cancer type. To order genes based on differential gene expres-

sion, genes were ranked according to the signed statistical significance of differential

expression tests (signed by the direction of expression change in M). As a result, genes

at the top of the list were more highly expressed in M and genes at the bottom, more

lowly expressed in M.

To make RRHO maps comparable across cancer types and across overlaps based on

differential editing and differential expression, we scaled the log-transformed p values

to account for different lengths of gene lists and then applied the Benjamini-Yekutieli

correction for multiple testing [34].

Gene ontology enrichment analysis

To evaluate whether an individual GO term was enriched in differential editing in one

cancer type, we compared the occurrence of the term among query genes—genes
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containing differential editing sites—to its occurrences within 10,000 sets of control

genes. In each set, one control gene for each query gene was randomly selected among

non-differentially edited genes that matched the query gene based on gene length and

GC content (within 10%). Query genes that did not have at least ten matched control

genes were excluded. We calculated the p value of the term’s enrichment among query

genes from the normal distribution fit to occurrences of the term among control gene

sets. We repeated this assessment of GO term enrichment separately for lists of differ-

ential hyperedited and hypoedited genes in each cancer type.

Likewise, we tested the occurrence of each GO term represented among differentially expressed

genes to its occurrences among 10,000 sets of non-differentially expressed control genes, randomly

selected to match the differentially expressed query genes for gene length and GC content.

scRNA-seq dataset analysis

We downloaded fastq files from 15 tumor samples of five NSCLC patients [93]

and ran CellRanger (version 3.0.2) to map reads and obtain count matrices. We ex-

cluded the tumor samples from three LUSC patients exhibiting low percentages of

valid barcodes and mapped reads. For the remaining samples, we loaded the fil-

tered feature-barcode matrices from CellRanger and merged the datasets into a sin-

gle Seurat object with the R package Seurat [94] (version 3.0.2). Next, we filtered

out cells that did not meet the following criteria: 101–6000 expressed genes, over

200 UMIs, and less than 10% UMIs corresponding to the mitochondrial genome.

Following normalization by sctransform [95] (version 0.2.0), we performed dimen-

sional reduction with PCA. Based on an elbow plot, we decided to consider the

first ten PCs for downstream clustering and TSNE embedding. To assign cell iden-

tity labels to clusters, we matched differentially expressed genes of clusters to re-

ported marker genes. One cluster had differentially expressed markers of multiple

cell types, so we subclustered its cells. To assess the accuracy of our final labeling

of nine cell types, we examined expression of marker genes across the cell types in

two approaches. In one approach, we used CIBERSORTx [96] to generate a gene

expression signature matrix, which is a matrix of expression signatures characteriz-

ing cell types. To create this matrix from expression profiles of single cells labeled

by cell type, CIBERSORTx identified differentially expressed genes. In the second

approach, we pooled reads of each cell type together and calculated RPKM. These

RPKM values calculated from pooled cells were also used to correlate ILF3 expres-

sion with expression of editing-correlated genes.

To identify cancer cells with E and M phenotypes, we subclustered the cancer

cells. To this end, we first ran sctransform and PCA on only the cancer cells.

Using the first twelve PCs, we clustered the cells and performed non-linear dimen-

sion reduction by UMAP. As a cluster of 200M cells was identified, we sampled

200 E cells with similar numbers of features, numbers of UMIs, and percentages of

reads mapped to the mitochondrial genome. For each phenotype, we compiled

reads of cells together and detected editing levels at REDIportal sites. For each

testable editing site, E and M editing levels were compared by Fisher’s exact test.

An editing site was considered differential if the difference in editing levels was at

least 0.05 and Fisher’s exact p value < 0.05.
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RNA-seq generation for ADAR KD A549 cells

A549 cells were seeded at 1 × 105 cells per well in 6-well plates 24 h before siRNA

transfection. siRNAs (Supplementary Table 3) were introduced at the final concentra-

tion of 22 nM using lipofectamine RNAiMAX (Invitrogen), according to the manufac-

turer’s protocol. For individual KD of ADAR1 or ADAR2, 11 nM siRNA of ADAR1 or

ADAR2 were mixed with 11 nM control siRNAs. For double KD of ADAR1 and

ADAR2, 11 nM siRNA of ADAR1 and 11 nM siRNA of ADAR2 were mixed. Media

were changed 24 h post-transfection. The transfected cells were harvested 48 h post-

transfection. Total RNA was extracted for RNA-seq library generation for three bio-

logical replicates of each condition. RNA sequencing libraries were generated using

NEBNext Ultra II Directional RNA library Prep kit and NEBNext multiplex oligos for

Illumina according to the manufacturer’s instructions (New England Biolabs, E7760S).

Library concentrations were measured by Qubit fluorometric assay (Life Technologies),

and libraries were sequenced on an Illumina HiSeq-4000 with 150-bp paired-end reads.

A549 ADAR KD RNA-seq analysis

Following mapping of RNA-seq reads with HISAT2 and a hyperediting pipeline [32],

we detected editing events at REDIportal sites as we did for the TCGA tumor samples.

We then removed dbSNP variants while retaining previously reported cancer editing

sites. To identify differential editing sites between each ADAR KD condition and con-

trol or between each individual ADAR KD and double KD, we used REDIT-LLR on

sites that were edited in the control condition (editing level ≥ 0.05) [97]. A site was con-

sidered differentially edited if the difference in mean editing levels between conditions

was at least 0.05 and REDIT-LLR p value < 0.05.

Regression analysis

For each differential editing site, association between editing level and host gene mRNA

abundance was tested by fitting a linear model of log-transformed gene FPKM against

editing level and potentially confounding covariates (using the lm function in R). For

associations in GTEx data, we included age, gender, and race as covariates. For associa-

tions in TCGA data, we included metadata that were significantly correlated with the

top two principal components of expression, as in the differential expression analysis.

eCLIP-seq generation

Following a published protocol [53], we performed an eCLIP experiment comprising

three libraries from two ILF3-immunoprecipitated biological replicates and one control.

The antibody used for this experiment is ILF3/NF90 antibody (Bethyl Laboratories,

A303-651A). For each sample, 10M A549 cells were ultraviolet (UV) crosslinked at 254

nm (800 mJ cm− 2). We then performed cell lysis, RNA fragmentation, immunoprecipi-

tation, adapter ligation, and other library preparation steps on UV crosslinked samples,

as described [53]. For the size-matched input control (SMInput), we prepared a library

from sampling 2% of one pre-immunoprecipitation UV crosslinked sample. This con-

trol is used to normalize binding signal, given biases that may be introduced through

various experimental steps.
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eCLIP-seq peak calling and distance analysis

We obtained eCLIP peak data for 96 RBPs in K562, 83 RBPs in HepG2, and ILF3 in A549

cells, as described previously [46]. Briefly, after demultiplexing and trimming adapters, we

aligned reads in multiple rounds with STAR. First, reads aligning to rRNA sequences were

discarded, and then the unmapped reads were aligned to Alu sequences, permitting a

maximum of 100 alignments for an individual read. In the final alignment step, the

remaining unmapped reads were uniquely aligned to the hg19 genome. Then read enrich-

ment within a sliding window, considering both genome and Alu-aligned reads, was tested

for significance by a Poisson model in order to call eCLIP peaks [46, 98].

To assess the proximity of a single RBP’s binding to differential editing sites compared

to random controls, we calculated the distance from each differential editing site or con-

trol to the closest eCLIP peak in the same gene. Control sites consisted of adenosines

within genes containing differential editing sites [32]. We then calculated the area under

the curve (AUC) of the cumulative distribution of distances from differential editing sites

to the closest eCLIP peaks. Given our interest in close binding, we considered distances

up to 10,000 bases only for AUC calculation. Similarly, we calculated the AUC of the dis-

tribution of closest distances between eCLIP peaks and controls, for each of 10,000 sets of

random controls. We computed the p value of the AUC for differential editing sites from

the normal distribution fit to the AUC values of control sets [32].
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regulate host gene mRNA abundance. Editing-expression associations were supported by consistent expression
changes upon ADAR KD in at least one cell line. editlevel_est represents editing level regression coefficient; adj_e-
dit_pvalue is the adjusted p-value of the coefficient. Table S3. List of primers and siRNAs used in this study.

Additional file 2: Fig. S1. Differential editing not confounded by metadata. Heatmaps of significance (log10-
transformed adjusted p values) of correlations between the top two principal components and E/M phenotype
among metadata fields in each cancer type. Darker color indicates smaller p value and stronger association. Fig. S2.
Gene ontology enrichment among differentially edited genes. Significance of enrichment of gene ontology (GO)
terms among all differentially edited genes (blue), only hyperedited genes (green) or only hypoedited genes (pink)
of each cancer type. Point size represents the statistical significance of enrichment (log10-transformed adjusted
p value). Terms significantly enriched in at least two cancer types are shown. For cancer types with a global
hyperediting trend in M tumors, GO enrichment among hyperedited genes is similar to that among all
differentially edited genes. Likewise, for cancer types with a hypoediting trend (BRCA and OV), enrichment among
hypoedited genes is similar to that among all differentially edited genes. Fig. S3. Clustering of single cells from
three lung cancer tumors. A. TSNE projection of cells based on expression profiles, with color indicating cluster
identity (left). Cell types were assigned to clusters by matching differentially expressed genes of clusters to known
cell type markers (right). B. TSNE projection of only cells from cluster 10 to further refine cell type assignment (left).
Similar to A, cell types were labeled using differentially expressed genes that matched cell type markers (right). C.
Counts of cells for each cell type after 2 rounds of clustering and cell type assignment (A and B). D. Log2-
transformed expression values of marker genes across cell types. Signature matrix on the left indicates expression
values assigned for each cell type by CIBERSORTx. On the right, Pooled Cells indicate that expression values were
calculated from pooling reads from cells of the same type together. Fig. S4. E and M assignment of single cells not
confounded by metadata. Comparison between E and M cells altogether (top) and within each tumor sample (bot-
tom) of metadata fields: UMI count (A-B), gene count (C-D), and percent of reads mapping to the mitochondrial
genome (E-F). Metadata values were compared by Mann Whitney U tests, and significance of p values are shown.
ns: p > 0.05, * p ≤ 0.05, ** p≤ 0.01. Fig. S5. LUAD and LUSC tumor editing differences of differential sites identified
from single cell RNA-seq analysis. For each editing site, the difference in mean editing levels between M and E tu-
mors (M - E) in each cancer type is listed. Green highlight indicates Wilcoxon p value < 0.05. Fig. S6. Altered editing
upon knockdown of ADAR1, ADAR2, or both. A. Distributions of mRNA expression of ADAR1 and ADAR2 under
ADAR KD and control conditions. Expression levels were quantified as transcripts per million (TPM). B. Mean editing
levels of testable sites in five comparisons between ADAR KD conditions or control experiment. Sites with signifi-
cant editing differences between conditions are colored red, while gray represents nondifferential sites. Y = x line
shown in blue. C. Proportions of lung cancer E-M differential sites that were also differential in ADAR KD conditions
(compared to controls). sigADAR1: sites that were differential only in ADAR1 KD. sigADAR2: sites that were differen-
tial only in ADAR2 KD. sigBoth: sites that were differential in both ADAR1 KD and ADAR2 KD, or in double KD. The
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prefix ‘red’ indicates reduced editing level by at least 0.05 upon KD from control, but did not pass the statistical sig-
nificance requirement. ‘Remain’: editing sites that were not significantly different or reduced across any comparison.
Fig. S7. Expression of ADARs in E and M tumors. Distributions of mRNA expression of ADAR1 (left) and ADAR2
(right) in E and M tumors across cancer types. Expression values, measured as Fragments Per Kilobase per Million
mapped reads (FPKM), were compared by Mann Whitney U tests, and significance of p values are shown. ** p≤
0.01; *** p≤ 0.001; **** p≤ 0.0001. Fig. S8. ILF3 binds closely to the differential editing sites in editing-expression
correlated genes. A. Histogram of distances between differential editing sites in editing-correlated genes and the
closest ILF3 eCLIP peaks in HepG2 and K562 cells (turquoise), up to 10 kb. Gray curves represent distances for 10
sets of randomly picked A’s in the same genes as differential editing sites. Number of differential editing sites is
given by n for each cell line. p value was calculated by comparing the area under the curve (AUC) of the distance
distribution for differential editing sites to a normal distribution fit to the AUC values of 10,000 sets of random
gene-matched A’s. B. Normalized mCherry expression for nonedited or edited versions of sites in the 3’ UTR of PKR
in A549 cells. Five biological replicates were performed. Normalized expression values were compared between
edited and nonedited versions by two-sided t-test. ** p < 0.01. C. Editing levels of PKR 3’ UTR editing sites in siCon-
trol, siADAR1 and siADAR2 A549 cells measured by Sanger sequencing. The peak signals of A and G nucleotides
were measured by 4Peaks for editing level calculation (G/(A + G)). The editing level of each editing site (underlined)
is shown in the graph. D. Read coverage of ILF3 eCLIP-seq in HepG2 and K562 cells for two biological replicates
(ILF3 IP1 and ILF3 IP2, turquoise) and size-matched input (SMInput, gray) in each cell line. The five validated 3′ UTR
editing sites affecting PKR mRNA abundance in A549 cells are labeled in magenta. E. Validation of PKR eCLIP signal
overlapping three editing sites. PKR expression was measured by qRT-PCR in the IP or SMInput samples and nor-
malized against the expression of 18s rRNA. Three technical replicates were performed (other than two replicates
for 8034). p value calculated by t-test. * p < 0.05, ** p < 0.01, **** p < 0.0001. Fig. S9. Uncropped western blot images
for Fig. 4a. Fig. S10. Uncropped western blot images for Fig. 4b. Fig. S11. Uncropped western blot images for Fig.
4c. Fig. S12. Uncropped western blot images for Fig. 7a. Fig. S13. Uncropped western blot images for Fig. 7d.
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