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Three chemical epigenetic modifiers [5-azacytidine, nicotinamide, and suberoylanilide
hydroxamic acid (SAHA)] were applied to induce the metabolites of Penicillium mallochii
CCH01, a fungus isolated from the gut of Ectropis oblique. Metabolite profiles of
P. mallochii CCH01 were obviously changed by SAHA treatment. Four metabolites
(1–4), including two new natural sclerotioramine derivatives, isochromophilone XIV (1)
and isochromophilone XV (2), and two known compounds, sclerotioramine (3) and (+)-
sclerotiorin (4), were isolated and purified from P. mallochii CCH01 treated with SAHA.
Their structures were determined by spectroscopic analyzes. Anti-phytopathogenic
activities of the isolated compounds 1–4 were investigated under laboratory conditions,
and compound 4 showed broad and important inhibition activities against Curvularia
lunata (IC50 = 2.1 µg/mL), Curvularia clavata (IC50 = 21.0 µg/mL), Fusarium
oxysporum f. sp. Mornordica (IC50 = 40.4 µg/mL), and Botryosphaeria dothidea
(IC50 = 27.8 µg/mL), which were comparable to those of referenced cycloheximide,
with IC50 values of 0.3, 5.0, 12.4, and 15.3 µg/mL, respectively. Ingredients 2 and
3 showed selective and potent activities against Colletotrichum graminicola with IC50

values of 29.9 and 9.7 µg/mL, respectively. Furthermore, the antibacterial bioassays
showed that compounds 3 and 4 exhibited strong inhibition activities against Bacillus
subtilis, with disc diameters of zone of inhibition (ZOI) of 9.1 mm for both compounds,
which were a bit weaker than that of referenced gentamycin with a ZOI of 10.8 mm.
Additionally, the new metabolite 1 showed a promising activity against Candida albicans
(ZOI = 10.5 mm), comparable to that of positive amphotericin B with a ZOI of 23.2 mm.
The present results suggest that chemical epigenetic modifier induction was a promising
approach to obtaining antimicrobial metabolites encoded by silent biosynthetic genes
of P. mallochii.

Keywords: gut fungus, Ectropis oblique, Penicillium mallochii CCH01, suberoylanilide hydroxamic acid,
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INTRODUCTION

Fungi produce a wealth of valuable natural products like
alkaloids, phenolic acids, flavonoids, quinones, terpenoids,
steroids, benzopyranones, tetralones, xanthones, and peptides
with a remarkable range of biological activities in medicine and
agriculture. However, sequenced fungi genomes reveal that there
are far more secondary metabolite biosynthesis gene clusters
than were clear in chemical studies (Cichewicz, 2010; Sanchez
et al., 2012; Ochi and Hosaka, 2013). This suggests that the
potential of generating untapped chemical of fungi metabolite
under standard laboratory conditions is limited, as a result
of transcriptional suppression of numerous biosynthetic gene
clusters (BGCs). To improve the rate of discovering novel
bioactive compounds, epigenetic perturbation approaches are
used to activate or modify these silent BGCs. There have been
many successful examples of the use of DNA methyltransferase
(DMT) inhibitors to recall cryptic biosynthetic clusters in fungi
(Asai et al., 2012; He et al., 2015; Chen et al., 2016; Yu et al., 2019).
Like DMT inhibitors, histone deacetylase (HDAC) inhibitors
were often employed to manipulate the fungal epigenome, too.
Exposing cultures of Graphiopsis chlorocephala to the NAD+-
dependent HDAC inhibitor, nicotinamide triggered dramatic
changes in the fungal metabolite profile, enabling the isolation
of new polyketides (Asai et al., 2012). Cultivating Eupenicillium
sp. LG41 in the presence of the same HDAC inhibitor led to
enhanced production of two new decalin-containing compounds,
eupenicinicols C and D (Li et al., 2017). Similarly, treating
Daldinia sp. (Du et al., 2014), Aspergillus wentii (Miao et al.,
2014), Chalara sp. 6661 (Adpressa et al., 2017), and Cladosporium
sphaerospermum with the Zn (II) NAD+-independent HDAC
inhibitor [suberoylanilide hydroxamic acid (SAHA)] contributed
to the discovery of new polyketides, diterpenes, xanthones, and
tetramic acids (Zhang et al., 2018).

We have been devoting our efforts toward discovering
bioactive compounds produced by insect-associated fungi
(Zhang et al., 2008, 2011; Li et al., 2014). In order to maximize
the opportunity for detecting novel secondary metabolites, three
chemical epigenetic modifiers were employed to stimulate the
metabolite production of Penicillium mallochii CCH01 from the
gut of Ectropis oblique, a pest living on tea plants. We found that
metabolite profiles of the fungal strain showed obvious changes,
when treated with SAHA. In this paper, we report the details of
the isolation, structure elucidation, and biological activities of the
metabolites produced by P. mallochii CCH01 cultivated in the
presence of SAHA.

MATERIALS AND METHODS

Isolation and Identification of Fungus
From E. oblique
The E. oblique was collected from the tea plantation of
Anhui Agricultural University, Hefei, China (latitude: 31.86 N,
longitude: 117.27 E, altitude: 20 m above mean sea level).
Insects (eight individuals) were kept without food for 1 day
and then dissected under sterile conditions. Individual guts were

suspended in a vial of 1 ml of 1 × phosphate buffer and further
diluted at proportions of 10−1, 10−2, 10−3 in 1 × phosphate
buffer. One hundred microliters of the diluted gut solutions was
plated on PDA (20 g L−1 potato, 20 g L−1 glucose, and 20 g L−1

agar) plates supplemented with potassium dichromate (50 mg
L−1) and nalidixic acid (25 mg L−1). The plates were incubated
at 28◦C for 4 days for fungus growth and any fungal colonies
that formed were sub-cultured on new PDA medium to obtain
pure cultures. The isolated strain CCH01 was deposited at the
China Center for Type Culture Collection (CCTCC) as CCTCC
M2018235, and also preserved on PDA slants at 4◦C until use.
Morphological character and molecular identification (based on
the DNA sequence of ITS region using ITS1 and ITS4 primers
after PCR amplification) were implemented to identify the strain.

Effect of Epigenetic Modifying
Compounds on the Metabolite
Production of P. mallochii CCH01
From a 7-day-old MEA (consisting of 20 g of malt extract,
20 g of sucrose, 1 g of peptone, and 20 g of agar in 1 L of
distilled water) culture plate, a conidial spore suspension was
prepared by adding 15 mL of distilled water containing 0.2%
Tween 80 (w/v) under agitation by glass rod. To study the effect
of epigenetic modifiers, aliquots (2 mL) of spore suspension were
added into 100 mL of ME production media (consisting of 20 g
of malt extract, 20 g of sucrose, and 1 g of peptone in 1 L of
distilled water) separately supplemented with DMSO-dissolved
SAHA, 5-azacytidine, nicotinamide, resulting in the same final
concentrations of 1 mM. Equal amounts of DMSO were added
to the control group. The cultures were fermented at 28◦C in
a shaker rotating at 180 rpm for 10 days. The filter of each
fermentation broth was extracted three times with equal amounts
of EtOAc. The EtOAc extracts were fast analyzed by TLC.

Fermentation, Extraction, and Isolation
The fungus CCH01 was grown on a ME media (twenty
1000-mL Erlenmeyer flasks, each containing 400 mL of ME
media) supplemented with SAHA (in a final concentration
of 1 mM) at 28◦C in a shaker rotating at 180 rpm for
10 days. Total filter of fermentation broth was extracted with
EtOAc (3 × 8 L) at room temperature. The EtOAc phase was
evaporated in vacuo to afford a crude extract (14.36 g) and
then chromatographed on a silica gel column eluting with a
step gradient of CH2Cl2/MeOH (100:0–100:3, v/v) to give seven
fractions (Fr1–Fr3). Fr1 (CH2Cl2/MeOH, 100:0, v/v) was further
fractionated on a silica gel column, eluting with petroleum ether
(PE)–ethyl acetate (EA) (50:1, v/v) to yield compound 4 (35 mg).
Fr2 (CH2Cl2/MeOH, 100:1, v/v) was repeatedly subjected to a
silica gel column (CH2Cl2/MeOH, 100:0, 100:1, v/v) to give three
subfractions (R1–R3); compound 3 (48 mg) crystallized from
the EtOAc solution of subfraction R1. Subfractions R2 and R3
were loaded onto a Sephadex LH-20 column (MeOH) to give
compounds give compound 1 (15 mg) and 2 (20 mg), separately.

Structure elucidations of the secondary metabolites were made
according to the spectroscopic analysis. The NMR spectra were
recorded at 25◦C with Agilent 600 MHz DD2 spectrometer NMR.
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Analysis of Compounds in Extracts by
UHPLC-Q-TOF-MS
To determine that the isolated compounds were generated
by SAHA, the EtOAc extracts were accurately analyzed by
ultra-high-performance liquid chromatography coupled with
Q-TOF mass spectrometer (Agilent Technologies, Santa Clara,
CA, United States). Chromatographic analysis was performed
by using a C18 reverse-phase analytical column: Phenomenex
Kinetex 2.6 µ XB-C18 100A (Torrance, CA, United States).
UHPLC-Q-TOF parameters were as follows: the column oven
temperature was set at 40◦C and the injection volume was 5 µL,
with a flow rate of 0.4 mL/min. The mobile phase consisted of
0.4% acetic acid in water and 100% acetonitrile; the gradient of
the latter increased linearly from 10 to 60% (v/v) at 10 min,
to 100% at 15 min, to 60% at 18 min, and to 10% at 20 min.
Samples were analyzed in the fast polarity switching mode at a
fragmentation voltage of 175 V, over the range of m/z 100–1700.
A drying gas flow rate of 11 L/min under a temperature of 350◦C
and a capillary voltage of 3.5 kV were used.

Antimicrobial Activity in vitro
Purified metabolites were screened for their antimicrobial
activity. We used nine different phytopathogenic fungi, i.e.,
Colletotrichum graminicola, Curvularia lunata, Gibberella zeae,
Curvularia clavata, Alternaria solani, Corynespora cassiicola,
Fusarium oxysporum f. sp. cucumerinum, F. oxysporum f. sp.
mornordicae, and Botryosphaeria dothidea, and four human
pathogens (Escherichia coli, Staphylococcus aureus, Bacillus
subtilis, and Candida albicans) as the tested strains.

The antifungal activity in vitro against phytopathogenic fungi
was assayed by the growth rate method (Bibi et al., 2012; Li
et al., 2014), with slight modifications. Purified metabolites were
dissolved in aqueous solution described previously (Yin et al.,
2018) and then mixed with PDA in a Petri dish (9 cm in
diameter). Cycloheximide was used as the positive control. The
tested phytopathogenic fungi were inoculated onto the center
of the medium and then incubated in the dark at 28◦C. When
the fungal mycelium reached the edges of the control dishes, the
antifungal activities were calculated. The percentage of growth
inhibition was calculated using the following formula:

Inhibition (%) = (1− Da/Db) × 100

where Da meant the diameter of growth zone in the experimental
dish (mm) and Db meant the diameter in the control dish
(mm). IC50 values were calculated by probit analysis based on
percentage of radical growth.

The disc diffusion method was applied to evaluate the
antibacterial activities and anti-yeast activities of isolated
metabolites. Filter paper disks with metabolite dissolved in
DMSO in a concentration (30 µg/filter paper) were added to the
culture medium, and the plates were incubated at 37◦C (E. coli,
S. aureus, and B. subtilis) or 28◦C (C. albicans) for 24 h. Filter
papers with DMSO, streptomycin sulfate, gentamycin sulfate,
and amphotericin B were set as negative and positive controls,
respectively. The zone of inhibition (ZOI) was determined by

measuring the distance from the center of the disk to the end
of the clear zone.

All experiments were performed in triplicate, and data were
shown as mean values and standard deviation.

RESULTS

Identification of the Fungus CCH01
Colonies of CCH01 on the PDA plate grew quickly at 28◦C,
covering the whole plate (9 cm in diameter) in 7 days.
Strain CCH01 showed morphological characteristics similar
to members of section Sclerotiora of the Penicillium genus,
i.e., monoverticillate conidiophores, greenish gray conidial
masses and orange pigment in PDA plates (Visagie et al.,
2013; Supplementary Figure S1). Phylogenetic tree (Figure 1)
constructed based on ITS rDNA sequences of the fungus using
MEGA5 according to the neighbor-joining method indicated
that CCH01 was closely related to P. mallochii (NR_11674.1T),
with the ITS sequence similarity of 99.8%. Combined with
morphological characteristics, the fungus was identified as
P. mallochii CCH01.

Effect of SAHA on the Metabolic Profile
of P. mallochii CCH01
Crude EtOAc extracts obtained from both the epigenetic
treated and the control (DMSO) fermentation broths of the
P. mallochii CCH01 were compared by TLC in mobile phase
(CH2Cl2/MeOH, 40:1, v/v). A UV visible spot at an Rf value
of 0.3 was observed in SAHA-treated extract, which was not
visible in the extracts of the culture grown without SAHA
(Supplementary Figure S2).

Isolation of Secondary Metabolites From
P. mallochii CCH01
Two new compounds (1 and 2), along with two known
metabolites (3 and 4) were isolated from the culture of
P. mallochii CCH01 treated with SAHA. Chemical structures of
compounds 1–4 are shown in Figure 2.

Compound 1 (isochromophilone XIV) was obtained as a
purple powder, and its molecular formula C29H29NO4 was
deduced from HRESIMES ion peak at m/z 456.2196 [M + H]+,
which was consistent with 1H and 13C NMR data (Table 1 and
Supplementary Figures S3–S9). 13C NMR data were similar to
those of isochromophilone IV (Kanokmedhakul et al., 2006),
except ethyl signal (δC 55.4, 36.6). This speculation was confirmed
by HMBC correlations from H-1 to C-1 (δC 141.3), C-3 (δC
147.9), C-4a (δC 149.0), and C-8a (δC 116.8); H-4 to C-3 (δC
147.9), C-5 (δC 98.4), C-8a (δC 116.8), and C-9 (δC 115.8); Me-18
to C-6 (δC 172.8); H-9 to C-4 δC 114.5) and C-11 (δC 131.8); H-
10 to C-3 (δC 147.9) and C-17 (δC 12.2); H-12 to C-10 (δC 143.5),
C-13 (δC 35.0), and C-17 (δC 12.2). 1H–1H COSY indicated that
H-9 had a relationship with H-10, H-12, H-13, and H-14 (me-16);
me-15 had a relationship with H-2′and H-3′. Thus, the structure
of compound 1 was determined as a new isochromophilone
derivative (isochromophilone XIV).
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FIGURE 1 | Neighbor-joining tree based on ITS nucleotide sequences.

FIGURE 2 | Compounds (1–4) isolated from P. mallochii CCH01 treated with SAHA.

Compound 2 (isochromophilone XV) was obtained as a
yellow powder, and its molecular formula C27H28ClNO4 was
deduced from HRESIMES ion peak at m/z 466.1816 [M + H]+,
which was consistent with 1H and 13C NMR data (Table 1
and Supplementary Figures S10–S15). The 1H NMR and 13C
NMR data were similar to those of isochromophilone IV (Lucas
et al., 2007; Wang et al., 2010), except that the imino at
position 2 in isochromophilone IV appeared to be aniline, which
corresponded to the increase in molecular weight of 2 by 92 amu

compared to 4 (δC 55.4, 36.6). This was further confirmed by the
HMBC correlation of H-1 to C-1 (δC 141.1), C-3 (δC 147.4), C-
4a (δC 144.1), C-8a (δC 114.3), and C-8 (δC 193.9); H-4 to C-3 (δC
147.4), C-5 (δC 103.2), C-8a (δC 114.3), and C-9 (δC 116.2); Me-18
to C-6 (δC 184.7) and C-8 (δC 193.9); H-9 to C-4 (δC 109.8) and
C-1 (δC 141.1); H-10 to C-3 (δC 147.4) and C-17 (δC 12.2); H-12
to C-10 (δC 143.1), C-13 (δC 35.0), and C-17 (δC 12.2); and 1H–1H
COSY correlation of H-9 to H-10, H-12, H-13, H-14, Me-16, and
Me-15; H-2′ to H-3′. To our knowledge, this compound was first
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TABLE 1 | 1H NMR and 13C NMR data of compounds 1 and 2 in CDCl3.

Position 1 2

δC δH, mult. (J in Hz) δC δH, mult. (J in Hz)

1 141.3, CH 7.86, s 141.1, CH 7.84, s

3 147.9, C 147.4, C

4 114.5, CH 6.90, s 109.8, CH 7.16, s

4a 149.0, C 144.1, C

5 98.4, CH 6.82, s 103.2, C

6 172.8, C 184.7, C

7 85.4, C 84.7, C

8 194.1, C 193.9, C

8a 116.8, C 114.3, C

9 115.8, CH 5.58,d (15.6) 116.2, CH 5.58,d (15.6)

10 143.5, CH 6.92, d (15.6) 143.1, CH 6.96, d (15.6)

11 131.8, C 131.8, C

12 148.5, CH 5.65, d (9.7) 147.9, CH 5.66, d (9.7)

13 35.0, CH 2.40, m 35.0, CH 2.40, m

14 30.0, CH2 1.31, m; 1.41, m 30.0, CH2 1.31, m; 1.40, m

15 11.9, CH3 0.83, t (7.4) 12.0, CH3 0.85, t (7.4)

16 20.2, CH3 0.98, d (6.6) 20.2, CH3 0.99, d (6.7)

17 12.2, CH3 1.49, s 12.2, CH3 1.50, s

18 30.0, CH3 1.73, s 23.2, CH3 1.60, s

19 170.9, C 170.2, C

20 106.2, C 20.2, CH3 2.19, s

21 194.6

22 29.1, CH3 2.52, s

1′ 140.2, C 140.3, C

2′ 126.4, CH 7.29, m 126.6, CH 7.29, m

3′ 130.3, CH 7.56, m 130.1, CH 7.55, m

4′ 130.4, CH 7.56, m 130.2, CH 7.55, m

5′ 130.3, CH 7.56, m 130.1, CH 7.55, m

discovered as a natural product, but reported as semisynthetic
derivatives (Wei et al., 2017).

Compound 3 was obtained as a red crystal, and its molecular
formula C21H24ClNO4 was deduced from HRESIMES m/z
390.1518 [M+H]+. 1H NMR and 13C NMR data were as follows:
1H NMR (600 MHz, CDCl3): δ:7.68 (1H, s, H-1), 6.70 (1H, s, H-
4), 6.00 (1H, d, J = 16.0 Hz, H-9), 6.82 (1H, d, J = 16.0 Hz, H-10),
5.65 (1H, d, J = 9.84 Hz, H-12), 2.47 (1H, m, H-13), 1.32 (2H, m,
H-14), 0.85 (3H, t, m, H-15), 1.04 (3H, d, J = 6.7 Hz, H-16), 1.83
(3H, s, H-17), 1.66 (3H, s, H-18), 2.25 (3H, s, H-20); 13C NMR
(151 MHz, CDCl3) δ: 138.8 (CH, C-1), 147.1 (C, C-3), 110.73
(CH, C-4), 148.25 (C, C-4a), 100.67 (C, C-5), 183.76 (C, C-6),
84.88 (C, C-7), 193.29 (C, C-8), 116.65 (CH, C-9), 143.30 (CH,
C-10), 132.04 (C, C-11), 114.67 (CH, C-12), 35.06 (CH, C-13),
30.03 (CH2, C-14), 11.95 (CH3, C-15), 20.16 (CH3, C-16), 12.36
(CH3, C-17), 23.7 (CH3, C-18), 170.23 (C, C-19), 20.37 (CH3,
C-20). These showed almost no difference with sclerotioramine
(C21H24ClNO4) described in literature (Wang et al., 2010).

Compound 4 was obtained as a yellowish powder, and its
molecular formula C21H23O5Cl was deduced from HRESIMES
at ion peak at m/z 389.1325 [M-H]−. 1H NMR and 13C NMR
data were as follows: 1H NMR (600 MHz, CDCl3) δ: 7.92 (1H,

s, H-1), 6.63 (1H, s, H-4), 6.08 (1H, d, J = 15.72 Hz, H-9),
7.06 (1H, d, J = 15.66 Hz, H-10), 5.69 (1H, d, J = 9.72 Hz,
H-12), 2.47 (1H, m, H-13), 1.42 (2H, m, H-14), 0.85 (3H,
t, J = 7.26 Hz, H-15), 1.83 (1H, s, H-16), 1.00 (3H, d,
J = 6.6 Hz, H-17), 1.56 (1H, s, H-18), 2.16 (3H, s, 7-OCOCH3);
13C NMR (151 MHz, CDCl3) δ: 152.67 (CH, C-1), 158.03
(C, C-3), 106.35 (CH, C-4), 138.60 (C, C-4a), 114.51 (C, C-
5), 191.74 (C, C-6), 84.53 (C, C-7), 185.90 (C, C-8), 110.78
(C, C-8a), 115.63 (CH, C-9), 142.79 (C, C-10), 131.93 (C, C-
11), 148.79 (CH, C-12), 35.10 (CH, C-13), 30.02 (CH2, C-
14), 11.92 (CH3, C-15), 12.33 (CH3, C-16), 20.17 (CH3, C-
17), 22.49 (CH3, C-18), 170.04 (COCH3), 20.04 (COCH3). It
indicated that compound 4 was (+) sclerotiorin (C21H23O5Cl)
(Chidananda and Sattur, 2007).

UHPLC-Q-TOF-MS Analysis of Purified
Metabolites From Crude Extracts
Crude extract samples were detected by UHPLC-Q-TOF-MS. As
a result, compounds 2, 3, and 4 existed in all of the samples
(Supplementary Figure S16); this suggests that the total of
these four ingredients was not the product of SAHA inducing.
However, only compound 1 was detected (Figure 3) in the extract
of SAHA-treated fermentation broth, but not in the control
that showed an intense peak at a retention time of 15.752 min
with m/z of 456.2196[M + H]+, which was consistent with
purified compound 1 as a standard. This indicated SAHA may
activate the dormant gene clusters in the biosynthetic pathways
of compound 1.

In vitro Anti-phytopathogenic Activity
The inhibition activities of compounds 1–4 against mycelial
growth of nine phytopathogenic fungi were tested in vitro
(Table 2). The results showed (+) that sclerotiorin (4) displayed
broad and important inhibition activities against C. lunata
(IC50 = 2.1 µg/mL), C. clavata (IC50 = 21.0 µg/mL), F. oxysporum
f. sp. mornordicae (IC50 = 40.4 µg/mL), and B. dothidea
(IC50 = 27.8 µg/mL), which were comparable to those of
referenced cycloheximide with IC50 values of 0.3, 12.4, and
15.3 µg/mL, respectively. Ingredient 3 exhibited a selective
inhibition activity against C. graminicola with an IC50 value
of 9.7 µg/mL, which was comparable to that of cycloheximide
(IC50 = 1.8 µg/mL). Meanwhile, metabolite 2 showed a relatively
weak activity against C. graminicola with an IC50 value of
29.9 µg/mL.

In vitro Anti-bacterial and Anti-yeast
Activities
Compounds 1–4 were tested for their antibacterial and anti-
yeast activity against a panel of representative pathogens. As
shown in Table 3, both compounds 3 and 4 exhibited potent
activities against B. subtilis, with the same ZOI values of 9.10 mm
compared with that of positive gentamycin (ZOI = 10.80 mm).
Notably, metabolite 1 displayed a moderate activity against
C. albicans with a ZOI value of 10.50 mm, compared with that
of referenced amphotericin B (ZOI = 23.20 mm).
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FIGURE 3 | UHPLC-QTOF-MS analysis of compound 1 in different samples.

TABLE 2 | The IC50 values of compounds 1–4 against the tested phytopathogens (in µg/mL).

Phytopathogens 1 2 3 4 Cycloheximidea

C. graminicola >50 ± 0 29.9 ± 0.1 9.7 ± 0.1 > 50 ± 0 1.8 ± 0.1

C. lunata >50 ± 0 >50 ± 0 >100 ± 0 2.1 ± 0.1 0.3 ± 0.1

G. zeae >50 ± 0 >50 ± 0 >50 ± 0 >50 ± 0 3.3 ± 0.2

C. clavata >50 ± 0 >50 ± 0 >100 ± 0 21.0 ± 0.1 5.0 ± 0.1

A. solani >50 ± 0 >50 ± 0 >100 ± 0 >50 ± 0 0.9 ± 0.1

C. cassiicola >50 ± 0 >50 ± 0 >50 ± 0 >50 ± 0 2.6 ± 0.1

F. oxysporum f. sp. cucumerinum >50 ± 0 >50 ± 0 >50 ± 0 >50 ± 0 4.9 ± 0.2

F. oxysporum f. sp. mornordicae >50 ± 0 >50 ± 0 >100 ± 0 40.4 ± 0.2 12.4 ± 0.2

B. dothidea >50 ± 0 >50 ± 0 >100 ± 0 27.8 ± 0.1 15.3 ± 0.2

Results were presented as the mean standard deviation for triplicate experiments. aCycloheximide was used as the positive control.

TABLE 3 | ZOI (mm) of compounds 1–4 against the tested strains.

Compounds E. coli S. aureus B. subtilis C. albicans

1 2.95 ± 0.01 3.00 ± 0.27 NI 10.50 ± 0.07

2 NIb NI NI NI

3 NI 4.10 ± 0.01 9.10 ± 0.30 NI

4 NI 5.80 ± 0.4 9.10 ± 1.70 NI

PCa 27.70 ± 1.10 32.30 ± 1.20 10.80 ± 1.70 23.20 ± 0.70

aPC: gentamicin was used as a positive control for bacteria; amphotericin B was
used as a positive control for yeast. Results were presented as the mean standard
deviation for triplicate experiments. bNI, not inhibited.

DISCUSSION

Sclerotiorin, first isolated from Penicillium sclerotiorum, belongs
to the azaphilone-type family of natural products, with a
γ-lactone, a conjugated ketone, a chlorine atom at C-5, and a
branched C-7 side chain (Maccurin and Reilly, 1940). Sclerotiorin
and its derivatives were mostly isolated from Penicillium species
from soil (Arai et al., 1995; Nam et al., 2000; Celestino et al., 2014),

sea (Cheung et al., 2014; Chen et al., 2017), and plant endophytes
(Giridharan et al., 2012). However, to the best of our knowledge,
it was the first reported that the two new natural products 1 and
2 and the following metabolites 3 and 4 were obtained from the
title strain P. mallochii CCH01, a fungus residing in the gut of
E. oblique.

Azacytidine, a DNA methylation-modifying agent, was
verified as an effective epigenetic modifier that altered secondary
metabolites of an Atlantic-forest-soil-derived P. citreonigrum and
led to the production of six azaphilones (Wang et al., 2010). As
far as we know, there are no references about new azaphilones
obtained from Penicillium treated with HDAC inhibitors. In the
present study, the effect of three different epigenetic modifiers,
i.e., 5-azacytidine, SAHA, and nicotinamide on the metabolic
profile of P. mallochii CCH01 was studied. Interestingly, a
significant variation in the metabolome of the fungus was
observed when treated with SAHA, an HDAC inhibitor. On
the basis of further LC-MS analysis experiments, metabolites
2–4 were detected in the crude extracts of both control and
treated cultures; only compound 1 was found exclusively in the
extract of SAHA-treated fungus (Figure 3). This indicated that
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the epigenetic modifier SAHA can be used to generate new
azaphilones from the gut fungus P. mallochii CCH01.

CONCLUSION

Here, one strain identified as P. mallochii CCH01 was isolated
from the gut of E. oblique, a pest living on tea plants.
For developing the potential of P. mallochii CCH01 for the
production of new compounds, three chemical epigenetic
reagents were applied to stimulate the strain. As a result, SAHA
brought significant changes in the secondary metabolites of
the fungus. Subsequently, four compounds, including 2 new
isochromophilone derivatives, were isolated from the culture
treated with SAHA. This result suggests that SAHA can be used
to identify diverse natural products hidden in silent biosynthetic
pathways from gut fungus P. mallochii CCH01. Sclerotiorin (4)
possessed a good prospect in crop and plant protection, with
important activities against phytopathogenic fungi. Interestingly,
as two simple amine derivatives of sclerotiorin (4), both
metabolites 2 and 3 exhibited modest inhibition activities
against C. graminicola, which were different with sclerotiorin.
Additionally, the new compound 1 showed a promising
activity against C. albicans, which was comparable to that
of referenced amphotericin B. Ingredients 3 and 4 possessed
strong antibacterial activities against B. subtilis in vitro. Thus,
our results highlight the potential of epigenetic modification
as powerful strategies for generating the production of cryptic
fungal metabolites.
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