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Abstract

The neural mechanisms of drug cue-reactivity regarding the temporal fluctuations of

functional connectivity, namely the dynamic connectivity, are sparsely studied. Quan-

tifying the task-modulated variability in dynamic functional connectivity at cue expo-

sure can aid the understanding. We analyzed changes in dynamic connectivity in 54

adult cannabis users and 90 controls during a cannabis cue exposure task. The vari-

ability was measured as standard deviation in the (a) connectivity weights of the

default mode, the central executive, and the salience networks and two reward loci

(amygdalae and nuclei accumbens); and (b) topological indexes of the whole brain

(global efficiency, modularity and network resilience). These were compared for the

main effects of task conditions and the group (users vs. controls), and correlated with

pre- and during-scan subjective craving. The variability of connectivity weights

between the central executive network and nuclei accumbens was increased in users

throughout the cue exposure task, and, was positively correlated with during-scan

craving for cannabis. The variability of modularity was not different by groups, but

positively correlated with prescan craving. The variability of dynamic connectivity

during cannabis cue exposure task between the central executive network and the

nuclei accumbens, and, the level of modularity, seem to relate to the neural underpin-

ning of cannabis use and the subjective craving.
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1 | INTRODUCTION

Craving is a hallmark behavioral problem in substance use disorders

(SUDs) that contributes toward loss of control over substance use and

drug relapse. One of its well-known neural correlates is the reward-

related prefrontal-limbic pathway, but the large-scale intrinsic net-

works are also crucially involved (Filbey, Gohel, Prashad, &

Biswal, 2018; Zilverstand, Huang, Alia-Klein, & Goldstein, 2018). Some

of those networks are the default mode (DMN), the central executive

(CEN), and the salience networks (SN). The DMN, or self-oriented net-

work, relates to attention toward internal information (Raichle, 2015).

Its activity correlates with the subjective craving, and seems to show

reduced functional interactions with the other brain networks in SUDs

(Zhang & Volkow, 2019). The CEN, or goal-oriented network, relates
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to executive and inhibitory controls that drive attention on external

objectives, and control impulsivity (Chen et al., 2013; Sridharan,

Levitin, & Menon, 2008), functions that are often compromised in

SUDs (Dalley & Robbins, 2017; Luijten et al., 2014). The SN is impli-

cated in allocating functional resources between the DMN and CEN

based on the salience of information (Menon & Uddin, 2010; Seeley

et al., 2007; Sridharan et al., 2008). Its dysfunction potentially affects

the attentional attribution to external information, which relates to

an imbalance of attention to drug versus nondrug cues (R. Z. Goldstein &

Volkow, 2011; Naqvi & Bechara, 2009; Sutherland, McHugh, Pariyadath, &

Stein, 2012).

The functional underpinning of bias toward drug-related information

have been found in subcortical regions in prefrontal-limbic pathway

(Filbey & Dunlop, 2014), such as the nucleus accumbens and amygdala

(Swanson, 1982). Both nucleus accumbens and amygdala receive dopa-

mine (DA) inputs within the mesocorticolimbic pathway, and are impor-

tant in acquiring motor behavior under conditioning toward drug cues

(Pert, Post, & Weiss, 1990). Specifically, the nucleus accumbens (NAcc),

also referred to as ventral striatum, plays a key role in appraising

the subjective value of reward (Milton & Everitt, 2012) toward reward-

motivated decision making (Cools, 2015). The amygdala (Amyg) seems to

appraise the emotional relevance of external information related to

reward (Baxter & Murray, 2002; Cunningham & Brosch, 2012). The DA

system can influence the functional connectivity in DMN, CEN, SN (Cole,

Oei, et al., 2013) as well as NAcc and Amyg, which may also be associ-

ated with the reduced inhibitory control and biased salience attribution

found in SUDs (R. Z. Goldstein & Volkow, 2011; Zilverstand et al., 2018).

Most of the previous studies on the task-modulated functional

connectivity (FC) during cue-induced craving applied static approaches,

which do not take the variability of FC over time into account. One of

the most widely utilized methods for analyzing task-modulated static

FC is psychophysiological interaction (PPI; Friston et al., 1997;

McLaren, Ries, Xu, & Johnson, 2012), which evaluates the correlations

of task-modulated blood-oxygen-level-dependent (BOLD) response of

one upon the other regions across the entire observation time. How-

ever, high-frequency phasic activity of DA neurons in response to drug

cues (Koob & Volkow, 2010) may manifest temporal fluctuations in FC.

The variability can be quantified using dynamic FC, which reflects time-

dependent changes of FC by subdividing the entire observation into

smaller sections instead of across all frames within the observation time

(Allen et al., 2012; Chang & Glover, 2010; Preti, Bolton, & van de

Ville, 2017; Sakoglu et al., 2010; Sakoglu & Calhoun, 2009a, 2009b;

Sakoglu, Michael, & Calhoun, 2009). FC of the brain and its topological

properties are inherently nonstationary (the connectivity mean and var-

iability are not constant over observation time) depending on the given

tasks (Braun et al., 2015; Fong et al., 2019; Gonzalez-Castillo &

Bandettini, 2018) and also during the resting state (Allen et al., 2012;

Chang & Glover, 2010; de Pasquale, Della Penna, Sporns, Romani, &

Corbetta, 2016; Preti et al., 2017). Dynamic FC can capture the time-

dependent changes that relate to temporally dynamic processes, for

example, phasic neural firing of DA neurons.

Dynamic conditional correlation (DCC) quantifies the temporally

sensitive alterations in functional coherence across brain regions per

frame (Engle, 2002; Lindquist, Xu, Nebel, & Caffo, 2014). Based on

framewise changes in FC, DCC can account for model-free, momentary

FC changes in a specific task condition, therefore expanding from the

model-based estimation of FC via generalized PPI. By temporally

weighting the DCC by task conditions, we can obtain the series of

dynamic FC when a task condition was in effect and the task-modulated

variability of dynamic FC in standard deviation (SD).

Previous studies on the alterations of dynamic FC related to sub-

stance use are sparse. Vergara, Weiland, Hutchison, and Calhoun

(2018) combined large number of users dependent on various kinds of

substances and found that the dwelling times of specific functional

states represented by dynamic FC patterns differ significantly across

user groups of substances including cannabis. Focusing on cannabis

use, Zaytseva et al. (2019) found a specific dynamic FC pattern that

shows higher connectivity within and between auditory and

somatomotor cortices, which appears during acute delta-9-

tetrahydrocannabiol (THC) intoxication in occasional users. Sakoglu

et al. (2019) is one of the earlier examples that compared dynamic FC

patterns using independent component analysis during motor

response inhibition task. This study noted pairs of networks that dif-

ferentiate cocaine users from the healthy controls, which include

visual, sensorimotor, the DMN and the CEN. In sum, there is emerging

literature demonstrating that dynamic FC is a sensitive marker for

substance use and related behaviors. Dynamic FC may also clarify the

functional states precipitated by drug-related conditions. This study

therefore aimed to explore this possibility, by quantifying the dynamic

FC changes directly relevant to the subjective craving, targeting the

task-modulated dynamic FC in the cannabis cue exposure task.

This paper investigated the dynamic FC during cannabis cue-reactiv-

ity using DCC. We aimed to (a) identify a system-level marker related to

cue-induced changes in the DMN, the CEN, and the SN, and Amyg and

NAcc; (b) identify the difference in DCC-derived dynamic FC measures

across task conditions, and between cannabis users and controls; and

(c) test whether these measures are associated with subjective craving.

2 | MATERIALS AND METHODS

2.1 | Participants

Participants were recruited from a study of neural mechanisms related to

cannabis craving described in Filbey et al. (2014) and Filbey et al. (2016).

The study's inclusion criteria were right-handedness, English as the pri-

mary language, the absence of either a current psychosis, history of psy-

chosis, traumatic brain injury, or MRI contraindications (e.g., pregnancy,

MR-incompatible metallic implants, claustrophobia, etc.). The nonusing

controls (CON) were recruited based on the absence of daily cannabis

use at any period in their lifetime, as well as an absence of current illicit

drug use in the past 60 days. Chronic cannabis users (CAN) were defined

as those with self-reported history of regular cannabis use resulting in a

minimum of 5,000 separate lifetime occasions of use. An additional inclu-

sion criterion for CAN was self-reported daily cannabis use over the pre-

ceding 60 days as determined by the Timeline Followback Calendar
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(TLFB). All the participants were excluded if drugs other than cannabis

were detected by a urinary toxicity test, unless it was a prescribed medi-

cation. Participants with significant levels of other substance use as indi-

cated by the Structured Clinical Interview for DSM-IV criteria (First &

Gibbon, 2004) were excluded from the study. Given the high comorbid-

ity of tobacco and cannabis use, we did not exclude participants with

regular tobacco use.

All participants were asked to refrain from alcohol use for 24 hr,

and caffeine and cigarettes for the 2 hr before the scheduled scan. In

addition, cannabis using participants were asked to abstain from using

cannabis for 72 hr. Those whose self-report did not meet this require-

ment were excluded from the study. As a result, a total of 144 partici-

pants (90 controls in CON group, 54 users in CAN group) were

included in the study. Demographic information is shown in Table 1.

2.2 | Cannabis use measures

We collected data related to age of first regular use, and the duration

of regular use of cannabis using the Substance History Questionnaire

(Sobell, Kwan, & Sobell, 1995). Self-reports of the last date of canna-

bis use before the scan date, and the level of cannabis intake were

evaluated in grams per day. Urine THC (ng) over creatinine (ml) levels

were measured via gas chromatography/mass spectrometry.

2.3 | Subjective craving measures

Subjective craving for cannabis was measured according to the fol-

lowing: (a) prescan/baseline subjective craving—assessed using the

total score from the Marijuana Craving Questionnaire (Haughey,

Marshall, Schacht, Louis, & Hutchison, 2008) prior to the fMRI scan;

(b) during-scan/cue-induced subjective craving—response on a 10-

point Likert scale following each trial of cannabis cue exposure in the

fMRI (see details in task description below). Prescan, and the average

of during-scan scores were normalized using the mean and the SD of

each within the CAN group (n = 52 for prescan craving, and n = 54 for

during-scan craving).

2.4 | MR acquisition

All the MRI images were collected using a 3T Philips whole body scan-

ner with the Quasar gradient subsystem (40 mT/m amplitude, a slew

rate of 220 mT/m/ms) at Advanced Imaging Research Center at Uni-

versity of Texas Southwestern Medical Center. Structural T1 images

were acquired in an MPRAGE sequence with the parameters: TR/

TE = 8.1/3.7 ms, FA = 12 deg, voxel = 1 × 1 × 1 mm3, matrix size in x

and y directions = 256 × 256, and FOV = 256 × 256 mm2.

Task-based functional MRI (fMRI) was collected using a gradient echo,

echo-planar sequence. Parameters were: 810 dynamic scans (27 min), TR/

TE = 2000/29 ms, FA = 75 deg, voxel = 3.44 × 3.44 × 3.50 mm3, matrix

size in x and y directions = 64 × 64 mm2, and FOV = 220 × 220 mm2.

2.5 | Cannabis cue exposure task

This study used a cue exposure task originally described in Filbey

et al. (2016), which was modified from Filbey, Schacht, Myers, Chavez,

and Hutchison (2009). The task consisted of two consecutive sessions

TABLE 1 Demographics of CON and CAN groups

CON (n = 90) CAN (n = 54) Difference

Sex (N) Male (n = 45) Male (n = 31) χ2 = 0.743

Age 29.40 ± 10.15 29.35 ± 7.93 t(132.237) = 0.032

Cigarette use per daya 1.92 ± 4.13 5.11 ± 8.29 t(37.894) = −1.623

Cannabis use variables

Onset age of regular useb N/A 18.50 ± 3.80 years N/A

Duration of regular usec N/A 10.26 ± 7.56 years N/A

Last cannabis use before scand N/A 79.43 ± 7.34 hr N/A

Cannabis grams per daye N/A 2.12 ± 1.69 g N/A

THC/creatinine ratiof N/A 2.18 ± 1.90 ng/ml N/A

Craving before scang N/A 253.88 ± 160.76 points N/A

Note: Values are shown in mean ± standard deviation unless specified. Group differences show results from chi-square test, or independent t-test with

equal variances not assumed.
aThis value refers to the answer for “Since you started regular daily smoking, what is the average number of cigarettes you smoked per day?” (13 CON par-

ticipants, 27 CAN participants applied).
bSubstance History Questionnaire for marijuana use #2, “The age one has started using cannabis regularly,” only accounting for group CAN (n = 54).
cSubstance History Questionnaire for marijuana use #3, “The number of years one has been using cannabis regularly” (n = 54).
dThe self-reported date of last cannabis use before the scan (n = 43).
eThe self-reported level of cannabis intake every day (n = 54).
fTHC metabolites over creatinine (ng/ml) measured from urine before MR scan (n = 53).
gSubjective level of craving before the cue task in the scanner, based on the summed score from Marijuana Craving Questionnaire (n = 52).
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that are 13 min and 30 s long, each one with a pseudorandom order

of visual and tactile presentations of (a) a single cannabis cue, (b) a sin-

gle natural reward cue, and (c) a single neutral cue. Each type of cue

was presented for 12 trials, and for a single trial a cue was shown for

20 s long. Right after exposure, the subjective craving was quantified

by asking participants to respond to: “Please rate your urge to use

marijuana right now.” Responses were measured using a scale from 0

(no urge at all) to 10 (the highest) for 5 s, and the scores were

recorded using a fiber-optic pad. Participants who showed abnormally

high levels of craving, which means the average rating score of higher

than nine for all cues; and low levels of craving, which means the aver-

age rating score of zero for cannabis cues, were excluded from this

study. During-scan craving referred to the average of 12 rated scores

after cannabis cues were presented.

Cue stimuli given to the participants were based on their individ-

ual responses to “What is your preferred cannabis use method?” The

answers were among a pipe, a bong, a blunt, and a joint. The same

cues were randomly chosen for the controls. Natural reward cues

were chosen as fruit (Filbey et al., 2016). Like the cannabis cues, we

presented participants with their self-selected fruit stimulus based on

their responses to “what is your preferred fruit?” For both users and

controls, the answers were among a banana, an apple, an orange, and

grapes. Neutral cues were pencils for the participants in both groups.

E-Prime (Psychology Software Tools, Inc. E-Prime 2.0. Retrieved from

https://www.pstnet.com) was used to present cue and save the

responses from the scanner. The timestamps of task responses were

recorded in correspondence to the trigger pulses obtained from the

scanner's magnet. Figure 1 illustrates the procedure of the cue expo-

sure task.

In the following sections, FC measures were calculated in corre-

spondence to each of six task conditions in abbreviations. C1 and W1

will be representing the conditions where neutral cues were pres-

ented (C1, meaning neutral cue ON state) and removed (W1, neutral

cue OFF). C2 and W2 will be for natural reward cues (C2, natural

reward cue ON and W2, natural reward cue OFF). C3 and W3 will be

for cannabis cues (C3, cannabis cue ON and W3, cannabis cue OFF).

The rated scores on the craving for cannabis cues in users’ group were

used for further analyses. The subjective craving score was rated in

both groups, but the post hoc analyses relating craving to FC mea-

sures were performed in users’ group only.

2.6 | FMRI preprocessing

The preprocessing for fMRI was performed using the combination of

fMRIPrep 1.2.5 (Esteban et al., 2019) that utilizes Nipype 1.1.6 and

Nilearn 0.5.0 (https://nilearn.github.io/; K. Gorgolewski et al., 2011;

K. J. Gorgolewski et al., 2017; Pedregosa et al., 2011), and CONN

(Whitfield-Gabrieli & Nieto-Castanon, 2012). Basic preprocessing

including framewise motion correction, extraction of motion-related

and physiological noise components, and, intermodal normalization of

T1 and fMRI images onto the standard MNI space was performed

F IGURE 1 Illustration of cue exposure task
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using fMRIPrep. The pipeline of fMRIPrep utilized toolboxes from

FMRIB Software Library (Jenkinson, Beckmann, Behrens, Woolrich, &

Smith, 2012), FreeSurfer (Dale, Fischl, & Sereno, 1999; Fischl, Sereno,

& Dale, 1999) and Advanced Normalization Tools (ANTs; Avants,

Tustison, & Song, 2009). Further denoising of fMRI images using

motion and physiological components, and, the integration of the

fMRI images with the time series of the cue task were processed

within a CONN pipeline.

The following descriptions on the preprocessing pipeline are

adopted and revised from the fMRIPrep pipeline. A reference volume

of an fMRI image was selected and brain-extracted, then was linearly

coregistered with nine degrees of freedom to the T1 images using

BBRegister (FreeSurfer) that implements boundary-based registration

(Esteban et al., 2019; Greve & Fischl, 2009). Head motion across time

per subject was estimated using MCFLIRT in FSL (Jenkinson, Bannister,

Brady, & Smith, 2002), then the fMRI images were resampled to sur-

faces on fsaverage5 from FreeSurfer. The slice-timing correction was

applied, and the fMRI images were resampled back to the native space

by applying a single, composite transform to correct for head-motion

and susceptibility distortions. Volumetric resamplings were performed

using ANTs (Avants et al., 2009), configured with Lanczos interpolation

to minimize the smoothing effects of other kernels (Lanczos, 1964), and

surface resamplings were performed using FreeSurfer. The images were

normalized to nonlinear and asymmetric MNI152 2009c standard

space. Several confounding regressors were calculated, including

framewise displacement, global signal, white matter, and cerebrospinal

fluid signals (Power et al., 2014).

Further denoising was applied upon motion-corrected and normal-

ized fMRI images using motion-related and physiological noise parame-

ters estimated in the preliminary steps. A total of 36 confounding

regressors, 24 of which are related to motion and 12 to physiological

signals were linearly regressed out (Satterthwaite et al., 2013). For

motion-related regressors, first six were mean-centered rotation and

transition, second six were their mean-centered derivatives, third six

were their mean-centered squared terms, and fourth six were their

derivatives’ mean-centered squared terms. For physiological signals, the

same scheme was applied for three original signals, which were defined

in global, white matter, and cerebrospinal fluid regions. The outlier

timeframes that show exceptionally higher framewise displacement

(larger than 0.5 mm) were linearly regressed out using binary vectors

that label the bad frames (Power et al., 2014). Finally, the effects of cue

exposure (C1, C2, C3), washout (W1, W2, W3) and subjective craving

rating for each cue type (neutral, natural reward, cannabis cues) were

linearly regressed out for each individual fMRI images, by accounting

for the mean-centered time series of the task convolved with canonical

hemodynamic response function (HRF) and its derivative. Thus, a total

of 18 (from three task conditions that are cue ON, cue OFF and rate,

for three cue types, and both the original time series and its deriva-

tive = 3 × 3 × 2) regressors were additionally considered as noise

components simultaneously with the other nuisance covariates.

Rating (five-second long) was not included in the assessment of

task-modulated connectivity, but its time series was used as a nui-

sance covariate. During the denoising step, the bandpass filtering

was applied simultaneously with the other noise components, at low

0.01 to high 0.25 Hz.

2.7 | Definition of brain regions and connections

FC was based on the cortical regions defined in the Gordon 333 atlas

(Gordon et al., 2016), and 14 subcortical regions from Harvard-Oxford

atlas (Desikan et al., 2006; Frazier et al., 2005; J. M. Goldstein

et al., 2007; Makris et al., 2006). Among a total 347 regions, 41

regions were in the default mode network (DMN), 24 regions in the

central executive network (CEN), and 44 regions in the salience net-

work (SN) that is labeled as either salience or cingulo-opercular net-

work (S. Sadaghiani & D'Esposito, 2015; Seeley et al., 2007) in the

Gordon atlas. These three intrinsic networks of interest were

accounted for the FC, as illustrated in Figure S1. In addition, this study

considered two subcortical regions known to be important in SUDs:

bilateral amygdalae (Amyg) and nuclei accumbens (NAcc).

A total of 12 functional connections were calculated using the

time series per cortical region defined for each network, and subcorti-

cal regions of amygdala and nucleus accumbens. Specifically, these

included (a) connections within each network that involve a pair of

two regions from the same network (WithinDMN, WithinCEN,

WithinSN); (b) connections between two networks that involve a pair

of two regions from different networks (DMN–CEN, DMN–SN, CEN–

SN); (c) connections between left and right amygdalae (Amyg) and

each of three intrinsic networks (Amyg-DMN, Amyg-CEN, Amyg-SN);

and (4) connections between left and right nuclei accumbens (NAcc)

and three networks (NAcc-DMN, NAcc-CEN, NAcc-SN). Connection

weights were averaged across all the pairs included per type of FC

(e.g., for within the DMN, 41 × 40/2 = 820 connections’ weights were

averaged) to represent each type of functional connectivity.

2.8 | Dynamic functional connectivity via dynamic
conditional correlation

Dynamic FC is a derivative measure of the FC that takes temporally

dynamic changes in connectivity into account. Its quantification can be

performed by either segregating the time series of BOLD activity into

multiple chunks of smaller windows as in sliding-window, or tapered

sliding-window approach (Allen et al., 2012; Chang & Glover, 2010;

Sakoglu et al., 2009, 2010; Sakoglu & Calhoun, 2009a, 2009b), or esti-

mating instantaneous FC without the need of defining the criteria for

subdividing time series as in instantaneous phase coherence, multiple

temporal derivative, or dynamic conditional correlation approach

(Glerean, Salmi, Lahnakoski, Jääskeläinen, & Sams, 2012; Lindquist

et al., 2014; Shine et al., 2015).

This study used dynamic conditional correlation (DCC) without mov-

ing average (Engle, 2002; Lindquist et al., 2014), which is based on the

multivariate generalized autoregressive conditional heteroscedasticity

model (Engle, 2002) that can be effective for estimating nonstationary

temporal associations when the model of time series is well-known (Lebo
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& Box-Steffensmeier, 2008). We used the code implemented by

Lindquist et al. (2014) shared in https://github.com/canlab/Lindquist_

Dynamic_Correlation, which ran on MATLAB R2018b utilizing 120 high-

performance computing SLURM nodes. It first performs estimation of

conditional variance of the two brain regions’ time series accounting for

each present timeframe (t) and the past frames (t – 1, t – 2 … 1), then

provides instantaneous DCC based on the variance values (Engle, 2002;

Lindquist et al., 2014). The performance of DCC in estimating the gro-

und-truth dynamic connectivity is higher than the most of the sliding-

window approaches, given that the underlying parametric model for esti-

mating variance is feasible (Lindquist et al., 2014). In comparisons across

multiple datasets, the test–retest reliability was also higher for the DCC

method (Choe et al., 2017). Applying moving average after obtaining

DCC can improve its correspondence to behaviorally meaningful infor-

mation during tasks (Xie et al., 2019), with the penalty of losing part of

the information within the window and especially, at the edge of the

very first or last series of windows. Leonardi and van de Ville (2015) pro-

vided mathematically feasible range of window length for moving aver-

age (window length ≥ 1/fmin), but this study used DCC without moving

average to retain as much information as possible throughout the entire

scan. The following DCC metrics were calculated as our measure of

dynamic FC.

2.8.1 | Primary DCC measures: Functional
connectivity weights

The time series of DCC (347 ROIs × 347 ROIs × 810 frames) was cal-

culated per individual. Correspondingly, the same 12 types of FC,

which indicate the total average of weights within and between the

three intrinsic networks (DMN, CEN, SN), and, between the three

networks and two subcortical regions (NAcc and Amyg) were

obtained for each frame. The connectivity weight of the dynamic FC

defined per pair of different regions for each frame per task condition

was considered as the primary measure. The dynamic FC weight is

denoted as w(i, j, t1, t2) in Figure 2, which conceptually illustrates how

the measures were evaluated across the scan. The primary measure

was weighted by HRF-convolved time series that correspond to each

task condition for evaluating task-modulated effects in dynamic FC.

2.8.2 | Secondary DCC measures: Topological
indexes

The topological properties of dynamic FC were considered as the sec-

ondary measures as calculated by Brain Connectivity Toolbox

(Rubinov & Sporns, 2010). To quantify any topological properties, FC

weights per timeframe were thresholded by setting originally negative

values to zero, therefore resulting in only having non-negative con-

nectivity weights. In the topological indexes of connectivity, brain

regions were referred to as nodes, and functional link between two of

them as edges. Values of interest were network global efficiency (GEff),

deterministic modularity (GMod) and topological resilience (GRes) that

quantifies the reduction of network efficiency caused by removing

high-importance edges. Conceptually, global efficiency represents the

degree of functional integration of the organization, and modularity

that of segregation. Network resilience is in the trade-off relationship

with the efficiency of the network (Brede & de Vries, 2009; Netotea

& Pongor, 2006).

Global efficiency of a network is a representative measure of how

the information transfer is relatively easier across two topological

locations (Latora & Marchiori, 2001). This metric is calculated as the

F IGURE 2 Illustration of primary and secondary dynamic functional connectivity measures defined per timeframe. The presentation is
conceptual and not based on the actual data
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summed reciprocals of the topological distance a node requires to connect

itself to the other nodes within the network (Rubinov & Sporns, 2010),

and a higher value indicates more efficient information transfer.

Deterministic modularity of a network is a representative measure

of community structure of the network topology, which describes the

density of connections between nodes inside each clusters that are

sparsely linked to each other (Newman, 2006). This metric is calculated

by quantifying the proportion of edges that connect nodes within each

topologically divided clusters over those connect between the other

clusters (Rubinov & Sporns, 2010). A higher value indicates more modu-

lar topology, or an organization that shows distinctly separated commu-

nities of nodes (Newman, 2006; Reichardt & Bornholdt, 2006).

Topological resilience is defined as a proxy measure of how much

functional degradation a network structure can handle as described by

Alstott, Breakspear, Hagmann, Cammoun, and Sporns (2009). The deg-

radation in a network is conceptually modeled as the removal of an

edge or edges, by setting the connectivity weight of the targeted edges

and their transposed locations in the connectivity matrix to zero. Refer-

ring to Netotea and Pongor (2006), this paper quantified resilience

(GRes) as the magnitude of change in global efficiency (E100% – E0%) over

the number of edges removed (N100%), multiplied by the total number

of edges in the network (NTotal = 347 × 346/2 = 60,031 edges). In

Equation (1), the 100% refers to the state of the connectivity matrix

after removing all the targeted edges, and 0% the original state. The

resilience is always negative, and higher values indicate more resilient

structures. N0% is equal to zero, thus not shown in the formula.

GRes =
E100%−E0%

N100%
×NTotal ð1Þ

According to Crossley et al. (2014), damage afflicted by many known

brain disorders seem to center around the topologically most important

nodes in the brain network. The number of shortest paths between any

pair of nodes in the network that pass through a given edge is represen-

ted by a measure called edge betweenness centrality, and this measure

represents that the edge is topologically more important for connecting

nodes across the network efficiently (Freeman, 1978). Thus, edges with

higher betweenness centrality are, by definition, likely to connect a func-

tional hub with the other nodes. In this study, we simulated functional

degradations in the brain network by removing all edges (100%) with the

betweenness centrality values higher than one, leaving only the edges

that have betweenness centrality values of either 0 (no shortest paths

pass) or 1 (only one shortest path passes) in the original structure. Each

topological index was weighted by HRF-convolved task time series. The

calculation of secondary measures was done on 120 high-performance

computing SLURM nodes with MATLAB R2018b.

2.9 | Task-modulated standard deviation
of dynamic functional connectivity

Primary and secondary measures were quantified based on the con-

nectivity matrix weighted by HRF-convolved time series of task

conditions (C1, W1, C2, W2, C3, and W3). The task-modulated variabil-

ity across time was the representative measure of this study, which

was quantified by the SD (dSD) of dynamic FC. Equation (2) shows how

dSD of primary measures were calculated based on dynamic FC

weighted by time series of task (Htask), defined as the blocks of task

convolved with canonical HRF not centered to zero mean.

dSD =
1
T2

XT2

t2 = 1

1
NConn

XJ

j=1

XI

i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT1
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ð2Þ

For the time series of the task and connectivity, t1 = {1 … T1} defines

the temporal length in timeframes of one task trial (one of C1, W1, C2,

W2, C3, or W3), and T1 is defined by the number of nonzero positive

values within one trial window from Htask; t2 = {1 … T2} represents the

number of trials per task condition, which was set to 12 for all task con-

ditions. The dynamic connectivity between region i and j at a fixed time

point is denoted as w(i, j, t1, t2). Calculations in inner bracket performs

the weighting (multiplication) of each dynamic connection values in

accordance to Htask, so that only the values that are relevant to task-

modulated BOLD activity are considered. The weighted connectivity is

averaged across the number of connection pairs exist per type of con-

nectivity (NConn). E(d) represents the mean of weighted dynamic connec-

tivity values of one pair across timeframes within one trial.

Task-modulated SD aims to explore whether the nonstationary

nature of the dynamic connectivity provides behavioral correlates of

the task. The major difference of using dynamic FC compared to the

generalized PPI (McLaren et al., 2012) is that it estimates the connec-

tivity per pair of regions and per timeframe regarding the non-

stationarity of the entire time series first (Lindquist et al., 2014), then

calculates the task-modulated connectivity weighted by task series,

therefore eliminating the need of introducing a linear model of task-

based modulation that includes psychophysiological interactions. It is

thus able to quantify the temporal variability of FC, which requires

accounting for multiple timeframes within one trial of a task condition.

Task-modulated SD exploits the dynamic FC defined per timeframe to

see if the task-modulated magnitude of connectivity fluctuation can

provide information on task-modulated behavioral markers.

2.10 | Statistical analyses and visualization

The statistical tests used in this study were independent t-tests,

repeated-measures ANOVA, evaluation of sphericity in dependent

variables using Mauchly's test, and nonparametric partial correlation

(Spearman's rho, denoted as R for all figures). For repeated measures

ANOVA, the statistical significance was determined from the results

of multivariate analyses, then the main effect of task conditions within

subjects for each dependent variable (FC measures) was evaluated

using Greenhouse–Geisser's method with Bonferroni correction. The

order of magnitude for each dependent variable across task conditions

was also calculated using post hoc test with Bonferroni correction, and
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the order was represented as letter legends on figures. The main effect

of group between subjects was further tested with post hoc Bonferroni

correction for 12 connection weights for primary, and three topological

indexes for secondary measures. Alpha level was defined at corrected

p < .050 for all analyses. All the tests were performed using IBM SPSS

(IBM Corp. Released 2016. IBM SPSS Statistics for Windows, Version

24.0. Armonk, NY). The three-dimensional illustrations of brain changes

were created using BrainNet viewer (Xia, Wang, & He, 2013). All the

plots representing statistical results were created using R (R Core

Team, 2013), with toolboxes of ggplot2 (Wickham, 2016), gridextra

(Auguie, Antonov, & Auguie, 2017), and reshape2 (Wickham, 2012).

Statistical results for primary and secondary measures were pres-

ented as follows. For the primary measure, the dSD regarding intrinsic

networks and subcortical regions of Amyg and NAcc were compared

between CON and CAN groups for six task conditions (C1, W1, C2,

W2, C3, and W3) within each subject. The effects of interest were the

main effect of task (within-subject), group (between-subject), and the

interaction of task and group (within-between). In the repeated mea-

sures ANOVA, dependent variables were dynamic primary measures of

12 connectivity types. Thus, multiple comparison corrections were

applied using Bonferroni's method for 12 cases. For the secondary

measure, the SD of topological properties (GEff, GMod, and GRes) were

analyzed as dependent variables affected by the same effects of inter-

est. Multiple comparison corrections were applied using Bonferroni's

method for three cases. Both models included age and the average

framewise displacement across a total 810 dynamic timeframes (mean-

centered per group, CON and CAN) as nuisance covariates to account

for the error variance. The main effect of age is known to significantly

alter connectivity-related measures (Ferreira et al., 2016), and consider-

ing average framewise displacement may reduce the potential effect of

head motion upon the connectivity measures (Siegel et al., 2016).

A post hoc correlation analysis between each dynamic connectivity

measures and subjective craving within CAN was performed. Nonpara-

metric partial correlation using Spearman's rho was performed for primary

and secondary measures, correcting for the variance of age and average

framewise displacement. Multiple comparison corrections were performed

using false discovery rate (FDR) of 25% under a restriction that the raw p

values are smaller than .050 (Benjamini & Hochberg, 1995).

3 | RESULTS

3.1 | Group and task condition effects on dynamic
functional connectivity

3.1.1 | Primary measures: Functional connectivity
weights

There was a significant effect of task on dSD, showing F(60,

3,465) = 14.979, p < .001. After multiple comparison correction, task-

modulated differences were found to be significant for all connectivity

types of interest. The group effect was significant on changes in dSD,

with F(12, 129) = 2.050, p = .025. After Bonferroni correction for

individual between-subject effects, the dSD of NAcc-CEN was found to be

higher in CAN when averaged across task conditions, showing F(1,

140) = 8.502, uncorrected p = .0041, corrected p = .0496. The interaction

of group and task effects was not significant, showing F(60,

3,465) = 1.204, p = .136. Figure 3 represents the task-modulated dSD dif-

ferences of primary measures by task conditions and groups after

Bonferroni correction applied.

3.1.2 | Secondary measures: Topological indexes

The effect of task on secondary measures’ dSD was significant (F[15,

2,100] = 68.837, p < .001). The group effect was significant (F[3,

138] = 2.906, p = .037), but individual effects did not survive multiple

correction (maximum F[1,140] = 4.584, minimum uncorrected

p = .034, corrected p = .102 for GEff). The interaction was not signifi-

cant (F[15, 2,100] = 1.009, p = .442). Figure 4 represents task-modu-

lated dSD differences of secondary measures by task conditions and

groups after Bonferroni correction applied.

3.2 | Correlation of subjective craving with
dynamic functional connectivity

3.2.1 | Subjective craving with primary measures

The dSD of NAcc-DMN and NAcc-CEN connectivity for all conditions

was significantly correlated with during-scan craving in the positive

direction. The dSD of NAcc-SN connectivity for all conditions was sig-

nificantly correlated with during-scan craving in the positive direction

as well, but C3 condition did not pass the multiple correction

(uncorrected p < .05, q > 0.25). The dSD of WithinCEN connectivity

for all conditions showed a positive correlation with the prescan crav-

ing. Figure 5 represents the direction and the magnitude of correlation

coefficients for dSD of primary measures and craving scores. The

worst case that passes FDR correction was NAcc-SN with during-scan

craving in C1 condition (uncorrected p = .038, q = 0.238).

3.2.2 | Subjective craving with secondary
measures

The dSD of GMod was correlated with the prescan craving in positive

direction for all conditions. Figure 6 accounts for the direction and the

magnitude of correlation coefficients for dSD of secondary measures and

craving scores. The worst case that passes FDR correction was GRes in

W3 condition with prescan craving (uncorrected p = .043, q = 0.221).

4 | DISCUSSION

In this study, we examined the effects of task and cannabis use on the

dynamic FC of the brain during a cue exposure task. Our findings
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showed that (a) the variability of NAcc-CEN connectivity weights was

significantly higher in cannabis users than controls regardless of task

conditions, (b) the variability within the CEN was positively correlated

with prescan craving, (c) the variability of dynamic FC between NAcc

and the two major intrinsic networks, the DMN and the CEN, was

positively correlated with during-scan craving, and (d) the variability of

whole-brain network modularity was positively correlated with pre-

scan craving. Both pre- and during-scan subjective craving ratings

were associated with the system-level changes in the brain in a tem-

porally dynamic manner that is not evaluated through static connec-

tivity analyses. This study distinguished dynamic FC differences

involving reward-related regions associated with cannabis use and

linked the subjective craving in cannabis users with changes in the

variability of dynamic connectivity measures. The results complement

previous knowledge on static FC, and potentially add systematic evi-

dences to the known models of SUDs from a specific case of canna-

bis use.

4.1 | Temporally dynamic nature of task-
modulated connectivity during cue-reactivity

The concept of dynamic FC represents the nonstationary nature of

connectivity, the mean and variance of which is altered by the internal

F IGURE 3 The standard deviation of
task-modulated primary measure of dynamic
functional connectivity in the healthy control
and cannabis users (CON vs. CAN). Markers
indicate standard deviation of the primary
measures per group, and error bars denote
the standard error (n = 90 for CON, n = 54
for CAN). The X-axis represents task
conditions (C1, W1, C2, W2, C3, and W3)

and Y-axis the magnitude of the present
measure. The Y-axis is shared for the same
row of three plots. A subplot that showed
significant group effect is highlighted with
red boundary. Abbreviations are default
mode network (DMN), central executive
network (CEN), salience network (SN),
amygdalae (Amyg), and nuclei accumbens
(NAcc). Task conditions abbreviated are
neutral cue ON (C1), neutral cue OFF (W1),
natural reward cue ON (C2), natural reward
cue OFF (W2), cannabis cue ON (C3), and
cannabis cue OFF (W3). Black circles
indicate healthy controls (CON), and red
triangles cannabis users (CAN)
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functional state of the brain (Chang & Glover, 2010), such as the level

of consciousness (Barttfeld et al., 2015), alertness (Chang, Liu, Chen,

Liu, & Duyn, 2013), sleep stages (Tagliazucchi & Laufs, 2014), or task

conditions (Braun et al., 2015; Fong et al., 2019). Drug cue exposure

is likely to affect the BOLD signal in the DA reward pathway, or

mesocorticolimbic pathway (Filbey et al., 2009, 2016; Filbey & Dun-

lop, 2014), which may lead to BOLD-derived FC changes. The

mesocorticolimbic pathway originates from the midbrain (ventral teg-

mental area and substantia nigra) that elicits DA modulation upon

NAcc (Yun, Wakabayashi, Fields, & Nicola, 2004) and the prefrontal

cortex (Lewis & O'Donnell, 2000). We therefore expected that the

dynamic nature of cue-induced DA signal changes in the midbrain

underlies the changes in dynamic FC.

Upon the exposure to cannabis cues for cannabis users, DA sig-

nals in the mesocorticolimbic reward pathway may increase (Berridge

& Robinson, 2016), potentially reflecting the increased salience attri-

bution and motivated processing of information in the users (Littel,

Euser, Munafo, & Franken, 2012; Norberg, Kavanagh, Olivier, &

F IGURE 4 The standard deviation of task-modulated secondary measure of dynamic functional connectivity in the healthy control and
cannabis users (CON vs. CAN). Markers indicate standard deviation of the secondary measures per group, and error bars denote the standard
error (n = 90 for CON, n = 54 for CAN). The X-axis represents task conditions (C1, W1, C2, W2, C3, and W3) and Y-axis the magnitude of the
present measure. The Y-axis is not shared across the plots. Black circles indicate healthy controls (CON), and red triangles cannabis users (CAN)

F IGURE 5 Correlation of standard
deviation of primary measure in dynamic
functional connectivity with craving
scores in cannabis users (CAN).
Correlation coefficients that survive the
multiple comparison correction using
FDR q ≤ 0.250 and uncorrected p < .050
(out of 144 cases) are shown as colored
boxes. Each box is color-coded to
represent the direction of correlation
(Spearman's rho), where red is positive
and blue is negative. The color scale is
identical across all types of primary
measures. The X-axis represents task
conditions (C1, W1, C2, W2, C3, and W3)
and Y-axis the craving scores in the order
of prescan (subject n = 52) and during-
scan (n = 54). Abbreviations indicate
default mode network (DMN), central
executive network (CEN), salience
network (SN), amygdalae (Amyg), and
nuclei accumbens (NAcc). Task conditions
abbreviated are neutral cue ON (C1),
neutral cue OFF (W1), natural reward cue
ON (C2), natural reward cue OFF (W2),
cannabis cue ON (C3), cannabis cue
OFF (W3)
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Lyras, 2016). In this study, we found that the main effect of task is sig-

nificant for the variability of both primary and secondary measures.

Further, it clearly delineated across different task conditions during

the cue exposure task, suggesting that the nonstationarity of FC

changes is highly relevant to the main effect of the task upon FC mea-

sures. This may imply that the dynamic changes in DA signals are tran-

sient so that they may not be fully estimated using the static

connectivity model.

There are tonic and phasic activity patterns of DA neurons; while

tonic activity represents a steady frequency of firing, phasic shows a

transiently faster, burst-then-pause rhythm of firing (Floresco, West,

Ash, Moore, & Grace, 2003). Phasic activity induces a surging increase

of DA release (Gonon, 1988), and is known to facilitate reward-moti-

vated reinforcement learning (Goto & Grace, 2005; Grace, Floresco,

Goto, & Lodge, 2007; Wolfram Schultz, 1997). An optogenetics study

has shown that phasic activity is sufficient for behavioral conditioning

(Tsai et al., 2009), which is a key process related to SUDs (Everitt,

Dickinson, & Robbins, 2001). Phasic DA activity in NAcc is known to

increase in a temporally associated manner in rats trained to self-

administer cocaine toward drug-related cues, along with the actual

increase of DA release in the NAcc core (Ito, Dalley, Howes, Robbins,

& Everitt, 2000; Stuber, Roitman, Phillips, Carelli, & Wightman, 2005).

On the contrary, the same activity seems to decrease during with-

drawal period in rats chronically exposed to THC (Diana, Melis,

Muntoni, & Gessa, 1998). This implies that the modulation of

reward-related DA signals in NAcc of cannabis users fluctuates. It

further corroborates that the DA signal changes in cue-reactivity will

be more dynamic for cannabis users compared to controls, which

may have led to increased variability of dynamic connectivity in

users. We did not find a group × task interaction effect, which sug-

gests that task-modulated changes in DA signals did not affect the

dynamic FC to an extent that can overcome the group differences.

4.2 | Variability in functional connectivity weights

The variability of dynamic FC weights between NAcc and the CEN

was found to be higher in the CAN group. NAcc and the CEN have

generalizable and important implications in SUDs, especially in

addressing behavioral aspects via the addiction model of Impaired

Response Inhibition and Salience Attribution (iRISA; R. Z. Goldstein &

Volkow, 2011; Zilverstand et al., 2018). This model aims to explain

the mechanisms of SUDs that correspond to behavioral stages of

binge-intoxication, withdrawal-negative affect, and preoccupation-

anticipation (Koob & Volkow, 2016). The functional underpinning of

this cycle is hypothesized to be the downregulated executive control

that modulates response inhibition (R. Z. Goldstein & Volkow, 2011)

and imbalanced salience attribution that focuses on drug-related cues

above others (Droutman, Read, & Bechara, 2015). Our finding showed

that the temporal link between subcortical reward locus (NAcc) and

the CEN involved in response inhibition fluctuates more in the canna-

bis users, supporting the iRISA model by showing the neural marker of

significant interplay between two functions supposedly imbalanced.

This systematic evidence based on cannabis users might be applicable

to the other types of SUDs that share the behavioral aspects of the

development.

The loss of executive or inhibitory control that leads to impulsive

action is prominent in SUDs (Bari & Robbins, 2013), and it causes sus-

ceptibility toward the onset and further use of illicit drugs (Brockett,

Pribut, Vázquez, & Roesch, 2018; Dalley, Everitt, & Robbins, 2011;

Dalley & Robbins, 2017). The CEN and the SN are two major intrinsic

networks involved in this function, potentially reorienting attention

based on task objectives or the salience of information, respectively

(Corbetta, Patel, & Shulman, 2008; Dalley & Robbins, 2017; Dodds,

Morein-Zamir, & Robbins, 2010). These two networks seem to collab-

orate in response to environmental stressors in general, including

reward-related situations that subsequently induce DA impulse, to

react and process the information (Hermans, Henckens, Joels, &

Fernandez, 2014). The CEN is more involved in goal-oriented, or task-

modulated processing that aids decision making (Dodds et al., 2010;

Menon, 2011) and, importantly, response inhibition (Chikazoe

et al., 2009; Dodds et al., 2010; van Gaal, Ridderinkhof, Scholte, &

Lamme, 2010). Functions of NAcc support the subjective appraisal of

value by putting incentive into consideration (Milton & Everitt, 2012),

and its neural activity relates to salience and reward (Cooper &

Knutson, 2008; Horvitz, 2000).

Neural responses of NAcc and the CEN both appear to imply changes

in craving or reward-related decision making. For substance-dependent

F IGURE 6 Correlation of standard deviation of secondary measure in dynamic functional connectivity with craving scores in cannabis users
(CAN). Correlation coefficients that survive the multiple comparison correction using FDR q ≤ 0.250 and uncorrected p < .050 (out of 36 cases)
are shown as colored boxes. Each box is color-coded to represent the direction of correlation (Spearman's rho), where red is positive and blue is
negative. The color scale is identical across all types of secondary measures. The X-axis represents task conditions (C1, W1, C2, W2, C3, and W3)
and Y-axis the craving scores in the order of prescan (subject n = 52) and during-scan (n = 54)
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users, the neural activity in NAcc increases in response to drug-related

cues (Koob & Volkow, 2010), and cannabis users with more problematic

symptoms show a higher activity here (Cousijn et al., 2013). The activity in

NAcc seems to decrease in relation to downregulated craving toward ciga-

rette smoking (Kober et al., 2010). On the other hand, the higher activity

in regions in the CEN was correlated with lower craving in cigarette

smokers (Kober et al., 2010) and cannabis users (Cousijn et al., 2013). Fur-

thermore, FC within the CEN may decrease in the resting state for chronic

stimulant users, while it may increase within the mesocorticolimbic reward

pathway (including NAcc), and between the CEN and the reward pathway

(Zilverstand et al., 2018). In sum, the pattern of activity and connectivity

changes in the reward pathway and the CEN may be the opposite at the

same functional state. The variability of dynamic FC between two may

thus reflect their more fluctuating interplay due to their distinct differences

in the functional states.

The increased dynamic connectivity variability in cannabis users

may have been affected by the fluctuations of DA signals between

cue ON and OFF states. The change was found to be independent of

task conditions, possibly because it reflects the dysfunctional modula-

tion of DA signal, not a mere increase or a decrease in the magnitude

(see Supplementary Results for findings in the average of dynamic

connectivity). The DA signal in NAcc is known to be a dynamic modu-

lator of motivated behaviors in general (Salamone, Correa, Mingote, &

Weber, 2005; W. Schultz, 2007), and an impairment to NAcc core

leads to impulsivity rather than the loss of motivated behaviors (Cardi-

nal, Pennicott, Lakmali, Robbins, & Everitt, 2001), which relates to

SUDs (Brockett et al., 2018; Dalley et al., 2011; Dalley & Rob-

bins, 2017). Originally, the DA signal from the midbrain that projects

to the lateral prefrontal cortex in the CEN aids the cognitive control

of action not by weight information by the reward value, but rather

by providing the salience signal (Ott & Nieder, 2019). However, while

the reward pathway including NAcc is activated by immediately avail-

able rewards, regions in the CEN are activated by delayed rewards

that require more cognitive resource to eventually make a less impul-

sive decision (McClure, Laibson, Loewenstein, & Cohen, 2004). These

literatures imply that the executive control of the CEN over reward-

related information such as cannabis cues is hierarchically positioned

higher and is activated depending on the current state of “wanting”

represented by the reward pathway. The striatum and the prefrontal

cortex functionally interact for reward-related decision making

(Cools, 2015). DA signal seems to provide the goal-oriented flexibility

in NAcc (Haluk & Floresco, 2009), and the stability by concentrating

on goals in prefrontal cortex (Bloemendaal et al., 2015; Noudoost &

Moore, 2011). Chronic cannabis use can induce dysfunctional modula-

tion of DA signals and FC of NAcc (Manza, Tomasi, & Volkow, 2018;

van de Giessen et al., 2017; Volkow et al., 2014) and aberrances in

activity and connectivity within the CEN (Krmpotich et al., 2013;

Tapert et al., 2007). It can further weaken the interaction between

the prefrontal cortex and NAcc (Fischer, Whitfield-Gabrieli, Roth,

Brunette, & Green, 2014; Hwang & Lupica, 2019). In sum, the

increased variability between NAcc and the CEN in cannabis users

may indicate the lack of stable modulation upon the reward-related

DA signal.

We found a positive correlation of dynamic connectivity variabil-

ity within the CEN with the prescan (baseline) craving. This correlation

may imply the involvement of the dysfunctional CEN in managing the

craving (Luijten et al., 2014; Zilverstand et al., 2018), reflecting the

higher demand of cognitive control over the transient fluctuations of

DA signals. Dynamic connectivity variability from NAcc to the three

intrinsic networks showed significant positive correlation with the

during-scan craving regardless of the task conditions, except in NAcc-

SN where cannabis cue ON condition did not pass the multiple cor-

rection. This probably indicates that the fluctuations of DA signals in

NAcc are constantly affecting some of the major large-scale intrinsic

networks. The during-scan craving may relate to the relapse of sub-

stance use (Crombag, Bossert, Koya, & Shaham, 2008; Grimm, Hope,

Wise, & Shaham, 2001). Two of the neural underpinnings of the dis-

crepancy between prescan and during-scan cravings are the loss of

DA signals during withdrawal (Diana et al., 1998) and the cue-induced

phasic DA signals (Berridge & Robinson, 2016), both of which can

increase the fluctuation of the DA signal over time. This suggests that

the during-scan craving may be more dependent on the dysfunctional

modulation of striatal DA signals. Meanwhile, the variability of

dynamic FC between NAcc and the three intrinsic networks was not

correlated with the prescan craving, which may also imply that the

effect of unstable modulation of DA signals is subject to external

treatment to reduce craving during the cue exposure task, but not the

abstinence period. Perhaps targeting the CEN may be more effective

in managing the craving during cannabis abstinence, because of the

relevance of the variability of dynamic FC to prescan craving.

4.3 | Variability in topological indexes

The most prominent finding is that the pattern of changes between

states of natural reward cue ON versus OFF is the opposite of what is

observed in neutral and cannabis cue states. This contrast is clearer

than that from the dynamic primary measures in this study. The sub-

stance-dependent users show markers of higher allocation of attention

to substance cues than neutral cues regardless of substance types and

whether abstinence was on (Littel et al., 2012). The extant addiction

models hypothesize that the positive reinforcement caused by drugs of

abuse acts the same as that by natural rewards, and overrides the

reward effect from nondrug gains by abnormally highlighting the

reward of drug (Kelley & Berridge, 2002). In a cue exposure task, natu-

ral reward cues are introduced to distinguish the inherent motivational

relevance from what is caused by the effect of substances (Versace

et al., 2017). The current study showed that the pattern of task-modu-

lated variability of topological reorganization during exposure to canna-

bis cues appears to be significantly different from that found with

natural reward cues, but like that with neutral cues. The lack of group-

task interaction suggests that this effect is not unique for the cannabis

users. The present result represents the systematic marker of dynamic

FC that highlights the differences in the neural underpinning for

processing natural reward compared to the conditioned reward (canna-

bis) or neutral information, regardless of chronic cannabis use.
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Previous studies have suggested that dynamic FC appear to

denote an adaptive change in interaction within and between differ-

ent functional modalities based on given tasks (Braun et al., 2015).

This includes large-scale changes, such as; linking more to the prefron-

tal network, that is, the CEN, for tasks that require executive controls

(Braun et al., 2015; Cole, Reynolds, et al., 2013); connecting regions in

the DMN across the brain for more global integration of information

(Vatansever, Manktelow, Sahakian, Menon, & Stamatakis, 2017;

Vatansever, Menon, Manktelow, Sahakian, & Stamatakis, 2015) and;

in terms of topological features of the FC, adjusting the roles of the

most densely connected brain hubs to increase the network efficiency

at the moment (de Pasquale et al., 2016). Topological reorganization

of the connectivity seems to alter the network efficiency (integration)

and modularity (segregation) depending on the types of task demands

(Cohen & D'Esposito, 2016). Liégeois et al. (2019) used Human

Connectome Project datasets to show that dynamic connectivity pro-

vides more information for explaining variances of task-modulated

behaviors. During tasks, DA is known to actively and dynamically

modulate the sensory information and the executive functions in the

prefrontal cortex (Ott & Nieder, 2019). Taken together, the dynamic

topological reorganization in the brain may be affected by the task-

modulated activity of DA, probably in the prefrontal cortex. The dif-

ferential pattern of changes in dynamic FC variability found during

exposure to natural reward cues could indicate that the roles of DA

signal are also distinct compared to when exposed to the other cues.

A further study is needed to clarify the neural underpinning of this

phenomenon, especially testing for the effect of abstinence, and the

type of illicit drugs of abuse.

We found that as the variability of network modularity

increase, so does prescan craving. Network modularity conceptu-

ally represents the degree of modal and segregated communica-

tions across brain regions (Cohen & D'Esposito, 2016). Higher

modularity is prominent during simpler motor tasks (Cohen &

D'Esposito, 2016), and relates to higher perceptual acuity in a sen-

sory task (Sadaghiani, Poline, Kleinschmidt, & D'Esposito, 2015).

Lower modularity, on the other hand, reflects less segregated net-

work organization, and seems to be a marker for the functional

state favorable for the awareness of the target information (God-

win, Barry, & Marois, 2015). A fluctuating modularity across condi-

tions therefore indicates an unstable state switching between

functional modes apt for distinct tasks. Since our task has not given

goals that require cognitive load, this fluctuation cannot be due to

internal adaptation for the task performance. It appears that after

the external administration of L-DOPA, network modularity

decreases (Alavash et al., 2018) and the connectivity between sub-

cortical regions and cortical networks may increase (D. M. Cole,

Oei, et al., 2013), leading the functional structure to be more inte-

grated than segregated. This may imply that during the cue expo-

sure task under higher prescan craving, the DA modulation upon

the brain network is less stable in cannabis users. The current

results suggest that the unstable segregation of the brain network

relates to the loss of DA signal balance, which is potentially more

disrupted in cannabis users than the controls.

4.4 | Limitations and suggestions for future studies

One of this study's limitations is that the subjective level of craving

can be affected by several factors not fully quantified in this study.

Two of the major examples are hormonal changes associated with

menstrual period in female, and the time of day. Sherman, Caruso, and

McRae-Clark (2019) found that an external administration of proges-

terone may attenuate abstinence-induced craving for cannabis (mar-

ginally significant effect), suggesting that the level of female hormone

can affect the level of subjective craving. In addition, when the craving

is present, time of day had a significant main effect upon its subjective

level (Shrier, Walls, Kendall, & Blood, 2012). These can be controlled

for identifying a clearer effect of craving in future studies. Second, it

is another limitation that the potential covariate effect of the comor-

bidity of nicotine use and the cannabis use, was not explored in this

study. A future investigation with a larger sample size of the cannabis

users, and a control group that includes a sizable number of nicotine

users may be able to substantiate the effect.

Lindquist et al. (2014) introduced DCC and noted its lower preci-

sion for handling short-term state changes in the fMRI signal.

Although this study used a block design in the cue-exposure task (cue

exposure and washout for 20 s), whose effect may account for lon-

ger-term changes in functional state, they may still be underestimated

according to Lindquist et al. (2014). We considered the transient

effect in dynamic FC by weighting the resultant primary and second-

ary measures with HRF-convolved time series to avoid a brief-term

effect at the very beginning and the end of each block so that changes

DCC was slow to detect minimally bias our results. The present results

not only show significant task effect across conditions, but also a con-

sistent increase in the SD of DCC in CAN group for NAcc-CEN regard-

less of task conditions. Thus, our main results are less likely to have

been compromised by the underestimation for brief changes. Never-

theless, it is certainly possible that rapid states including emotional

disturbance or arousal in attention would be present in cannabis users

upon cue exposure. To understand these functional effect, more elab-

orate task design should be accompanied with an alternative metric

for dynamic FC, that is, dynamic connectivity regression (Cribben,

Haraldsdottir, Atlas, Wager, & Lindquist, 2012), which Lindquist

et al. (2014) has referred to.

The association of cognitive functions with the cannabis use,

especially focusing on the functions of response inhibition and

salience attribution, may be further studied. The study will support

the link of dynamic FC alterations with the central functional effect of

substance use in accordance to the iRISA model. In the same context,

the task-modulated role of the DMN, which relates to the processing

of internal information, or the nontask states (Raichle, 2015), may be

further investigated to verify its roles separate from the CEN in more

cognitive tasks. Recently, Zhang and Volkow (2019) extensively

reviewed evidences showing that the impairment of DA signaling can

prevent the normal functions of the DMN, and the interplay of the

DMN with the CEN and the SN are disrupted in SUDs. Dynamic FC

studies that integrate the general implications of the DMN to the

addiction models are desired.
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5 | CONCLUSIONS

Utilizing the dynamic functional connectivity, we were able to quan-

tify the task-modulated variability of connectivity weights and topo-

logical indexes over time. The current results identified the system-to-

behavior level link in cannabis use based on the correlational analysis

of dynamic functional connectivity and subjective craving. Our find-

ings suggest that the alterations in the variability of dynamic connec-

tivity in cannabis users reflect their underlying dysfunctions in

modulating dopamine system in molecular level that is constantly pre-

sent in long-term users, and that the dysfunctions affect large-scale

intrinsic networks via subcortical to cortical link.
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