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Abstract: In light field compression, graph-based coding is powerful to exploit signal redundancy
along irregular shapes and obtains good energy compaction. However, apart from high time com-
plexity to process high dimensional graphs, their graph construction method is highly sensitive to the
accuracy of disparity information between viewpoints. In real-world light field or synthetic light field
generated by computer software, the use of disparity information for super-rays projection might
suffer from inaccuracy due to vignetting effect and large disparity between views in the two types of
light fields, respectively. This paper introduces two novel projection schemes resulting in less error
in disparity information, in which one projection scheme can also significantly reduce computation
time for both encoder and decoder. Experimental results show projection quality of super-pixels
across views can be considerably enhanced using the proposals, along with rate-distortion perfor-
mance when compared against original projection scheme and HEVC-based or JPEG Pleno-based
coding approaches.

Keywords: light field; compression; super-rays; graph transform; super-ray projection

1. Introduction

Light field (LF) is an emerging technology in multimedia research areas that allows
capturing different light rays in many directions, emitted from every point of an object or a
scene [1]. Hence, it brings significantly improved immersiveness, depth, intensity, color
and perspectives from a range of viewpoints. As the result, it reveals promising application
opportunities into vast areas such as Virtual Reality (VR), Augmented Reality (AR) [2],
3D television [3], biometrics recognition [4], medical imaging [5], post-capture processing
techniques such as depth estimation and refocusing [6], or semantic segmentation [7].
However, the rich quality trades off with a high volume of redundant data from both within
and between viewpoints, leading to the need of obtaining efficient compression approaches.

Recently, graph-based coding has proven to be an efficient approach to LF compres-
sion [8–10] in comparison with conventional 2D image-based compression methods, e.g.,
HEVC [11], JPEG Pleno [12]. This is because the conventional methods use rectangular
blocks which often contain non-uniform intensities or sub regions with different statistical
properties. Such non-uniform representation of signal achieves low energy compaction
when transformed into frequency domain, leading to higher bitrate required for coding.
Meanwhile, graph-based coding can efficiently exploit the redundancy within pixels blocks
with irregular shape, adhering closely to object boundaries. More concretely, graphs with
arbitrary shapes containing mostly uniform pixel intensities are transformed into frequency
domain using Graph Fourier Transform (GFT). As the result, better energy compaction
of coefficients can be achieved. Among exiting graph-based LF coding methods, the one
in [10] achieves the best rate-distortion performance by proposing graph coarsening and
partitioning in a rate-distortion sense. Indeed, in comparison with the methods in [8,9], this
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method is capable of reducing graph vertices and obtaining smaller graphs from the origi-
nal high dimensional graphs. At the same time, it assures that the redundancies within and
between views can still be efficiently exploited at some target coding bitrates. This allows
the redundancy in bigger pixel regions where the signal is smooth to be efficiently exploited.
As the result, high rate-distortion performance can be achieved. However, compared to
HEVC Lozenge [11] and JPEG-Pleno [12], the method in [10] remains outperformed for real
LF suffering from vignetting effect and synthetic LF at high bitrates, despite having highest
rate-distortion at low bitrates. Additionally, their execution time is reported to be 10 times
higher than HEVC for a single LF at the same target quality, mainly due to time complexity
of Laplacian eigen-decomposition.

It is believed that the main reason why [10] does not perform well on high coding bi-
trates relates to the error in disparity information used for super-ray projection. To elaborate
this point, a closer look at the concept of super-rays as the common support of graph-based
LF coding studies is needed. It is an extension of super-pixels over-segmentation in 2D
images [13]. In other words, upon views of LF, each super-ray is a group of corresponding
super-pixels across all views. The purpose is to group similar light rays coming from the
same object in the 3D space to different viewpoints, as an analogy to grouping percep-
tually similar pixels which are close to each other in 2D image. The similarity contains
high redundancy, and thus good energy compaction can be obtained in the frequency
domain. In details, existing graph-based LF coding studies [8–10] segments top-left view
into super-pixels, computes the median disparity per super-pixel based on the estimated
disparity of top-left view, then applies disparity shift for the projection of a super-pixel
from the reference view to remaining views at both encoder and decoder. Due to the similar
geometry (structures of objects) and optical characteristics (distance from camera to objects)
between the viewpoints, scaling of the disparity value can be used to shift the pixels from
one viewpoint to any other viewpoint. This emphasizes the importance of the accuracy of
disparity information to the projection of super-pixels.

However, in the case of real LF captured by plenoptic camera or camera array, if the
selected reference view suffers from vignetting effect, the estimated disparity would not
be accurate, and thus the projection of super-pixels would also suffer errors, leading to
incorrect position of corresponding super-pixel in target view. For synthetic LF generated
by software, the baseline distance between every two viewpoints has no constraint, and
thus it usually has much larger disparity between views compared to real LF, whose
baseline is limited by aperture size of a plenoptic camera. Hence, using only one median
disparity per super-ray would make the super-ray projection less accurate, particularly
when super-pixel size is large. These issues are verified and further explained in Section 3.

To this end, in this paper, two novel projection schemes related to selection of reference
views for super-ray projection for real LF and synthetic LF, are proposed, to tackle error
in disparity information and improve the super-ray projection quality. For real LF with
vignetting issue, instead of using top-left view as a reference view, the center view is
proposed to be used. This allows the projection to spread out to neighboring views
symmetrically in both directions. As a result, the properties of the obtained depth map
are preserved. For synthetic LF with a large disparity, instead of choosing only a single
reference view in the top-left corner, multiple views in a sparse distribution are proposed.
This allows to perform projection to closer views. As a result, the error of median disparity
per super-ray used for projection can be reduced. Moreover, each reference view would
be associated with a distinct global graph (a set of all super-ray graphs), and thus the
original global graph is divided into smaller sub global graphs. In this way, they can be
processed in parallel, decreasing computation time. In order to determine the optimal
number of views in this proposal, a Lagrangian minimization problem is solved. The
purpose is to avoid increasing bitrates during transmission of reference segmentation maps
and disparity maps.
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The experimental results demonstrate that by using the proposed projection schemes,
higher rate-distortion performance and lower computation time are generally achieved, in
comparison with various baselines. The main contributions of the paper are as follows:

• How vignetting effect results in inaccurate depth estimation, how large disparity
between views leads to higher median disparity error for projection, and how these
issues affect the projection quality are examined qualitatively and quantitatively;

• A center view projection scheme is proposed for real LF with large parallax, suffering
from vignetting effect in peripheral views, in which the center view is selected as the
reference instead of top-left view. This scheme outperforms both original scheme [10]
and state-of-the-art coders such as HEVC or JPEG Pleno at low and high bitrates;

• A multiple views projection scheme is proposed for synthetic LF, in which the positions
of reference views are optimized by a minimization problem, so that projection quality
is improved and inter-views correlations can still be efficiently exploited. In results,
this proposal significantly outperforms the original scheme [10] in terms of both
Rate Distortion and computation time, by parallel processing sub global graphs with
smaller dimensions;

• A comparative analysis with qualitative and quantitative results is given on rate-
distortion performance between the two proposals and original projection scheme [10],
as well as HEVC-Serpentine and JPEG Pleno 4DTM.

The rest of the paper is organized as follows: Section 2 introduces LF compression
categories and recent studies on graph-based LF compression. Section 3 provides a verifica-
tion of the issues resulting in the error of disparity information. A detailed description of
the two projection schemes is given in Section 4. In Sections 5 and 6, experimental results
and analysis are discussed to evaluate the performance of proposals. Conclusion is given
in Section 7.

2. Related Work

In this section, the paper first provides some background on LF compression with
their representations and the recent associated compression approach, then further surveys
existing studies on graph-based LF compression. The goal is to understand the current
progress of LF compression, the potentials of graph-based LF coding and clarify the benefit
of graph coarsening and partitioning over other recent graph-based approach, as well as its
existing issues.

2.1. Light Field Compression

LF compression can be generally based on two approaches: compressing the raw
lenslet image (2D image) or compressing multiple views (array of 2D images) extracted
from the raw data.

The first category aims at LF with lenslet-based representation, which is a 2D image
containing a grid of microlens images, and most of its solutions [14–17] take advantage of
existing HEVC by extending new intra prediction modes exploiting correlation between
micro-images, each of which is the captured image from each micro-lens. Other standards
have also been considered, such as JPEG-2000 in [18], to code the residuals after depth-
based sparse prediction of micro-images. More recently, authors in [19] proposed a lossless
codec architecture for raw lenslet LF images using sparse relevant regressors and contexts
(SRRC). The encoder splits the raw image into rectangular patches, each corresponding to
a micro-lens. The codec exploits inter-patch correlation based on patch-by-batch prediction
mechanism, and intra-patch correlation is exploited by designing a sparse predictor for
each pair of patch and the label of that patch, which is classified based on either the Bayer
mask colors or depth information. The results of their best method (SRRC-PHASE) have
shown to considerably reduce file size and outperform well-known predictive standards,
i.e., 18.5% less bits than JPEG 2000, 22.4% less bits than JPEG-LS on average.

Methods in the second category aim at pseudo-video-sequence-based, multiview-
based, volumetric-based, and geometry-assisted based LF representations, all of which can
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be generated from lenslet acquisition, or multiview acquisition. In the case of raw lenslet
acquisition, captured by plenoptic camera, the image is first preprocessed by de-vignetting
and demosaicing, then a dense array of views (micro-images or sub-aperture images) are
extracted. For multiview acquisition, captured by an array of cameras, multiple views with
full parallax can be used directly without preprocessing. The variety of ways the views are
stacked together inspire different LF compression approaches.

For pseudo-video-sequence (PVS)-based representations, the 2D array of viewpoints
are scanned following a specific pattern to form a 1D array of views. This array represents
the (pseudo) temporal relationship between the views, and thus any conventional 2D
video coder can be implemented to exploit inter-view correlation inside the pseudo video.
In addition to evaluating compression efficiency, recent studies on this category also try
to tackle trade-off between the viewpoint scalability, random access functionality and
compression performance. A new coding framework was proposed in [20] using HEVC
PVS-based LF encoder with two novel profiles, namely, HEVC-SLF to include scalable
functionalities and HEVC-SLF-RA to include both scalable and viewpoint random access
features. HEVC-SLF attempts to increase the number of scalability layers and the flexibility
in their selection, while HEVC-SLF-RA proposes two reference picture selection (RPS)
variants to increase random access at the cost of reducing coding efficiency. With various
flexible encoding profiles, their results have shown to achieve 44% bitrate savings when
compared with the original PVS-based HEVC, 37% and 47% when compared with MuLE
(applied in JPEG Pleno 4DTM) and WaSP (applied in JPEG Pleno 4DPM), respectively.

Similar to PVS, volumetric-based representation also scans viewpoints and forms a 1D
array of views, but considers the stack as a 3D volume instead, without temporal dimension.
While PVS uses standard coders to partition each view (pseudo video frame) into 2D blocks
for encoding process, volumetric-based coding partitions whole 3D volume of LF content
into 3D blocks, then advanced volumetric data compression standards such as JP3D (JPEG
2000 part 10 [21]) can be used to exploit intra-view (within view) and inter-view (between
views) redundancy.

Multiview-based LF representation stacks 2D array of viewpoints into 1D array of
multiple PVSs as a conventional 3D multiview format, and thus can be coded with common
3D video coders such as MVC and MVC-HEVC. If PVS-based LF coding can exploit only
spatial (intra-view) and (pseudo) temporal correlations, multiview-based coding exploits
all dimensions including inter-view correlation. MVC-based multiview coding has been
widely introduced in LF coding [22–26], whereas the MVC-HEVC based approach is more
recent [27].

The most recent geometry-assisted based LF representation does not rely heavily on
stacking viewpoints or try to consider the whole LF content as a 2D/3D video, hence,
it depends less on traditional coders, and has high potential for improvement. Instead,
research into this category focuses on key view selection and geometry estimation problems
(i.e., depth estimation for LF [28–32]), as depicted in Figure 1.

Geometry-assisted based LF representation is accompanied with view synthesis based
LF compression, which has been adopted in the 4DPM (4D prediction) mode of JPEG
Pleno, a new standard project within the ISO/IEC JTC 1/SC 29/WG 1 JPEG Committee,
specialized in novel image modalities such as textured-plus-depth, light field, point cloud
or holograms. JPEG Pleno implements two strategies to exploit LF redundancy, 4DTM
and 4DPM. The 4DTM mode utilizes a 4D transform approach, and targets real LF with
high angular view density obtained by plenoptic cameras. Raw LF in lenslet format is first
converted into multiview representation, and 4DTM partitions LF into variable-size 4D
blocks (two spatial and two angular dimensions), then each block is transformed using 4D
DCT. On the other hand, the 4DPM mode divides multiple views of LF into a set of reference
views and intermediate views. Texture and geometric depth of reference views are encoded
using JPEG 2000, then at the decoder side, a hierarchical depth-based prediction technique
is used to obtain depth maps of discarded views, and their textures are warped from the
references based on obtained depths. Hence, the 4DPM mode can encode LF very efficiently
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under reliable depth information. However, at the time of writing of this paper, the 4DPM
mode is not yet available in the open source code of JPEG Pleno Reference Software [33],
and thus, the 4DTM mode is used for comparison in this paper instead.

Figure 1. Geometry-assisted representation for LF. (Left side) Key views selection, in which the
discarded views are faded. The remaining selected views are used to estimate geometry information
(Right side), including depth/disparity estimation, and obtaining an efficient graph model.

Deep Learning has also been introduced into view synthesis-based LF reconstruction.
From a sparse set of decoded images, a residual network model was proposed in [34] to
reconstruct densely sampled LF images. Instead of training a model with sparse sampled
viewpoints of the same scene, the raw lenslet image is directly used, and thus, the image
reconstruction task is transformed into image-to-image translation. Training with raw
lenslet images, the network can understand and model the relationship between viewpoint
images well, enabling more texture details to be restored and ensuring better reconstruction
quality. The features of small-baseline LF was extracted to define the target images to be
reconstructed using the nearest-view method. Their proposal improved the average PSNR
over the second-best method (Zhang et al. [35]) by 0.64 dB. Authors in [36] proposed a
Lightweight Deformable Deep Learning Framework to resolve the problem of disparity
in LF reconstruction, by feature extraction and angular alignment using the deformable
convolution network approach, without using a loss function. Additionally, a novel
activation function was introduced to reduce time complexity for LF super-resolution
images. Their reconstruction quality results have been shown to outperform state-of-the-art
LF image reconstruction methods, while reducing 37% training time and 40% execution
time using super-resolution activation function.

2.2. Graph-Based Light Field Coding

Graph-based light field coding falls into the second category of LF compression which
compresses a dense array of 2D images (micro-images or sub-aperture images) extracted
from the raw lenslet LF, aiming at geometry-assisted based LF representation. Graph
vertices are used to describe colors with pixel intensities as graph signals, while graph
connections reflect geometry dependencies intra-view or inter-view. The graph signals are
transformed into the frequency domain to exploit energy compaction using Graph Fourier
Transform (GFT), then quantized and encoded to send to the decoder, while the graph
support (Laplacian matrix) can be encoded using a separate lossless coder.

In [8], a graph-based solution is proposed with graph support defined on the super-ray
segmentation, first introduced in [13] to group light rays of similar color being close in 3D
space, as an extension to the concept of super-pixels obtained by SLIC segmentation in 2D
image [37]. A super-pixel groups perceptually similar pixels within a view, and a super-ray
groups corresponding super-pixels across views, and total super-rays form up the LF image.
Their proposal first selects top-left view as the key view, obtains super-pixel segmentation
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labels using SLIC algorithm [28], computes its disparity map using method in [29], then
projects super-pixel labels to other views based on disparity shift, and construct local
graphs of super-rays across all views. Spatial edges connect pixels within a super-pixel, and
angular edges form connections between corresponding pixels of the same super-pixel at
every four views. An example of the process is illustrated in Figures 2–4. Their results have
shown that it outperforms HEVC Lozenge [11] at high bitrates for all real LF datasets, but
performs worse at low bitrates. This can be explained by the fact that using a limited size
for graph support might overcome with computational complexity of high-dimensional
non-separable graph, yet it may not enable GFT to exploit long-term spatial or angular
redundancy of signal.

Figure 2. An example of super-pixel segmentation for real-world LF on dataset Fountain_Vincent_2,
with number of super-pixels set at 2000.

Figure 3. A super-ray graph consisting of spatial graphs connecting pixels within a super-pixel
and angular graphs connecting corresponding pixels across views. I1,1, I1,2, I2,1, I2,2 are four adja-
cent views.
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Figure 4. Top-left view projection scheme based on median disparity per super-pixel. d denotes the
median disparity in a specific super-pixel. ∗ denotes the multiplication between the median disparity
and any position of the view.

In [9], the authors improve on their previous work in [8] by addressing the issue of
limited local graph size, and propose sampling and prediction schemes for local graph
transform to exploit correlation beyond limits of local graph, without extending graph
size. Their proposal first samples the LF data based on graph sampling theory to form a
new image of reference samples, then encodes it with conventional 2D image coder with
powerful intra-prediction ability. The encoder sends the coded reference image along with
only high frequency coefficients of graph transforms. At the decoder side, a prediction
mechanism in the pixel domain is introduced to predict the low frequency coefficients
using the obtained reference image and high frequency coefficients. Their schemes are
designed for quasi-lossless (high quality) coding and have shown substantial RD gain
compared to HEVC-Inter Raster scan at lossless mode. However, their performance can
drop drastically with lower bitrate, as the prediction scheme is highly dependent on high
frequency coefficients, in which a tiny change (i.e., small rounding) may lead to significant
reduction in reconstruction quality.

Their most recent study [10] also concerns the high complexity of non-separable graph
in [8] using graph coarsening and partitioning, guided by a rate-distortion model for graph
optimization. Graph coarsening is performed to reduce the number of vertices inside
a super-ray graph, below a threshold leading to acceptable complexity, while retaining
basic properties of the graph. If signal approximation of a reduced graph gives too coarse
a reconstruction of the original signals, or contains two regions with different statistics
properties despite having acceptable number of vertices, the local graph is partitioned into
two sub-graphs instead. Their experiment results have shown to surpass other state-of-the-
art coders like HEVC Lozenge [11] and JPEG Pleno [12] for ideal real LF, but outperformed
by most coders at high bitrates (quasi-lossless) for real LF suffered from vignetting effect,
and synthetic LF, even though their proposal’s performance still exceeds others at low
bitrate.

Importantly, both [9,10] implement the same super-ray projection mechanism as
in [8]. They select the top-left view as the reference view, compute its disparity map and
segmentation map, then project the super-pixels labels to all other views based on the
median disparity per super-pixel, as illustrated in Figure 4. The projection scheme proceeds
row by row, with horizontal projection from left to right in each row, and one vertical
projection from above for the first view of every row. However, the top-left view might not
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be the optimal selection for reference view on real LF due to vignetting, and choosing one
median disparity per super-ray might incur high disparity error on synthetic LF, if every
pixel in a super-pixel has high disparity, especially when the super-pixel is large. This
research’s purpose is to clarify how the above issues have a negative impact on disparity
information, then to propose two novel projection schemes to mitigate the issues, and
obtain enhanced projection quality of super-pixels. The main focus is to improve the most
recent graph-based solution [10] with already better performance among the other two
approaches [8,9], so that it can perform well on the full range of coding bitrates for all types
of LF, using the two proposed projection schemes.

3. Impact of Disparity Information on Projection Quality

In this section, an overview of the evaluated LF datasets is given, and the issues related
to affecting reconstructed view quality in [10] for each type of LF are shown as follows:

• How vignetted real LF affects its disparity estimation;
• How synthetic LF with large disparity leads to higher median disparity error;
• How do both issues affect the quality of super-ray projection? To support the verifica-

tion, SSIM metric [38] was used to compute the projection quality for each view with
top-left view projection.

3.1. Datasets

In this paper, both real-world LF and synthetic LF were examined to verify the exis-
tence of vignetting effect and high disparity for each type of LF, respectively. Additionally,
they were also used for the evaluation of compression efficiency for each LF coding method.
The datasets were carefully selected following the LF Common Test Conditions Docu-
ment [39] in order to provide a wide range of scenarios that would challenge compression
algorithms, in terms of acquisition technology (Lenslet Lytro Illum camera, Synthetic
creation), scene geometry, spatial resolution, number of viewpoints, bit depth and texture.

Real-world LF acquired with plenoptic cameras were downloaded from the EPFL
dataset [40], which contains natural scenes with wide baseline. The contents were captured
with a Lytro Illum camera and pre-processed with Light Field Matlab Toolbox to obtain
15 × 15 viewpoint images, each with a resolution of 625 × 434 pixels at 10-bit depth.
However, only central 13 × 13 views were considered in this paper, then color and gamma
corrections were applied on each view point image to reduce the strong vignetting effect.
Danger_de_Mort and Fountain_Vincent_2 were selected as vignetted real LF scenes with
large parallax 13 × 13 views in this dataset. The scenes were categorized into 10 groups,
including ‘buildings’, ‘grids’, ‘mirrors and transparency’, ‘landscapes’, ‘nature’, ‘ISO and
Color Charts’, ‘People’, ’Studio’, ‘Urban’, ‘Lights’. Danger_de_Mort belongs to the ‘grids’
group, which contains shots of different highly detailed grid patterns close to camera with
a wide depth of field. Whereas, Fountain_Vincent_2 is classified into the group ’people’,
capturing portrait shots of one to seven people at different depth positions.

Synthetic LF considered in this paper are Greek and Sideboard from HCI 4D Light Field
Benchmark dataset [41], containing 4 stratified and 20 photorealistic scenes of 9 × 9 views,
512 × 512 pixels per view at 8-bit depth. The scenes were generated using Blender software
with LF plugin. Per-pixel ground truth disparity map is also available for each scene, which
is beneficial for super-ray projection based on disparity, whereas the projection in real
world LF requires an extra step of depth estimation. In the considered scenes, Greek has
higher disparity range due to objects being close to camera, whereas Sideboard has smaller
disparity because most objects are further away from the viewpoints, but it contains more
objects with various shapes, and thus the complex geometry can be more challenging.

3.2. Vignetting Effect Degrades Disparity Estimation

Vignetting has been extensively surveyed regarding its impact on traditional 2D stereo
correspondence problems [42] among other radiometric differences such as image noises,
different camera settings, etc. Stereo correspondence, or stereo matching, is an active topic
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in computer vision with the goal to estimate depth information for 2D images from an
image pair. However, the optical flow-based approach has shown to outperform stereo-
based algorithms [30,31] in the task of depth estimation for LF in recent literature [28,29].
This section provides a demonstration on how vignetting impacts optical flow-based LF
depth estimation in a subjective manner.

Due to the inability to efficiently capture light rays in peripheral lens, plenoptic
cameras usually produce vignetted border views in a multiview-based representation
of LF content captured at wide angle, which is essential to provide high parallax. First,
considering the case of real LF with medium parallax (9 × 9 views), this experiment
examines the difference between the top-left and center views of dataset Friends [40]
qualitatively. As depicted in Figure 5, the two images are almost identical, with a tiny shift
in the position of objects, but no visual distortion in terms of colors or blurring occurs. The
depth map of top-left view is then computed using an optical flow-based method in [29]
and compared with their original result, also with two other state-of-the-art stereo-based
disparity estimators [30,31]. From Figure 6, it is apparent that the obtained disparity map
adheres closely to the basic depth properties which all methods have in common.

(a) (b)
Figure 5. Samples of views in dataset Friends. (a) Top-left view. (b) Center view.

(a) (b) (c)

Figure 6. Disparity maps obtained using optical-flow-based and stereo-based depth estimators in the
dataset Friends. (a) Estimated disparity map of top-left view using [29]. (b) Estimated disparity map
of center view using [30]. (c) Estimated disparity map of center view using [31].

However, in the case of real LF with high parallax (13 × 13 views), the obtained depth
map might lose these properties due to the vignetting effect, even after being de-vignetted
using color correction methods. A comparison between the top-left view and center view of
dataset Fountain_Vincent_2 [40] with 13 × 13 views is shown in Figure 7a,c. The original
top-left view can be seen with significant degradation in intensity and color. Gamma
correction can be used for color calibration, and thus help reduce vignetting considerably,
as seen in Figure 7b. However, a close look at the calibrated top-left view reveals that object
details are blurry with minor distortion in the colors, yet its estimated disparity map is
severely affected. It is much worse compared to the output in center view using the same
optical flow-based [29] or stereo-based [30,31] depth estimation, illustrated in Figure 8. For
example, the fountain, which is closest to the camera, now shares the same depth as some
of objects in the background (i.e., tree), whereas a segment of the wall now becomes the
closest, according to its depth. The instances which have shown even a minor vignetting
effect can result in significant deterioration of the estimated depth map in peripheral views.
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(a) (b) (c)
Figure 7. Sample of views in dataset Fountain_Vincent_2. (a) Top-left view (original). (b) Top-left
view (de-vignetted using gamma correction). (c) Center view.

(a) (b) (c) (d)

Figure 8. Disparity maps obtained using optical-flow-based and stereo-based depth estimators
in dataset Fountain_Vincent_2. (a) Estimated disparity map of top-left view (gamma corrected)
using [29]. (b) Estimated disparity map of center view using [29]. (c) Estimated disparity map of
center view using [30]. (d) Estimated disparity map of center view using [31].

3.3. Synthetic LF with Large Disparity Leads to High Median Disparity Error for a Super-Pixel

While real LF captured using plenoptic camera has a baseline limited by the aperture
size of the camera lens, synthetic LF can be generated using graphics software without
baseline restraint, enabling wide parallax for the viewer. Therefore, synthetic LF may
present a much larger disparity between views than real LF, leading to higher median
disparity error per super-ray. This can considerably affect the projection of super-pixel
locations from reference view to remaining views. In Table 1, the previews of two real
LF and two synthetic LF are displayed, along with their optical flow between a pair of
views, and the disparity range. The intensity of color in the optical flow is proportional
to the disparity. Additionally, the disparity range displays the maximum and minimum
of disparity value in the whole LF. It can be seen that synthetic LF has distinctively more
intense optical flow and a wider range of disparity.

Table 1. Comparison of disparity range between real LF and synthetic LF.

Datasets Center View Optical Flow Disparity Range

Fountain_Vincent_2 [40] (real LF) −0.495→ 0.798

Danger_de_Mort [40] (real LF) −1.306→ 0.683

Greek [41] (synthetic LF) −2.880→ 3.637

Sideboard [41] (synthetic LF) −1.513→ 1.845
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In order to verify this issue, a mathematical explanation is given. This scenario consid-
ers the projection scheme based on disparity shift, which was used by the authors in [8–10].
As illustrated in Figure 4, the disparity shift scheme increases disparity proportionally to
the distance between the target and reference view. Our goal is to verify that the further
the target view, the higher the median disparity error, leading to a worse projection of
super-pixel labels. Let us consider an arbitrary super-pixel in the reference view (top-left),
depicted in Figure 9.

Figure 9. An example of super-pixel segmentation for synthetic LF on dataset Greek, with the number
of super-pixels set at 1200. The selection of an arbitrary super-pixel is highlighted in red.

Let us denote all disparity values of every pixel in this super-pixel as D = d1, d2, . . . , dn
where n is the total number of pixels, and dm is the median disparity value of this set. Since
a super-pixel follows well any object’s boundary, it is safe to assume that no super-pixel
contains pixels of two separate objects at two distinct depth planes, and thus the disparity
variation is smooth, or a normal distribution of disparity values in a super-pixel is obtained
most often. Therefore, without loss of generality for all super-pixels, this verification
considers the median disparity is equal to the mean value, as in Equation (1),

dm =
∑n

i=1 di

n
(1)

The median disparity error is calculated as follows,

mse =
1
n

n

∑
i=1

(di − dm)
2 =

1
n

n

∑
i=1
42

Denote mse1, 41 as the median disparity error and the disparity error, respectively
calculated at view 1 (reference view), and msek,4k at view k. Since disparity of a pixel at
view k is k times higher than at view 1, the following equations are derived,

mse1 =
1
n

n

∑
i=1
42

1

msek =
1
n

n

∑
i=1
42

k
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41 = di − dm = di −
∑n

i=1 di

n

4k = k ∗ di − d′m = k ∗ di −
∑n

i=1 k ∗ di

n
= k ∗ (di −

∑n
i=1 di

n
) = k ∗ 41

⇒ msek =
1
n

n

∑
i=1

k2 ∗ 42
1 = k2 ∗ 1

n

n

∑
i=1
42

1 = k2 ∗mse1 (2)

Hence, if using the original projection scheme proposed by the authors [8–10], the
median disparity error of a specific super-pixel at target view k is k2 higher than the
reference view. As the consequences, the further the target view, the more inaccurately
that super-pixel is relocated. Furthermore, the issue becomes worse when the disparity is
already large, as in synthetic LF.

3.4. Inaccurate Disparity Information Leads to Poor Super-Ray Projection

To evaluate how the super-ray projection schemes used in [8–10] are affected by dispar-
ity error in a quantitative manner, the SSIM [38] metric was used to measure the similarity
of the segmentation labels in a target view, between ground truth labels (segmented using
SLIC algorithm [28]) and projected labels from reference view, with the projection scheme
depicted in Figure 4. Specifically, the evaluation formula is given in Equation (3),

quality = SSIM(Li,j, L′i,j) (3)

where i, or j is the location of the target view in 2D array of views; Li,j is denoted as “ground
truth” image where every pixel intensity is the label value of the super-pixel it belongs to,
assigned by SLIC; L′i,j is also an image of labels, but assigned by super-ray projection from
reference view. The SSIM value range is between 0 and 1, with 1 indicating best quality, or
the two images being identical, and lower scores indicate worse quality.

3.4.1. For Real-World LF with High Parallax (Vignetting)

First, the real world LF dataset Fountain_Vincent_2 [40] 13× 13 views was considered.
This dataset suffers from vignetting, which then leads to an inaccurate disparity map.
The ground truth labels of each view were obtained using the Python SLIC segmentation
library, with parameter values as compactness = 30 and n_segments = 2000. The projection
quality of 13 × 13 views was computed, as shown in Table 2. Results have shown that the
view with highest quality is apparently the reference view (top-left), since no projection
was made, and the quality gradually deteriorates when the projection is made to further
target views. The disparity error accumulated for lower views was selected as reference for
horizontal projection in the first column, and the views in the bottom-right corner obtained
the worst quality, which means the reconstructed super-pixels of those views might have
been located at highly inaccurate positions, hence the distortion. Similarly, the projection
quality of dataset Danger_de_Mort [40] is given in Table 3.

3.4.2. For Synthetic LF with High Median Disparity Error per Super-Ray

The projection quality was examined in the synthetic dataset Greek [41] 9 × 9 views
using SLIC with the same parameters as for real LF datasets. The results in Table 4 reveal
that the quality of each view deteriorated much faster in both directions, due to the large
disparity between the views. Despite having fewer views than vignetted real LF, dataset
Greek ended up having worse projection quality at bottom-right views. Similarly, Table 5
illustrates projection quality in synthetic dataset Sideboard [41].
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Table 2. Projection quality of 13 × 13 views in dataset Fountain_Vincent_2 using top-left view
projection scheme. Each number is the computed SSIM result corresponding to a view. Reference
view with absolute quality is highlighted in pure green. The color transition from green to red
corresponds to the degradation of projection quality.

0.85 0.9 0.95 1

1.000 0.971 0.963 0.958 0.953 0.952 0.950 0.950 0.950 0.945 0.945 0.942 0.941

0.956 0.961 0.955 0.951 0.947 0.947 0.945 0.946 0.945 0.942 0.941 0.939 0.936

0.943 0.941 0.939 0.939 0.935 0.934 0.932 0.932 0.931 0.932 0.930 0.928 0.926

0.935 0.933 0.930 0.930 0.929 0.927 0.927 0.923 0.923 0.925 0.923 0.922 0.921

0.921 0.920 0.922 0.923 0.921 0.920 0.918 0.917 0.915 0.916 0.915 0.913 0.915

0.914 0.913 0.915 0.915 0.915 0.914 0.910 0.909 0.909 0.909 0.908 0.909 0.909

0.907 0.907 0.905 0.906 0.906 0.905 0.903 0.903 0.904 0.903 0.903 0.903 0.902

0.902 0.902 0.900 0.900 0.900 0.899 0.899 0.899 0.899 0.899 0.897 0.897 0.896

0.895 0.897 0.895 0.896 0.896 0.896 0.896 0.895 0.895 0.894 0.893 0.892 0.891

0.892 0.893 0.892 0.890 0.891 0.891 0.892 0.892 0.890 0.890 0.889 0.888 0.889

0.886 0.888 0.887 0.884 0.885 0.885 0.886 0.886 0.886 0.886 0.884 0.882 0.883

0.877 0.883 0.885 0.882 0.883 0.882 0.882 0.881 0.882 0.881 0.880 0.880 0.880

0.873 0.875 0.876 0.880 0.880 0.878 0.879 0.878 0.877 0.876 0.877 0.877 0.876

Table 3. Projection quality of 13× 13 views in dataset Danger_de_Mort using top-left view projection
scheme. Each number is the computed SSIM result corresponding to a view. Reference view with
absolute quality is highlighted in pure green. The color transition from green to red corresponds to
the degradation of projection quality.

0.85 0.9 0.95 1

1.000 0.969 0.961 0.959 0.951 0.951 0.948 0.952 0.949 0.943 0.943 0.941 0.939

0.955 0.959 0.953 0.949 0.946 0.945 0.944 0.945 0.943 0.941 0.939 0.937 0.934

0.941 0.940 0.938 0.938 0.933 0.933 0.930 0.931 0.929 0.930 0.929 0.926 0.925

0.933 0.932 0.928 0.929 0.929 0.926 0.925 0.921 0.922 0.923 0.921 0.921 0.920

0.920 0.918 0.920 0.921 0.919 0.919 0.917 0.915 0.913 0.915 0.913 0.912 0.913

0.913 0.914 0.914 0.914 0.913 0.912 0.911 0.908 0.907 0.908 0.909 0.908 0.907

0.906 0.905 0.904 0.904 0.905 0.903 0.901 0.902 0.903 0.901 0.901 0.901 0.900

0.900 0.901 0.898 0.901 0.899 0.897 0.898 0.897 0.897 0.897 0.897 0.894 0.893

0.893 0.896 0.894 0.895 0.895 0.894 0.894 0.894 0.893 0.891 0.892 0.889 0.888

0.891 0.891 0.892 0.889 0.890 0.890 0.890 0.891 0.888 0.889 0.888 0.886 0.886

0.888 0.887 0.886 0.882 0.884 0.883 0.885 0.883 0.884 0.883 0.883 0.879 0.882

0.876 0.881 0.884 0.880 0.882 0.880 0.881 0.880 0.879 0.878 0.879 0.878 0.877

0.872 0.874 0.875 0.878 0.879 0.877 0.877 0.877 0.874 0.873 0.876 0.874 0.873
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Table 4. Projection quality of 9× 9 views in dataset Greek using a single-view projection scheme. Each
number is the computed SSIM result corresponding to a view. Reference view with absolute quality
is highlighted in pure green. The color transition from green to red corresponds to the degradation of
projection quality.

0.85 0.9 0.95 1

1.000 0.958 0.941 0.931 0.927 0.924 0.921 0.922 0.918

0.941 0.932 0.925 0.919 0.916 0.913 0.911 0.910 0.906

0.915 0.912 0.908 0.906 0.904 0.901 0.900 0.898 0.896

0.898 0.897 0.898 0.896 0.895 0.893 0.891 0.889 0.887

0.889 0.889 0.887 0.886 0.886 0.885 0.883 0.882 0.883

0.887 0.886 0.884 0.884 0.882 0.882 0.882 0.882 0.883

0.889 0.888 0.886 0.886 0.884 0.884 0.883 0.884 0.884

0.884 0.880 0.880 0.878 0.878 0.878 0.879 0.879 0.875

0.877 0.875 0.872 0.872 0.871 0.871 0.872 0.870 0.870

Table 5. Projection quality of 9 × 9 views in dataset Sideboard using single-view projection scheme.
Each number is the computed SSIM result corresponding to a view. Reference view with absolute
quality is highlighted in pure green. The color transition from green to red corresponds to the
degradation of projection quality.

0.85 0.9 0.95 1

1.000 0.952 0.927 0.914 0.911 0.906 0.901 0.901 0.895

0.949 0.934 0.921 0.911 0.906 0.902 0.899 0.897 0.892

0.919 0.914 0.907 0.898 0.892 0.891 0.886 0.884 0.885

0.904 0.897 0.891 0.888 0.882 0.884 0.881 0.877 0.877

0.882 0.885 0.881 0.878 0.876 0.877 0.874 0.874 0.868

0.877 0.875 0.873 0.872 0.870 0.870 0.869 0.866 0.863

0.867 0.869 0.869 0.868 0.867 0.867 0.865 0.862 0.863

0.863 0.862 0.863 0.864 0.863 0.865 0.864 0.861 0.859

0.860 0.860 0.860 0.859 0.861 0.862 0.860 0.858 0.857



Sensors 2022, 22, 4948 15 of 28

4. Proposals

In this paper, two novel projection schemes are proposed for real LF and synthetic LF
as follows:

• For real LF with many viewpoints suffering from vignetting effect, the proposed
approach is that super-ray projection be carried out on the center view as the reference,
then spread out to surrounding views, instead of the top-left one with inaccurate
disparity;

• For synthetic LF with large disparity, a projection scheme using multiple views in a
sparse distribution as references is proposed, aiming to reduce the distance between
target and reference views. In addition, using multiple reference views can create mul-
tiple sub global graphs which are processed simultaneously. This allows to mitigate
computational time for both encoder and decoder.

4.1. Center-View Projection Scheme

The proposed center-view projection scheme is illustrated in Figure 10. The purpose
of this proposal is to improve rate distortion performance of [10] in real-world LF data with
large parallax, which suffers from vignetting in peripheral views. From a center view, the
projection spreads out to neighboring views, instead of proceeding row by row in one direc-
tion, as in [8–10]. Specifically, for a NxN views real LF, this scheme performs a horizontal
projection from the center view I N+1

2 , N+1
2

to remaining N
2 views symmetrically on the center

row R N+1
2

. Vertical projection is also performed in the center column symmetrically in both
directions, with I N+1

2 , N+1
2

as reference. Then, for each remaining N − 1 rows, its center view
is now used as reference for the horizontal projection, covering all views of the remaining
N − 1 columns. This projection scheme not only avoids inaccurate disparity estimation in
top-left view due to vignetting, but also allows projection to closer views (half the distance
compared to top-left view projection), hence, the quality of more views can be improved.

Figure 10. Center-view projection scheme.

4.2. Multiple Views Projection Scheme

The purpose of this proposal is to improve rate distortion performance and reduce
computation time when applying the approach in [10] into synthetic LF data with large
disparity between views. Equation (2) has shown that the median disparity error of any
super-pixel in a target view is k2 higher than of corresponding super-pixel in reference
view, in which the target view is the kth view away from the reference. This negatively
affects the projection quality. In addition, using a single view as a reference will result in a
single global graph of very high dimension, which leads to high encoding and decoding
time. Hence, to approach these two problems at the same time, a novel idea is to increase
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the number of reference views in a row or column. Thereby, the distance from reference
views to the to-be-projected views will be decreased. At the same time, multiple smaller
global graphs can be created, which enable leveraging the power of parallel computing to
improve the execution time.

The question is how many references should be sufficient. Too many references would
lead to an inability to efficiently exploit angular correlation across views of the whole LF,
whereas few references would cause each reference view to project to further views, and
thus increase projection error. Another interpretation of this question is how many views
should each reference view project to, in a row or a column.

The question can be answered by finding a target view with worst projection quality,
while being close to the reference view as much as possible, then using its ground truth
segmented labels as a new reference view for a new projection chain. This can be interpreted
as a Lagrangian minimization problem,

min(k[x] + λ ∗ SSIM[x]) (4)

or
min(SSIM[x] + λ ∗ k[x]), (5)

where k can be considered as an array of distances between target and reference view in
a single direction (with number of views as unit) k = k1, k2, . . . , kn−1; SSIM is an array of
projection quality computed using Equation (3) in the same direction (multiplied with 100
to be on the same scale as k) SSIM = q1, q2, . . . , qn−1; and n is the number of views for that
row or column. k and SSIM arrays exclude the reference view. Equation (4) or Equation (5)
can be re-expressed as,

minx k[x] w.r.t SSIM[x] = SSIMtarget = const (6)

or
minx SSIM[x] w.r.t k[x] = ktarget = const (7)

The optimal Lagrange multiplier λ∗ is not known in advance, and can be varied with
the desired distance of views (ktarget) or quality (SSIMtarget).

The optimal solutions to Equation (6) or Equation (7) are the optimal points (k[x∗],
SSIM[x∗]) lying on the lower half convex hull of the scatter plot of SSIM and k. For the
sake of simplicity, the median point on the convex hull (k[x∗∗], SSIM[x∗∗]) is chosen as the
new reference view to avoid being too close or too far from the reference view.

An example is shown in Figure 11, using data in Table 4 of dataset Greek 9 × 9 views,
the SSIM values are plotted against k values for horizontal projection (first row) and vertical
projection (first column). For each type of projection, this method finds its corresponding
convex hull, then determines the median point as the next reference. Figure 11a reveals
k[x∗∗] = 4 for both directions, or the new reference for horizontal projection is the fourth
view away from the original top-left reference view, while vertical projection also selects the
fourth view. The new projection scheme can be seen in Figure 11b with four reference views,
instead of one. It should be noted that views I1,9 and I5,9 are not selected as references
because no more views to be projected after them, despite being the fourth view away from
the previous references.

We denote a local graph to be the graph with spatial and angular connections within a
super-ray, and a global graph to be the set of all local graphs. The original high dimensional
global graph is now partitioned into four sub-global graphs with better projection quality
and less complexity, while still exploiting angular correlations of at least four views in
every direction.

Additionally, depending on the technical implementation, all four sub-global graphs
can be processed simultaneously by taking advantage of parallel programming. The main
complexity of graph-based LF coding lies in its Laplacian diagonalization of each local
graph, which is O(n3), with n as the number of nodes. By partitioning into four sub global
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graphs, n is reduced by a fourth approximately for each global graph, if not accounting
for graph coarsening, and thus computation time can decrease significantly. With graph
coarsening enabled to reduce vertices by approximating original graph, as detailed in [10],
the number of nodes in the original scheme might be smaller than the total number of nodes
in all sub global graphs, because the original graph with higher dimensions may have more
coarsened local graphs than each of sub global graphs with lower dimensions in the multi-
references scheme. However, the number of nodes in each sub global graph is significantly
smaller than the original, and each sub-global graph is processed independently, hence
computation time for both encoder and decoder can still be reduced considerably.

(a) (b)

Figure 11. Multi-view projection scheme in dataset Greek. (a) Scatter plot of target views based on its
distance to reference view and its projection quality. Potential candidates selected as the next reference
view lie on the convex hull. (b) Multi-view projection scheme using every 4th view horizontally and
vertically as reference views.

The selection of references for dataset Sideboard 9 × 9 views is shown in Figure 12a,b,
in which horizontal projection selects every 3rd view as the new reference, and vertical
projection selects the 4th view. The original graph is partitioned into six sub-graphs,
exploiting angular correlations of at least three views in every direction, and having better
projected segmentation maps for all the views, compared to the original projection scheme.

(a) (b)

Figure 12. Multi-view projection scheme in dataset Sideboard. (a) Scatter plot of target views based
on its distance to reference view and its projection quality. Potential candidates selected as the
next reference view lie on the convex hull. (b) Multi-view projection scheme using every 3rd view
horizontally and every 4th view vertically as reference views.
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5. Performance Evaluation

In this section, evaluation of super-ray projection quality for each view is analyzed
quantitatively to show that it can be improved by the two proposed center view, and
multiple views projection schemes. Then, a set of experiments are designed to evalu-
ate the impact of enhanced projection quality on overall compression efficiency. Finally,
experimental results are presented and analyzed.

5.1. Projection Quality Evaluation
5.1.1. Center View Projection Scheme

Using Equation (3), this experiment computed the projection quality of a vignetted LF,
but with center view as the reference. Tables 6 and 7 show SSIM quality results on all the
13 × 13 views of Fountain_Vincent_2 and Danger_de_Mort, with absolute SSIM on center
view. Thanks to the accurate disparity map, it can be seen that the quality deterioration from
the center view to further views horizontally and vertically were slower than in the case of
projecting from top-left view, described in Tables 2 and 3. Additionally, the quality of more
views was improved because center view projected to more closer views (smaller disparity)
to four directions, whereas corner view projected to further views (higher disparity) to
two directions.

5.1.2. Multiple Views Projection Scheme

Tables 8 and 9 show the projection quality of synthetic LF Greek and Sideboard using
multiple views projection scheme. Absolute SSIM was found in all reference views. Al-
though the deteriorating rate of quality remained fast due to large disparity, the quality of
remaining views was highly improved, compared to Tables 4 and 5. This can be explained
by the fact that views with the worst projection quality used ground truth segmentation
labels instead, then they became new reference views with accurate segmentation for new
projection chains.

Table 6. Projection quality of 13 × 13 views in dataset Fountain_Vincent_2 using center view pro-
jection scheme. The reference view with absolute quality is highlighted in pure green. The color
transition from green to red corresponds to the degradation of projection quality.

0.85 0.9 0.95 1

0.917 0.918 0.919 0.919 0.918 0.918 0.921 0.919 0.919 0.918 0.917 0.919 0.917

0.922 0.925 0.925 0.927 0.926 0.926 0.929 0.926 0.926 0.924 0.924 0.924 0.923

0.927 0.928 0.929 0.929 0.929 0.931 0.930 0.928 0.927 0.926 0.925 0.926 0.927

0.938 0.940 0.940 0.941 0.943 0.944 0.946 0.943 0.941 0.938 0.938 0.939 0.938

0.939 0.940 0.940 0.944 0.945 0.947 0.949 0.944 0.942 0.941 0.940 0.941 0.941

0.955 0.954 0.955 0.959 0.962 0.968 0.979 0.965 0.960 0.959 0.957 0.955 0.954

0.959 0.959 0.961 0.965 0.969 0.977 1.000 0.974 0.970 0.968 0.966 0.962 0.958

0.955 0.957 0.957 0.958 0.962 0.965 0.974 0.968 0.964 0.961 0.962 0.960 0.956

0.943 0.944 0.945 0.946 0.946 0.948 0.953 0.949 0.947 0.947 0.944 0.943 0.940

0.940 0.941 0.941 0.941 0.943 0.944 0.946 0.945 0.946 0.944 0.942 0.941 0.939

0.928 0.929 0.931 0.931 0.930 0.930 0.931 0.930 0.931 0.930 0.928 0.924 0.924

0.922 0.925 0.927 0.928 0.928 0.927 0.927 0.926 0.925 0.924 0.920 0.921 0.918

0.911 0.913 0.914 0.917 0.917 0.918 0.916 0.915 0.914 0.913 0.912 0.911 0.908
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Table 7. Projection quality of 13× 13 views in dataset Danger_de_Mort using a center view projection
scheme. The reference view with absolute quality is highlighted in pure green. The color transition
from green to red corresponds to the degradation of projection quality.

0.85 0.9 0.95 1

0.917 0.916 0.917 0.920 0.917 0.916 0.919 0.920 0.918 0.917 0.916 0.918 0.916

0.920 0.924 0.924 0.925 0.924 0.925 0.928 0.924 0.924 0.923 0.922 0.922 0.921

0.925 0.926 0.927 0.927 0.927 0.929 0.929 0.927 0.926 0.925 0.924 0.925 0.926

0.936 0.939 0.939 0.939 0.943 0.942 0.944 0.941 0.939 0.937 0.937 0.938 0.936

0.938 0.939 0.939 0.943 0.943 0.945 0.947 0.943 0.940 0.939 0.939 0.939 0.939

0.954 0.955 0.953 0.958 0.960 0.967 0.981 0.963 0.958 0.957 0.959 0.953 0.952

0.957 0.957 0.960 0.963 0.968 0.976 1.000 0.973 0.968 0.966 0.965 0.961 0.956

0.954 0.956 0.956 0.960 0.960 0.963 0.972 0.966 0.962 0.959 0.960 0.959 0.954

0.942 0.942 0.943 0.944 0.945 0.946 0.951 0.948 0.945 0.945 0.943 0.942 0.939

0.938 0.939 0.941 0.939 0.942 0.942 0.945 0.943 0.944 0.943 0.941 0.940 0.937

0.929 0.927 0.930 0.930 0.928 0.929 0.929 0.929 0.930 0.928 0.927 0.922 0.923

0.921 0.923 0.926 0.926 0.926 0.926 0.926 0.924 0.924 0.923 0.919 0.920 0.917

0.909 0.912 0.912 0.916 0.915 0.917 0.914 0.913 0.913 0.912 0.910 0.910 0.906

Table 8. Projection quality of 9 × 9 views in dataset Greek using a multi-view projection scheme. The
reference view with absolute quality is highlighted in pure green. The color transition from green to
red corresponds to the degradation of projection quality.

0.85 0.9 0.95 1

1.000 0.958 0.941 0.931 1.000 0.961 0.945 0.935 0.926

0.941 0.932 0.925 0.919 0.940 0.931 0.926 0.920 0.913

0.915 0.912 0.908 0.906 0.913 0.912 0.910 0.905 0.900

0.898 0.897 0.898 0.896 0.901 0.897 0.896 0.894 0.890

1.000 0.956 0.941 0.929 1.000 0.959 0.942 0.931 0.923

0.933 0.925 0.920 0.917 0.936 0.927 0.922 0.917 0.912

0.909 0.907 0.902 0.901 0.910 0.906 0.904 0.900 0.898

0.895 0.894 0.893 0.891 0.895 0.892 0.891 0.890 0.887

0.888 0.885 0.882 0.883 0.887 0.887 0.885 0.883 0.880
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Table 9. Projection quality of 9 × 9 views in dataset Sideboard using multi-view projection scheme.
The reference view with absolute quality is highlighted in pure green. The color transition from green
to red corresponds to the degradation of projection quality.

0.85 0.9 0.95 1

1.000 0.952 0.927 1.000 0.941 0.921 1.000 0.946 0.923

0.949 0.934 0.921 0.942 0.925 0.912 0.946 0.928 0.911

0.920 0.914 0.907 0.915 0.906 0.898 0.912 0.905 0.901

0.902 0.897 0.891 0.896 0.890 0.887 0.900 0.891 0.885

1.000 0.945 0.925 1.000 0.945 0.918 1.000 0.943 0.915

0.946 0.929 0.914 0.942 0.927 0.909 0.943 0.924 0.908

0.910 0.907 0.902 0.915 0.908 0.898 0.916 0.905 0.898

0.894 0.889 0.889 0.897 0.893 0.889 0.898 0.891 0.887

0.881 0.880 0.879 0.882 0.884 0.880 0.885 0.880 0.878

5.2. Compression Efficiency Evaluation

In order to evaluate the impact of enhanced projection quality on overall performance,
this section assesses Rate Distortion performance and quality of reconstructed LF of the
two proposed center view and multi-view projection schemes, and computation time for
the multi-view projection scheme. This allows to demonstrate the improvement of quality
in both proposals, as well as the running time for multiple views projection. In Rate
Distortion quantitative results, the proposals were compared against the original top-left
view projection scheme and two state-of-the-art coders: HEVC with Serpentine scanning
topology, and JPEG Pleno with 4D transform mode (4DTM).

Experiment Setup

The encoder and decoder were run on Python 3 under Ubuntu 20.04 with 64 GB
RAM, and utilizing Python’s Ray library for the parallel processing of super-rays or sub-
global graphs. The disparity estimation technique was used from [29] to compute the
disparity map for center view of real LF, and multiple reference views for synthetic LF.
Their segmentation mask was obtained using SLIC algorithm [28]. Due to lack of memory
resources in this experimental environment, the initial number of super-rays was set as
2000 and 1200 for real LF 13 × 13 views and synthetic LF 9 × 9 views, respectively, instead
of 500 as originally used in [10]. The more super-rays, the smaller the local graphs, and
thus they would consume less resources, but with the trade-off of inefficient decorrelation
of signals. On the other hand, having a smaller number of super-rays leads to bigger sizes
of graphs, which implies significant increase in time complexity of eigen-decomposition
for the Laplacian matrix.

The subjective results were obtained when running encoder and decoder with param-
eter PSNRmin set at 20, instead of 45 (max value). This parameter was used to guide the
rate of graph coarsening and partitioning. Setting at 20 would return results of low quality,
and thus, it would be easier to visually differentiate results of the original and proposed
projection schemes, for the purpose of reading the paper.
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The x.265 implementation of HEVC-Serpentine used in the experiments was run
with source version 2.3, following LF common test conditions [39]. The base quantization
parameters (QP) were set to 10, 28, 35, 50. JPEG Pleno 4DTM was used within Part 4
(Reference Software) with base Lambdas (quantization parameter) of 25, 1000, 20,000,
500,000.

Regarding QPs used in both original and proposed schemes, this work implemented
an adaptive quantization approach. After GFT was used to transform signals into the
frequency domain, the super-ray coefficients were divided into 32 sub-groups. Since the
first group contains low frequency coefficients, which represent fundamental properties of
the signals, and it usually has much higher energy than the next groups, more quantization
steps should be assigned for the first group to obtain more accurate reconstruction than
other groups, for containing more important coefficients. In other words, the base QPs
were set adaptively for the first group and remaining groups. Then, optimized quantization
step sizes were found based on the rate-distortion optimization approach, as described
in [10], with parameter QP set according for each group. Using the optimized quantization
steps sizes, the coefficients in each group were quantized and arithmetically coded with a
public version of Context Adaptive Binary Arithmetic Coder (CABAC) [43]. At high-quality
coding, the QPs were set as 4 for the first group, and 10 for the remaining groups. The
reference segmentation mask was encoded using arithmetic edge coder EAC [44], and
disparity values (median disparity per super-ray) were encoded using original arithmetic
coder of the authors [10].

Additionally, all reconstructed LFs using any of the four methods in the experiments
were converted into 8-bit for evaluation at the same conditions and their PSNR of the
luminance channel (PSNR-Y) were computed with the same formula, following the LF
common test conditions [39].

5.3. Analysis of Center View Projection Scheme
5.3.1. Rate Distortion Analysis

The Rate Distortion performance of the proposed projection with center view as
reference was compared against top-left view projection [8], direct encoding of the views
as a PVS using HEVC-Serpentine, and 4D transform solution utilizing JPEG Pleno 4DTM.
The performance comparison was made on the two datasets Fountain_Vincent_2 and
Danger_De_Mort, as shown in Figure 13. Substantial gains in the Center view projection
proposal can be seen compared to the original scheme at all bitrates for both datasets,
as well as the proposed scheme outperformed HEVC-Serpentine and JPEG Pleno 4DTM,
especially at low and high bitrates.

(a) (b)
Figure 13. Rate Distortion performance between center view projection scheme (proposal), top-left
view projection scheme (original [10]), and state-of-the-art codecs HEVC-Serpentine, JPEG Pleno
4DTM. (a) Fountain_Vincent_2. (b) Danger_de_Mort.
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5.3.2. Qualitative Analysis for Reconstructed LF

At the decoder side, the luminance channel of LF was reconstructed from the quantized
coefficients sent by the encoder. The output results using the original and proposed projec-
tion scheme are shown subjectively in Figure 14 for Fountain_Vincent_2, and Figure 15 for
Danger_de_Mort. It can be seen that in both datasets, the proposed Center view projection
returned sharper results, clearly visible in edges around texture, whereas the original
scheme’s results seemed to be blurry in these edges. The blur effect could be caused by
super-pixels reconstructed at inaccurate positions, resulting from poor depth estimation, as
a consequence of vignetted top-left view.

(a) (b)
Figure 14. Reconstructed luminance channel of center view using projection scheme from top-
left view and center view, in dataset Fountain_Vincent_2. (a) Top-left view projection scheme [10]
(original). (b) Center view projection scheme (proposal).

(a) (b)
Figure 15. Reconstructed luminance channel of center view using projection scheme from top-left
view and center view, in dataset Danger_de_Mort. (a) Top-left view projection scheme [10] (original).
(b) Center view projection scheme (proposal).

5.4. Analysis of Multiple Views Projection Scheme
5.4.1. Rate Distortion Analysis

Rate Distortion performance of the multi-view projection scheme was illustrated in
Figure 16, comparing with original single view projection scheme, HEVC, and JPEG Pleno
in datasets Greek and Sideboard. The proposed scheme significantly outperformed the
original projection at all bitrates, having better projection quality, and surpassed the other
two conventional coders at low bitrates. However, HEVC-Serpentine remained the best
compressor for synthetic LF at medium and high bitrates. This can be explained by the
fact that the two synthetic LF are free of imperfections such as image noises, and thus, the
performance of classical coders HEVC and JPEG Pleno was not degraded, thus achieving
better Rate Distortion than their results in real-world LF. Nevertheless, the proposed
method performed slightly worse on dataset Greek, compared to Sideboard, because the
disparity between views in Greek is higher than other datasets, as shown in Table 1, leading
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to higher median disparity error per super-ray used for projection. In addition, more
sub-global graphs can be found in Sideboard than Greeks after finding optimized positions
for reference views, resulting in more views with better projection quality.

(a) (b)
Figure 16. Rate Distortion performance between multi-view projection scheme (proposal), top-left
view projection scheme (original [10]), and state-of-the-art codecs HEVC-Serpentine, JPEG Pleno
4DTM. (a) Greek. (b) Sideboard.

5.4.2. Qualitative Analysis for Reconstructed LF

The qualitative results of luminance reconstruction for Greek and Sideboard datasets
using original or multi-view projection schemes are shown in Figures 17 and 18. Same as
previous subjective results of real LF, the proposed multi-view projection returned sharper
results for synthetic LF, especially around edges of textures, for having more accurate
projection of super-pixels than the single-view projection scheme.

(a) (b)
Figure 17. Reconstructed luminance channel of center view using single-view and multi-view
projection scheme, in dataset Greek. (a) Single-view projection scheme [10] (original). (b) Multiple-
view references scheme (proposal).
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(a) (b)
Figure 18. Reconstructed luminance channel of center view using single-view and multi-view
projection scheme, in dataset Sideboard. (a) Singl- view projection scheme [10] (original). (b) Multiple-
view reference scheme (proposal).

5.4.3. Computation Time Analysis

Apart from achieving substantial gains in compression performance compared to
the single-view projection scheme, multi-view projection can also significantly reduce
computation time of both encoder and decoder, with a slight trade-off in increasing bi-
trates. Experimental results are given in Tables 10 and 11, analyzing the parameters and
time duration when running encoder and decoder on dataset Greek and Sideboard with
PSNRmin set at 40, along with output quality PSNR-Y and required bitrate at high quality
coding. The high-dimensional graph was separated into four sub-global graphs in the
multi-view proposal, as optimized by a minimization problem. The first three columns
(param, obtained num_SR, total # of nodes) bring interesting results. It can be seen that,
for the same initial num_SR (number of super-rays/number of local graphs), the output
num_SR and total number of nodes after graph coarsening and partitioning of single-view
scheme (original) were much greater than the output of each sub-global graph (proposal).
This means graph coarsening and partitioning rates were higher in the original graph than
in each sub-global graph. Thus, the proposed multi-view scheme could retain more accu-
rate graph information of vertice signals and edges in each sub-global graph, in addition to
having higher quality for the projection of super-pixels, since each reference view projected
to closer views. Essentially, the total number of nodes determines the time complexity for
eigen-decomposition of the Laplacian matrix, and it was smaller in each sub-global graph.
Moreover, the four sub-global graphs were encoded or decoded simultaneously by running
in parallel, and thus, the total approximate encoding and decoding time were reduced by
more than half, compared to processing the original high-dimensional graph. Nevertheless,
the bitrate slightly increased as more reference segmentation masks and disparity maps
were required to be coded and transmitted alongside the graph coefficients.
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Table 10. Encoding time and decoding time using the single-view (original) and multi-view (proposal)
projection scheme on dataset Greek.

Param

Obtained num_SR
(after Graph
Coarsening and
Partitioning)

Total # of Nodes
(after Graph
Coarsening and
Partitioning)

Approx.
Encoding
Time (s)

Approx.
Decoding
Time (s)

psnr_y
(Adaptive
QP = 4/10)

bpp
(Adaptive
QP = 4/10)

original
[10]

num_SR =
1200 3130 12,294,870 25,835 23,376 41.04 db 1.14 bpp

proposal
num_SR

= 1200

sub_graph_1: 1162 4,190,290

10,232 9533 47.19 db 1.25 bpp
sub_graph_2: 1187 5,139,382

sub_graph_3: 1181 5,139,424

sub_graph_4: 1294 5,958,210

Table 11. Encoding time and d ecoding time using single-view (original) and multi-view (proposal)
projection scheme on dataset Sideboard.

Param

Obtained num_SR
(after Graph
Coarsening and
Partitioning)

Total # of Nodes
(after Graph
Coarsening and
Partitioning)

Approx.
Encoding
Time (s)

Approx.
Decoding
Time (s)

psnr_y
(Adaptive
QP = 4/10)

bpp
(Adaptive
QP = 4/10)

original
[10]

num_SR
= 700 5974 19,147,151 34,516 27,585 44.58 db 3.51 bpp

proposal
num_SR

= 700

sub_graph_1: 821 3,100,441

16,072 14,869 49.47 db 4.21 bpp

sub_graph_2: 825 3,092,246

sub_graph_3: 845 3,092,751

sub_graph_4: 1080 3,796,717

sub_graph_5: 1080 3,780,491

sub_graph_6: 1099 3,775,655

6. Discussion

Based on evaluation results, it has been shown that the center view and multiple
views projection scheme can bring an overall improvement for super-rays projection
quality in all views by having accurate disparity information, leading to better compression
efficiency, especially at high bitrates, compared to the original top-left view projection.
Additionally, combining accurate geometry information with the advantage of graph
coarsening proposed in [10], the graph-based approach can also outperform state-of-the-art
coders HEVC and JPEG Pleno at low bitrates.

The benefit of graph coarsening for graph-based approaches is clear, for low bitrates,
aside from its ability to exploit correlations for irregular patterns in textures, which allows
them to outperform the other two state-of-the-art coders HEVC and JPEG Pleno. Graph
coarsening retains total variations of signals on the reduced graphs, while the number
of coefficients to be coded also substantially decreases, leading to good Rate Distortion
performance at low bitrates. Additionally, besides the vignetting effect, real-world LF might
also suffer from image noises, degrading the performance of traditional coding considerably,
but not affecting graph coarsening, which utilizes low rank model approximation, and
thus, the noises can be removed.

High-quality coding at high bitrates requires particularly accurate super-ray positions,
which depends entirely on the performance of the depth estimation algorithm. For real
LF, as verified in previous section, the vignetting effect significantly degrades the output
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depth map of top-left view, leading to inaccurate super-ray projections, hence, the original
projection scheme obtains the lowest Rate Distortion performance. On the other hand, the
Center view projection scheme has more accurate depth estimation maps, leading to higher
compression performance than HEVC and JPEG Pleno, which might also be supported by
its ability to decorrelate signals in irregular-shape textures.

For high-quality coding of synthetic LF, although the proposed multiple views projec-
tion scheme significantly surpasses the performance of top-left projection scheme, they are
still outperformed by HEVC-Serpentine. The potential solution to obtaining competitive
performance with HEVC is to use more reference views, but with a trade-off of increasing
bitrates for transmission because more segmentation and disparity information of the
references are needed to be coded and sent to the decoder side. Another possible solution
could be using two median disparity values for each super-pixel within the reference view,
then each half super-pixel would be projected separately to other views, based on the
corresponding median disparity value. The idea is motivated by the fact that the smaller
size the super-pixel possesses, the smaller the median disparity error becomes, with respect
to all disparity values within the super-pixel. This approach might be discussed further in
future work.

Furthermore, for the multi-view projection scheme, time execution for both encoder
and decoder can be considerably reduced by processing all sub global graphs in parallel,
while ensuring correlations between views can still be efficiently exploited by optimizing
positions of reference views through a minimization problem. There may be a slight
increase in the coding bitrates due to increased reference segmentation and more disparity
maps to be coded. Additionally, based on Figures 11a and 12a, it should be noted that
solving the minimization problem to find the optimal reference view might not make
a significant improvement for multiview-based LF representation, compared to directly
choosing center view of every projection direction as the new reference, since there are only
a few views to be evaluated, and most of them lie closely on the convex hull. However, this
approach can be applied to lenslet-based LF representation, in which the number of views
is large, and thus finding the views lying on the convex hull can be more efficient. This
idea can also be further discussed in future research.

Another limitation of the proposed multi-view projection scheme for graph-based
LF coding is the execution time for both encoder and decoder remains relatively high
(1200 super-rays with parallel diagonalization of 15 super-rays took about 2.8 h in existing
experiment environment), compared to other standards like JPEG Pleno (in about 15 min
with MATLAB implementation [45]), despite having significant improvement from the
original single-view projection scheme (in about 7.2 h). The super-rays are potentially
suitable for parallel Laplacian diagonalizations with the use of GPU-based computing
libraries like MAGMA and magmaFast. Additionally, fast GFT can be used to directly
reduce the Laplacian diagonalization and transform time by a factor of up to 27, which has
been recently reported in [46,47]. These solutions can be investigated in future work.

7. Conclusions

In this paper, two novel projection schemes for graph-based light field coding are
introduced, including center view and multiple views projection. The proposals signif-
icantly outperformed original Top-left view projection scheme and generally obtained
competitive rate-distortion performance with state-of-the-art coders HEVC (Serpentine
scanning) and JPEG Pleno (4DTM mode). This can only be achieved by having accurate
disparity estimation for center view projection in real LF with large parallax, and smaller
median disparity error for multiple views projection in synthetic LF. In addition to improv-
ing overall compression efficiency, multiple views projection can also reduce end-to-end
computation time by processing smaller sub global graphs in parallel. This has shown
the potential of further improvement for graph-based LF coding in order to achieve both
competitive performance in both compression efficiency and computation time, compared
to state-of-the-art coders.
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