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It is a challenge to be able to prescribe the optimal initial dose of warfarin.There have beenmany studies focused on an efficient strat-
egy to determine the optimal initial dose.Numerous clinical, genetic, and environmental factors affect thewarfarin dose response. In
practice, it is common that the initial warfarin dose is substantially different from the stable maintenance dose, which may increase
the risk of bleeding or thrombosis prior to achieving the stablemaintenance dose. In order tominimize the risk ofmisdosing, despite
popular warfarin dose predictionmodels in the literature which create dose predictions solely based on patients’ attributes, we have
taken physicians’ opinions towards the initial dose into consideration. The initial doses selected by clinicians, along with other
standard clinical factors, are used to determine an estimate of the difference between the initial dose and estimated maintenance
dose using shrinkagemethods.The selected shrinkagemethod was LASSO (Least Absolute Shrinkage and Selection Operator).The
estimatedmaintenance dose wasmore accurate than the original initial dose, the dose predicted by a linearmodel without involving
the clinicians initial dose, and the values predicted by the most commonly used model in the literature, the Gage clinical model.

1. Introduction

Warfarin is a commonly used oral anticoagulant drug with
over 30 million prescriptions written annually in the United
States [1]. This drug is difficult to manage because of its
narrow therapeutic index and wide interpatient variability
in dose response. Warfarin is the leading cause of drug-
related hospitalizations among adults in the United States [2].
There are numerous factors affecting the activity of warfarin.
They vary from each individual patient’s characteristics, such
as height, weight, age, and race, to the patient’s medical
history, diet, genotype, such as VKORC1 and CYP2C9, and
their concurrent medications. Since various factors impact
warfarin’s dose response, numerous mathematical prediction
models have been proposed to assist clinicians in finding
the optimal initial dose [3–18]. The models that only contain
clinical variables are known as clinical models (CL); models
which also contain the patients’ genotype are known as
pharmacogenetic models (PKG).

Gage et al. [3] proposed two linear multiple regression
models (CL & PKG models) in 2008. The clinical factors
that were incorporated in both models are body surface
area, target INR (International Normalized Ratio), smok-
ing status, age, race, amiodarone use, and indication of
VTE (VenousThromboembolism).The IWPC (International
Warfarin Pharmacogenetics Consortium) research group [4]
also proposed two linear regression models. The models’
performances were satisfactory for the patients who required
doses less than or equal to 21mg/wk or more than or equal
to 49mg/wk. According to the “Clinical Pharmacogenetics
Implementation Consortium Guidelines for CYP2C9 and
VKORC1 Genotypes and Warfarin Dosing,” the models
proposed by Gage and IWPC are the most recommended
models for predicting warfarin initiation doses [5]. Addition-
ally, Grossi et al. [6] designed a novel model in Artificial
Neural Networks (ANN) framework. After collecting the
data of 377 patients, they derived the model and chose their
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variables using the TWIST system [7], which is designed
in order to select the most relevant features for performing
classification or prediction. They compared their model
with IWPC and Gage’s models, along with another model
proposed by Zambon et al. [8] based onMean Absolute Error
(MAE) and model’s fitness (𝑅2), which proved their model’s
outperformance.

In 2015, Sharabiani et al. [9, 10] developed a new
methodology towards estimating the initial warfarin dose.
The proposed methodology estimates the initial dose for
warfarin in two stages. In the first stage, using relevance
vector machines, the patients are classified into two classes:
patients requiring high doses (>30mg/wk) and patients who
require low doses (≤30mg/wk). In the second stage, the
dose for each class is predicted using two clinical regression
models, which are trained for each class. Their proposed
model was examined against Gage, IWPC clinicalmodels, the
fixed-dose approach (35mg/wk), and the model proposed by
Sharabiani et al. [10, 18] for African American patients, and it
outperformed all of them in terms of prediction accuracy.

Several predictionmodels have also been proposedwhich
target patients of specific ethnicities. The general proposed
models are much more accurate when they are applied to
Caucasian and Asian patients and less accurate in African
American patients [11–13].

Using machine learning techniques, Cosgun et al. [14]
proposed three PKGpredictionmodels for AfricanAmerican
patients. The models that were investigated were Boosted
Regression Tree (BRT), Random Forest Regression (RFR),
and Support Vector Regression (SVR). They compared their
models to the models proposed by Schelleman et al. [15, 16]
and Limdi et al. [13, 17] and reported their outperformance
based on 𝑅2. Sharabiani et al. [10, 18] suggested a new clinical
model for African American patients in 2013; the proposed
model outperformed IWPC and Gage models in terms of
prediction accuracy MAE and Root Mean Squared Error
(RMSE). Hernandez et al. [19] also proposed a PKGmodel for
AfricanAmerican patients.They used the data of 349 patients
for training the model and 149 patients for validating it. They
proved that their proposedmodel outperformed the PKGand
CL models proposed by IWPC [4].

Clinicians are now faced with several alternative dosing
approaches in order to determine the initiation dose of
warfarin in clinical practice. They can use the loading dose
method and the dose prediction models that are proposed in
the literature or rely solely on their clinical knowledge and
expertise.

The objective of this paper is to propose a method to
minimize warfarin misdosing when the prescription of the
initial dose is guided by clinical judgment alone.

The risk of misdosing is defined as a clinically signifi-
cant percentage difference between the initial dose and the
therapeutic dose. The therapeutic dose is defined as the dose
leading to two consecutive INRs in the therapeutic INR range
for at least 14 days apart. By prescribing an initial dose close
to the therapeutic dose, the time to reach the target INR
decreases and the risk of anticoagulant related complications
such as bleeding and thrombosis can be reduced.
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Figure 1: Distribution of the Initial Dose Prescribed by the Physi-
cian (IDP) Versus the Therapeutic Dose (Label).

Since the definition of a “clinically significant percentage
difference” is subject to individual interpretation, we have
examined our procedure based on different scenarios. The
proposed model estimates the amount of percentage error
which can be either positive (in case of overdose) or negative
(in case of underdose). Once the amount of percentage error
is estimated, the optimal initial dose can be determined
by revising the prescribed initial dose accordingly. If the
estimated percentage error is not considered significant, the
prescribed dose will be used unaltered. It is shown that, by
using the proposed method, the risk of misdosing decreases
significantly.

2. Materials and Methods

The dataset, which was used for this project, contains the
data of 150 warfarin-treated patients in the University of
Illinois Hospital & Health Sciences System (UI-Health) who
had reached the therapeutic warfarin dose in their course of
treatment.

At the University of Illinois Hospital (UIH), the ordering
clinicians select the initial dose of warfarin. If the resulting
dose from the Gage clinical model [3] which is calculated
using data in the electronic medical record (EMR) and the
dose selected by the clinician are more than 20% different
from the calculated dose, a warning is shown to the ordering
clinician which includes the suggested dose. The ordering
clinician is free to accept or reject this dose. If the ordering
clinician chooses to order warfarin pharmacogenetic testing,
a pharmacogenetics service pharmacist will assist with future
doses of warfarin. Otherwise, the clinical team will manage
the dosing of warfarin.

Numerous patient variables were recorded. The variables
in the dataset and their frequencies are presented in Tables
1 and 2. As a small minority of our patient population, our
model may not be appropriate in Asians. In Figure 1, the
correlation between Initial Dose Prescribed by the Physician
(IDP) and therapeutic dose is presented. The red line, in
Figures 1, 3, and 4, indicates the ideal dosing scenario for each
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Table 1: Categorical variables in the dataset.

Variable name Values Code Frequency Percentage

Race

African
American 1 79 53%

Hispanic 2 34 23%
White 3 18 12%
Asian 4 4 3%
Others∗ 5 15 10%

Gender Male 1 67 45%
Female 2 83 55%

Liver disease
Yes 1 3 2%
No 2 125 83%

Missing NA 22 15%

Warfarin Indication (WI)

A.fib 1 25 17%
DVT 2 53 35%
PE 3 34 23%

TKA/THA 4 13 9%
MVR 5 1 1%
CVA 6 4 3%
Others 7 20 13%

Goal INR
2-3 1 136 91%

2.5–3.5 2 3 2%
1.8–2.5 3 11 7%

Amiodarone
Yes 1 5 3%
No 2 144 96%

Missing NA 1 1%

Bactrim
Yes 1 1 1%
No 2 148 99%

Missing NA 1 1%

Azole
Yes 1 1 1%
No 2 148 99%

Missing NA 1 1%

Which statin? (ST)

None 0 93 62%
Simva 1 14 9%
Atorva 2 23 15%
Prava 3 7 5%
Lova 4 8 5%
Rosuva 5 4 3%
Missing NA 1 1%

Dialysis Yes 1 8 5%
No 2 142 95%

Rheumatoid arthritis Yes 1 1 1%
No 2 149 99%

Collagen vascular disease Yes 1 2 1%
No 2 148 99%

Deep VeinThrombosis (DVT) Yes 1 10 7%
No 2 140 93%
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Table 1: Continued.

Variable name Values Code Frequency Percentage

Smoking
Current smoker 1 13 9%
Never smoker 2 107 71%
Ex-smoker 3 30 20%

EtOH
Yes 1 24 16%
No 2 119 79%

Missing NA 7 5%

Illicit Yes 1 6 4%
No 2 144 96%

Hypertension Yes 1 86 57%
No 2 64 43%

Angina Yes 1 1 1%
No 2 149 99%

Myocardial Infarction Yes 1 3 2%
No 2 147 98%

Percutaneous Coronary Intervention (PCI) Yes 1 6 4%
No 2 144 96%

Coronary Artery Bypass Graft (CABG) Yes 1 5 3%
No 2 145 97%

Atrial Fibrillation or Flutter Yes 1 11 7%
No 2 139 93%

Diabetes Mellitus (DM) Yes 1 48 32%
No 2 102 68%

Stroke Yes 1 11 7%
No 2 139 93%

Chronic Renal Insufficiency Yes 1 15 10%
No 2 135 90%

Chronic Obstructive Pulmonary Disease (COPD) Yes 1 7 5%
No 2 143 95%

Asthma Yes 1 18 12%
No 2 132 88%

Valvular heart disease Yes 1 1 1%
No 2 149 99%

Sickle cell Yes 1 3 2%
No 2 147 98%

Cancer history Yes 1 12 8%
No 2 138 92%

Pulmonary Embolism (PE)
Yes 1 5 3%
No 2 144 96%

Missing NA 1 1%

Dyslipidemia Yes 1 53 35%
No 2 97 64%

Heart Failure (HF) Yes 1 15 10%
No 2 135 90%

Peripheral Vascular Disease (PVD) Yes 1 7 4%
No 2 143 95%

∗These patients have predominantly unknown race.
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Table 2: Continuous variables in the data set.

Continuous Variables Unit
Number of
missing
instances

Mean Median Standard
deviation Min Max

Therapeutic dose (Label) mg/day 0 5.68 2.87 5.1 0.9 16.8
Initial Dose Prescribed By the
Physician (IDP) mg/day 2 6.12 2.59 5 1 16

Percentage error 2 0.26 0.7 0.12 −0.84 4.83
Age Year 0 54.29 17.82 57 18 91
Height (Ht ) cm 0 168.28 10.35 169 142.2 195
Weight (Wt) kg 0 89.9 31.12 83 40 220
Creatinine Clearance (CrCl) ml/min 2 64.79 36.32 63.65 3.6 146.5
Albumin g/dl 17 3.12 0.65 3.2 1.4 4.3
Aspartate Aminotransferase
(AST) u/L 22 33.56 41.04 22 9 379

Alanine Aminotransferase (ALT) u/L 22 25.88 24.85 19 5 199
Baseline INR 1 1.18 0.14 1.2 1 1.8
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Figure 2: Pareto Chart for identifying the popular Initial Dose Prescribed by the Physician (IDP). 75% of the patients receive the popular
doses (5, 7.5, 4, 10, 2.5mg).

patient which is a case of achieving a complete correlation
between the two variables. It provides a visual aid as to
how distant the points are in the space from the complete
correlation between the variables.

It is evident that most physicians tend to prescribe doses
at popular discrete dose values. A Pareto chart measures this
tendency as shown in in Figure 2.

As it is presented in Figure 2, 75% of patients in the
dataset received dose values of 2.5, 4, 5, 7.5, and 10mg/day
(bars colored in orange).We focused on the patientswhohave
received those commondoses.This was done tominimize the
effect on rare unusual doses on our model and to increase the
robustness of the model for the more common doses. This

was necessary due to the relatively small size of the dataset.
The distribution of the therapeutic dose at each level of the
IDP is presented in Figure 3. Additionally, in Figure 4, a
boxplot for each level is created.

Using the initial dose which was prescribed by the
clinicians and the value of the therapeutic dose, the amount
of percentage error is calculated. The frequency of patients
with differing percentage error is presented in Figure 4. By
a subjective definition of a clinically significant percentage
difference, the patients who are at high risk/low risk of
misdosing can be identified. Taking Figure 5 as an example,
it is assumed that 20% difference is a significant difference
and it is shown by dark vertical lines. The bars in Figure 5
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Figure 3: Distribution of the Initial Dose Prescribed by the
Physician (IDP) versus the therapeutic dose (Label) for the popular
doses against the ideal dosing setting.
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Figure 4: Comparing the distribution of therapeutic dose for
popular Initial Dose Prescribed by the Physicians (IDP) using
boxplots.

are color-coded based on the intensity of their corresponding
volume.

Another point of interest is to identify the ranges of
prescribed initial dose where higher values of percentage
error occur. In Figure 3, the relationship between the initial
dose and the percentage error is presented. Additionally,
using a polynomial local regression, the fitted curve describ-
ing their relationship along with its prediction confidence
interval is presented in Figure 6. The size of each point in
Figure 6 is proportional to the amount of percentage error.
It is evident from Figure 6 that the frequency of higher values
of percentage error tends to increase at larger values of initial
dose.

Our goal is to develop a prediction model which assigns
potential risk of misdosing to any prescribed initial dose.
Therefore, in order to identify the linear dependency among
the variables, a Pearson correlation matrix was created in
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Figure 5: Defining the high-risk and low-risk dosing zones with the
respect to the amount of generated percentage error by the Initial
Dose Prescribed by the Physicians (IDP).
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Figure 6: Distribution of percentage error at each level of popular
Initial Doses Prescribed by the Physicians (IDP) (the sizes of the
points are proportional with the amount of error generated at each
dosing level).

Figure 7 and the corresponding 𝑝 values are presented in
Figure 8. The values in Figures 7 and 8 are color-coded to
facilitate the process of comparing the relative magnitude
of numbers in the figure with the dark red being the
highest value and the dark blue being the lowest value.
In order to avoid collinearity in modeling, variables that
had a correlation more than or equal to 85% were defined
as highly correlated; only one of them was entered in the
modeling phase. The data points which had missing values
for their therapeutic dose were eliminated from the dataset.
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Label Percentage Error IDP AGE Ht Wt CrCl Albumi AST ALT
Label 1.00

Percentage Error −0.57 1.00

IDP 0.36 0.47 1.00

AGE −0.22 −0.08 −0.36 1.00

Ht 0.15 −0.12 0.13 −0.12 1.00

Wt 0.29 −0.02 0.40 −0.06 0.39 1.00

CrCl 0.15 0.08 0.28 −0.56 0.39 0.07 1.00

Albumi −0.16 0.11 −0.04 0.24 −0.15 0.02 −0.19 1.00

AST −0.11 0.05 −0.03 0.00 0.21 0.10 0.02 −0.14 1.00

ALT −0.08 0.17 0.12 −0.10 0.16 0.24 0.20 −0.14 0.74 1.00

Figure 7: The Pearson correlation matrix. The values are color-coded to identify the highly correlated variables.

Label

Percentage Error
IDP
AGE
Ht
Wt
CrCl
Albumi
AST
ALT

Label Percentage Error IDP AGE Ht Wt CrCl Albumi AST ALT

0.00E + 00

0.00E + 00

0.00E + 00

0.00E + 00

0.00E + 00

0.00E + 00

0.00E + 00

0.00E + 00

0.00E + 00

0.00E + 00

4.24E − 01

2.62E − 01

1.05E − 01

1.36E − 01

2.91E − 03

1.16E − 01

2.58E − 02

1.49E − 04

2.77E − 10

8.12E − 02

6.35E − 01

2.79E − 01

4.24E − 01

8.74E − 01

2.42E − 01

3.94E − 01

5.63E − 07

2.38E − 01

7.72E − 01

6.68E − 01

4.34E − 03

2.38E − 05

1.97E − 01

1.60E − 04

3.33E − 01

9.89E − 01

1.24E − 02

6.07E − 10

5.72E − 01

2.30E − 01

6.05E − 191.57E − 013.99E − 021.50E − 029.59E − 02

1.49E − 018.42E − 013.22E − 013.46E − 02

5.72E − 028.63E − 011.16E − 01

4.53E − 014.65E − 05

3.81E − 05

Figure 8: Corresponding 𝑝 values to the Pearson correlation matrix in Figure 7.

The missing values for other variables were imputed using
KNN (𝐾 = 5) method since 81% of the data points in
the dataset were complete. The choice of 𝐾 in the KNN
resulted from the cross-validation process. There existed a
significant number of variables compared to the number of
data points in the dataset, so we needed to select the best
subset of variables. Using shrinkage methods, the process of
variable selection and developing a prediction model took
place simultaneously. Accordingly, the categorical variables
in the dataset were transformed into multiple binary dummy
variables with one level kept out as the reference (baseline).
In the data preprocessing phase, entering the two-level
categorical variables with highly imbalanced ratio of levels
(when the volume of one level is less than 10% of the entire
values of the variable) was avoided. After dividing the data
randomly to derivation and validation cohorts (60%/40%)
the optimal prediction model was developed using LASSO
(Least Absolute Shrinkage and Selection Operator) and
the entire analysis was implemented in R 3.0.2. A brief
overview of the shrinkage regression models is presented
below.

2.1. Shrinkage Regression. An alternative approach to least
square method, and ridge regression, towards estimating

a linear model’s coefficients, is LASSO (Least Absolute
Shrinkage and Selection Operator) [18]. The objective in
LASSO is to minimize the residual sum of square subjects
through the summation of the absolute values of coefficients
which are less than a constant.

argmin
{{{
𝑁∑
𝑖=1

(𝑦𝑖 − 𝛽0 −∑
𝑗

𝛽𝑗𝑥𝑖𝑗)
2}}}

Subject to ∑
𝑗

𝛽𝑗 ≤ 𝜆.
(1)

One of themost important characteristics associated with
LASSO is that it enforces some coefficients to be exactly equal
to zero and, hence, it results in a sparse model. However,
by choosing a significantly small 𝜆, this property will be
nullified (and LASSO regression will be the regular least
square model). Therefore, an appropriate choice of 𝜆 is quite
critical. Because of this important attribute, the variable
selection and modeling phases take place simultaneously.
This idea can be considered as a major improvement over
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Figure 9: Model coefficients resulting from LASSO with involving IDP (the numbers attached to the variable names are the codes created
after converting the variables into dummy variables. The codes are defined in Table 1.).

ridge regression where some coefficients will tend to zero but
not exactly zero (see (2)).

argmin
{{{
𝑁∑
𝑖=1

(𝑦𝑖 − 𝛽0 −∑
𝑗

𝛽𝑗𝑥𝑖𝑗)
2}}}

Subject to ∑
𝑗

𝛽𝑗2 ≤ 𝜆.
(2)

Another major advantage of LASSO is its interpretability.
As opposed to somemore complex nonlinear models such as
neural networks, LASSOwill result in an interpretable model
which is very important especially in clinical studies. For a
detailed study on LASSO see Tibshirani’s [19] original paper.

3. Results

The optimal value of 𝜆 was selected by performing the 𝑘-fold
cross-validation (𝑘 = 10). The resulting prediction model’s
coefficients are presented in Figure 9.

After developing the prediction model using the training
set, its performance was evaluated on the testing set. There-
fore, for every data point in the testing set the amount of
percentage error was estimated. By defining a given threshold
for determination of the significant percentage error, it can
be decided whether the IDP was acceptable or would have
needed modification. Therefore, the threshold represents the
user’s choice in defining the level of significance in percentage
difference which triggers that action for dose revision.

According to the estimated percentage error, the pre-
scribed initial dose can be revised.

Revised Dose = (1 − Estimated Percentage Error100 )
× IDP.

(3)

Therefore, the resulting revised initial dose values were
compared against the original initial dose alongwith theGage
model in terms of RMSE.

The RMSE is used as the leading indicator of modeling
performance and was selected since it is more appropriate
to use (than Mean Absolute Error) when the error has a
Gaussian distribution. According to the most cited dataset
in the literature for warfarin dosing, IWPC dataset [20], the
assumption of the errors having the Gaussian distribution
in a larger setting was proven and therefore most prediction
models in this context in the literature are compared based
on the RMSE.

Additionally, in order to examine the impact of involving
IDP in the modeling process, a new prediction model was
developed with IDP being eliminated from the model. The
developed model coefficients are presented in Figure 10.

Based on the results presented in Table 3, the estimated
initial doses will result in more accurate estimations than the
original dose values (RMSE = 2.38), the prediction values
made by Gage model (RMSE = 2.05), and the linear model
without using the initial dose in modeling (RMSE = 2.68).

4. Discussion

The proposed methodology has been developed and tested
on the data of patients and physicians at the UIH, a tertiary
urban hospital with an ethnically diverse patient population.
The dataset is relatively small, but the 60% training set was
able to develop a model which had better predictive power
than traditional models. The methodology is novel for two
reasons. First, this is the only model in the literature which
uses information from clinicians, their first dose, to help
estimate the best dose. Secondly, this model used a LASSO
methodology to help deal with a less-than-ideal number of
variables versus data points.
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Table 3: Comparing the performance of the revised values of IDP with the original values of IDP, the Gage CL model, and the linear model
without IDP. The percentage change in the table represents the percentage decrease in RMSE after revising the IDP.

Threshold RMSE of the revised
IDP

RMSE of the Original IDP
(percent change)

RMSE of the Gage model
(percent change)

RMSE of the linear model
without involving IDP

(percent change)
0.1 1.65 2.391 (31%) 2.063 (20%) 2.661 (38%)
0.15 1.76 2.378 (26%) 2.047 (14%) 2.667 (34%)
0.2 1.77 2.392 (26%) 2.051 (13.7%) 2.682 (34%)
0.25 1.9 2.375 (20%) 2.05 (7.3%) 2.68 (29.1%)
0.3 1.96 2.39 (18%) 2.05 (4.4%) 2.681 (26.9%)
0.35 1.96 2.39 (18%) 2.05 (4.4%) 2.681 (26.9%)
0.4 2.06 2.368 (13%) 2.05 (−0.5%) 2.679 (23.1%)

−0.69
0.608

0.507
0.441
−0.437

0.376
0.331

0.315
−0.293

−0.248
0.214

0.191
−0.184
−0.172
−0.166

0.145
0.109

0.094
0.08

0.039
−0.039
0.037
−0.026
−0.026

0.019
0.005

0.003
0.003
−0.003
−0.001

0.0 0.2 0.4 0.6
AGE

Ht
CrCl
AST

Wt
WI3

(Intercept)
WI7

Albumin
EtOH2

DM2
ST2

WI2
Gender2

GoalINR3
WI4
ST3

Asthma2
Dyslipidemia2

Smoking2
Race3

HT2
Race2

ST1
WI6

Baseline INR
Smoking3

Race5
ST4

GoalINR2

Figure 10:Model coefficients resulting from LASSOwithout involving IDP (the numbers attached to the variable names are the codes created
after converting the variables into dummy variables. The codes are defined in Table 1.).

The goal of this project was to provide evidence of the
feasibility of this approach.We have shown that there is some
information content in the first dose ordered, as inclusion
provides a better fit in our own model without the initial
dose, as well as a better fit than traditional models. The
reason that this occurred was not studied, but it suggests the
previous models do not contain some variables or factors
which ordering clinicians may be considering when dosing.
Since the main focus of this study is to propose a new
template for dosing by involving the suggested dose by the
physician into the modeling process, for future deployment
of such template, it is suggested to explore the performance
of other predictive models after fully evaluating the model
(power tests, diagnostic tests, etc.) as well. Additionally,
on larger datasets, we suggest adjusting the 𝐾-fold cross-
validation approach with lower number for 𝐾 in order to
avoid overfitting the model.

The final model produced by the LASSO procedure
does not include some elements of the traditional clinical
Gage equation, the use of the medications amiodarone,

sulfamethoxazole, and azole antifungal agents. This may be
due to the small population size and infrequency of use
of these medications. Using this methodology on a larger
dataset may or may not have the same finding. Our model
includes the IDP which is not used in the Gage equation, and
although it is less of a factor (see Figure 9) it does include
the presence of diabetes mellitus. The Gage equation uses
the presence or absence of liver disease, while our equation
includes the lab values of AST and albumin, which can be
considered a proxy for liver disease.

This type of analysis could be used for an active clinical
decision support system once validated more thoroughly. All
prior dosing data at a given institution which includes a
proven maintenance dose can be used to develop the model.
Once developed, a clinician’s first dose, along with the noted
patient variables would be used to determine a percentage
error estimate. If thiswas less than some institutionally agreed
upon threshold, no advice would be given to the clinician
regarding their dose selection. If the initial dose was greater
than the threshold away from the estimate, a dosing reminder
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or a new order could be introduced to the ordering clinician.
This would only interrupt clinicians when there was a high
likelihood of error.

The model is based on patient specific data from a given
institution as well as the IDP for that institution. Because
of this, it will need to be derived for each institution and as
changes in initial dosing (IDP) occur, the model would likely
change as the IDP does play a role in the predicted dose. If
clinicians begin to dose purely on the model itself, it is likely
that the added predictive power of adding the IDPwill be lost
as the variance between a predicted dose and the actual dose
clearly contains useful information. It is however unlikely
that this will occur at most hospitals soon as clinicians often
disregard suggested dosing. As variations occur in physician
compliance with initial dosing recommendations, patient
mix, and changes in clinical practice, the model will need
to be continuously adjusted. A reliance on prior clinical
practice and prior patientmixwill not likely produce themost
accurate predictions.

The major limitation of this work is the relatively small
dataset. The degree of fit and the novel use of the clinicians’
first dose are intriguing and suggest larger studies to better
validate the method. As this method is presently designed
to help with the first dose, it can be used in conjunction
with other models for subsequent decision support, with or
without pharmacogenomics testing. It should work with any
ethnicmixture of patients as themachine learningmodels are
based on the patients seen at the particular institution, not a
cohort from a published study which is likely different than
the patients seen at an institution.

5. Conclusions

In this paper, an intelligent clinical decision support system
for prescribing the initial dose of warfarin is presented. The
maintenance dose of warfarin is estimated using shrinkage
methods and including the actual initial ordered dose. This
estimate was more accurate than the original dose given
and the values predicted by the Gage clinical model. This
approach is promising and warrants further study that may
produce a functional clinical decision support system to
assist with initial dosing of warfarin. The major limitation of
this analysis is the small sample size used in its derivation.
This limits the generalizability of our findings; however, the
method is novel and should be tested in larger datasets. The
proposed methodology serves as a modeling template for
other healthcare institutions. Therefore, based on each insti-
tution’s attributes (local patient’s attributes/physicians’ pre-
ferred dosing methods), customized models can be derived,
which function more efficiently than generic models in the
literature.
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