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Abstract
Objectives: The aim of this study was to investigate associations between skeletal muscle mass and bone mineral density according to gender and
skeletal sites.
Methods: Using the data from Korean National Health and Nutrition Examination Survey (KNHANES IV) 2009, a total of 711 males and 847
females over 65 years of age were evaluated. Bone mineral density (BMD) and body composition were assessed using dual-energy X-ray
absorptiometry.
Results: Relative appendicular skeletal muscle (RASM) was positively related with the femur BMD with a stronger relationship in males
(r ¼ 0.207, p < 0.001) than in females (r ¼ 0.095, p < 0.05). However, lumbar spine BMDs in both males and females did not show any
significant associations with the RASM value. In the logistic regression for osteoporosis expressed as a decrease of risk per increase of RASM by
1 standard deviation (SD) of the same sex healthy reference group, the age- and BMI-adjusted odds ratio (OR) for osteoporosis was 0.42 (95%
CI 0.12e0.76) in the femur neck and 0.24 (95% CI 0.07e0.76) in the total hip for males. Among females, the age- and BMI-adjusted OR for
osteoporosis was 0.65 (95% CI 0.33e1.00), which showed importance only in the total hip.
Conclusions: Higher RASM was significantly associated with lower risk for osteoporosis and the areas at the femur neck and total hip appeared
to more likely be affected positively by muscle. Moreover, because males showed faster muscle loss with aging than females, the bones of males
may be more prone to favorable effects of muscle.

© 2017 The Korean Society of Osteoporosis. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Loss of muscle mass is a universal consequence of aging [1].
Sarcopenia is a condition characterized by progressive loss of
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muscle mass and strength and decreased physical performance
[2]. Because of the considerable roles of skeletal muscle in
humans, sarcopenia appears to result in many metabolic and
physiological derangements in some individuals [3e5].
Therefore, many clinical and basic studies have recently been
conducted regarding the clinical impact, pathophysiology, and
treatment of sarcopenia [6]. Skeletal muscles are essential for
locomotion and mobility, thus sarcopenia has dramatic conse-
quences such as impaired performance, increased risk of falls
and, consequently, an increased risk of fragility fractures [7e9].
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Table 1

Baseline characteristics of study elderly and healthy young reference group

(20e39 years).
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Osteoporosis, characterized by decreased bone strength
and increased risk of fractures, is another major health
problem faced by the elderly, and bone mineral density
(BMD) and bone quality are major component determining
bone strength [10]. Muscle and bone are well known to
closely interact with each other [11,12]. Several theories have
been suggested to explain the close relationship between
sarcopenia and osteoporosis. First is the mechanostat theory
and mechanical loading by skeletal muscle on bone stimu-
lates and strengthens the bone [11,13]. Moreover, there are
many common contributors both for muscle and bone such as
sex hormones, growth factors, inflammatory cytokines and
oxidative stress [1]. Therefore, age-related changes of those
factors might influence both bone and muscle simultaneously
[14,15]. Furthermore, it is believed that skeletal muscles
secrete factors which affect bone directly, and vice versa
[9,16]. In other words, there is direct communication between
bone and muscle and it could contribute to strong relationship
between bone and muscle.

However, mode or direction of dynamic loading of muscle
on the bone is quite distinct according to the bone site [10,17].
Furthermore, cortical bone or trabecular bone, and bones in
males and females show different age patterns, indicating
earlier and constantly slow bone loss in men, but later and
accelerated bone loss in women [18,19]. Therefore, the impact
of muscle on bone might also differ according to the bone site
or gender.

In the present study we clarified the relationship between
muscle loss and osteoporosis in the Korean elderly. Moreover,
we also investigated whether this relationship could be
different according to gender and bone site.

2. Materials and methods

Study subjects (Age � 60

years old)

Young reference group

(20e39 years old)

2.1. Study design and participants
Men Women Men Women

N 711 847 974 1241

Age, years 72.4 ± 5.5 73.1 ± 5.9 30.7 ± 5.5 30.9 ± 5.5

Height, cm 164.5 ± 5.8 150.2 ± 5.9 173.5 ± 5.8 160.3 ± 5.5

Weight, kg 62.4 ± 9.7 54.4 ± 8.9 72.4 ± 11.6 57.0 ± 9.9

BMI, kg/m2 23.0 ± 2.9 24.1 ± 3.4 24.0 ± 3.5 22.2 ± 3.7

aLM, kg/m2 20.5 ± 2.9 14.2 ± 1.9 25.3 ± 3.5 15.9 ± 2.4

RASM, kg/m2 7.53 ± 0.87 6.27 ± 0.66 8.41 ± 0.95 6.16 ± 0.79

Total fat

mass, kg

14.1 ± 4.9 18.4 ± 5.6 e e

RTFM, kg/m2 5.2 ± 1.7 8.1 ± 2.3 e e

Lumbar spine e e

BMD, g/cm2 0.919 ± 0.170 0.742 ± 0.134 e e

T-score �0.9 ± 1.4 �2.3 ± 1.2 e e
Femur neck e e

BMD, g/cm2 0.695 ± 0.115 0.554 ± 0.093 e e

T-score �1.2 ± 0.9 �2.3 ± 0.9 e e

Total Hip e e
BMD, g/cm2 0.883 ± 0.128 0.712 ± 0.110 e e

T-score �0.4 ± 0.9 �1.2 ± 0.9 e e

Osteoporosis,

n (%)

90 (13.8%) 453 (60.3%) e e

Osteoporotic hip

fracture, n (%)

13 (2.3%) 66 (22.3%) e e

BMI, body mass index; RASM, relative appendicular skeletal muscle; BMD,

bone mineral density.
The KNHANES is a nationwide, population-based, cross-
sectional study, and has been conducted periodically since
1998 by the Division of Chronic Disease Surveillance of
the Korea Centers for Disease Control and Prevention to
assess the health and nutritional status of the civilian, non-
institutionalized Korean population. A stratified, multi-stage
probability sampling design was used for the selection of
household units. The KNHANES IV was conducted from
2007 to 2010 and data acquired for this study were part of the
Fourth Korean National Health and Nutrition Examination
Survey (KNHANES IV) 2009. Among the survey participants,
elderly males and females over the age of 65 years were
included for analysis and the values of healthy adults 20e39
years of age (974 males, 1241 females) were used as refer-
ence. Subjects with any pathological disorders (such as cancer,
hyperthyroidism, malabsorption, renal failure, or hepatic
failure) or taking medications known to alter calcium and bone
metabolism (such as corticosteroids, heparin, or anticonvul-
sants) were excluded from the analysis. The subjects who used
antiresorptive agents such as raloxifene, bisphosphonate, or
hormone replacement therapies were also excluded.
2.2. Body composition and bone densitometry
Whole body and regional body composition were measured
by dual energy x-ray absorptiometry as previously described
(DXA, Discovery W, Hologic, Waltham, MA, USA) [20]
following the manufacturer's protocol. Appendicular skeletal
muscle mass (ASM) was calculated as the sum of lean soft
tissue in bilateral upper and lower limbs, and relative ASM
(RASM) was calculated as ASM adjusted by height-squared
(ASM/height2) [2,21]. The scanner determined total fat mass
(TFM) in kg and relative total fat mass (RTFM) was calculated
as TFM/height2. Bone was scanned at the lumbar spine, femur
neck and total hip in the posteroanterior projection using DXA
equipment. Osteoporosis was defined as a BMD t-score �2.5
or below and T-scores were calculated using reference ranges
for Asian populations provided by the manufacturer.
2.3. Data analysis
All statistical analyses were conducted using the Statistical
Package for the Social Sciences (PASW statistics) software
(version 18, SPSS Inc., Chicago, IL, USA). Data are repre-
sented as mean ± standard deviation (SD). Pearson's correla-
tion coefficient was calculated to analyze relationships
between anthropometric parameters and BMD or age. Odds
ratios (ORs) with 95% confidence intervals (CIs) for osteo-
porosis in each skeletal site were evaluated using the logistic
regression analysis with or without adjustment for age and



Table 2

Correlation analysis between age and body composition in the

elderly.

Males Females

RASM �0.333b �0.180b

RTFM 0.058 �0.104a

BMI �0.192b �0.141b

Values mean correlation coefficients (r) calculated using the

Pearson correlation analysis.
ap < 0.05, bp < 0.001.

RASM, relative appendicular skeletal muscle; RTFM, relative

total fat mass; BMI, body mass index.

Table 3
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BMI according to decrease of RASM by 1 SD compared to the
healthy reference group.

3. Results

The clinical characteristics of the study subjects and
reference group are shown in Table 1. A total of 711 males and
847 females over the age of 65 years were included in the
study group and the data from healthy adults (974 males and
1241 females) 20e39 years of age were used as reference
levels. The prevalence of subjects who had been diagnosed as
hypertension was 46.4% and type 2 diabetes mellitus was
17.0% in this study subjects.
Partial correlation analysis between body composition and BMD adjusted for

age and BMI.

Lumbar Spine
2

Femur Neck
2

Total Hip BMD,
2

3.1. Age patterns of muscle mass in elderly males and
females
BMD, g/cm BMD, g/cm g/cm

Males Females Males Females Males Females

RASM, kg/m2 0.029 0.053 0.207b 0.095a 0.237b 0.116a

RTFM, kg/m2 �0.044 0.058 �0.189b �0.092a �0.196b �0.091a

Values mean correlation coefficients (r) calculated using the Partial correlation

analysis after adjusting for age and BMI.
ap < 0.05, bp < 0.001.

BMI, body mass index; ASM, appendicular skeletal muscle; RTFM, relative

total fat mass; RASM, relative appendicular skeletal muscle; BMD, bone

mineral density.
The RASM decreased with age (Fig. 1). However, the age
patterns of RASM showed differences between males and
females with more rapid loss in elderly males than in elderly
females. Generally, 2.8e6.5% of muscle mass loss was
observed in males, but only 2.5e3.8% was observed in fe-
males every decade (Fig. 1). After 75 years of age, males and
females showed a similar amount of muscle loss, but males
showed 2 times faster skeletal muscle loss from the seventh to
eighth decade of life. Regarding correlation between age and
variables for body composition, RASM showed negative cor-
relation with age both in males and females (r ¼ �0.333,
p < 0.001 for males, r ¼ �0.180, p < 0.001 for females).
However, RTFM showed negative correlation only in females
(r ¼ �0.104, p < 0.05). BMI also correlated negatively with
age both in males and females, but the correlation was weaker
than with RASM (Table 2).
3.2. Relationship between muscle and bone
Table 3 presents the correlation between body composi-
tion parameters and BMD of each bone site. After adjusting
for the significant confounding variables of bone, age, and
BMI, RASM was positively related with BMD of the femur
neck with a stronger relationship in males than females
(r ¼ 0.207, p < 0.001 for males, r ¼ 0.095, p < 0.05 for
females). This pattern was similarly observed in total hip
BMD (r ¼ 0.237, p < 0.001 for males, r ¼ 0.116, p < 0.05
for females). In contrast, body fat parameters and RTFM,
Fig. 1. Age-related changes of RASM (ASM/ht2) for males (A) and females (B), an

solid line (�) denotes the lowest curve and the dashed line (–) denotes the correla
showed negative correlation with the femur neck and
total hip BMD both in males and females (r ¼ �0.189,
p < 0.001 for males, r ¼ �0.196, p < 0.001 for females).
However, lumbar spine BMD in both males and females did
not show any significant associations with these two body
composition parameters.

The results of the logistic regression for osteoporosis
expressed as a decrease of risk per increase of RASM by 1
SD of the same sex healthy reference group are shown in
Fig. 2. The higher RASM was generally associated with
lower risk of osteoporosis. Before crude adjustment (model
1) and adjusting for age only (model 2), an increase of
RASM showed significant risk reductions for all skeletal
sites both in males and females. In model 3, the age- and
BMI-adjusted OR for osteoporosis was 0.42 (95% CI
0.12e0.76) in the femur neck and 0.24 (95% CI 0.07e0.76)
in total hip for males. Among females, the age- and BMI-
adjusted OR for osteoporosis (0.65) showed importance
only in total hip (95% CI 0.33e1.00). The degree of risk
d RASM across the decades in both males and females (C) in the elderly. The

tion line. RASM, relative appendicular skeletal muscle.



Fig. 2. Crude and adjusted odds ratios (ORs) with 95% confidence interval (CI) for osteoporosis according to 1 SD increase of RASM at each skeletal site. The

solid line (�) denotes males and the dashed line (–) denotes females. Model 1: Crude. Model 2: Age-adjusted. Model 3: Age- and BMI-adjusted. RASM, relative

appendicular skeletal muscle.
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reduction for osteoporosis by increased muscle mass was
higher in males than in females, and higher in total hip than
in lumbar spine.

4. Discussion

In this nationally representative study, we demonstrated that
higher RASM was significantly associated with lower risk for
osteoporosis. However, these positive effects of muscle mass on
bone showed differences according to the skeletal site or
gender. The femur neck and total hip appeared to be more likely
positively affected by muscle loading. Moreover, because males
showed faster muscle loss with aging than females, the bones in
males may be more prone to the favorable effects of muscle.

Progressive decline of skeletal muscle mass is a serious
change associated with aging [22]. Sarcopenia is a patholog-
ical muscle mass loss leading to decreased strength and
functional impairment [4,23]. Muscles play various important
roles in the human body; thus loss of muscle mass can cause
diverse functional and metabolic derangements in the elderly
[24e26]. Muscle stimulates and strengthens bone through the
dynamic loading on bone [11,12]. Therefore, sarcopenia is
thought to decrease BMD and bone strength, and increase
fracture risk [25,27e29].

In the sex-specific associations between RASM and bone
in the present study, the correlation in males was stronger
than in females. Sex hormones, growth hormones, nutritional
balance and daily activity are conclusive factors for muscle
quantity and quality. Therefore, differences in changes of
those factors with aging in men and women might cause the
gender-differences between bone and muscle [30,31]. How-
ever, biological mechanism which could underlie these
gender differences is still unclear and needs to be further
elucidated.

In the present study, risk reduction for osteoporosis in the
femur neck and total hip with increased RASM was higher
than in the lumbar spine. Muscle stimulates lumbar mainly via
axial compression, but femur via compression, bending and
torsion [17]. Accordingly, these differences in loading mode of
muscle on the lumbar spine and the femur neck or total hip
could contribute the site-specific associations between those
two skeletal areas.

Muscle-bone crosstalk is very complex and the molecular
mechanisms remain unclear [32]. However, numerous epide-
miology data have shown the close relationship between
osteoporosis and sarcopenia [29,33]. Furthermore, a recent
study reported that muscle-related gene polymorphisms had
significant associations with fracture risk and bone loss [33].
Based on these results showing the existence of shared path-
ogenesis in the age-related pathological conditions, osteopo-
rosis, and sarcopenia could be expected. If a single therapeutic
modality for maintaining bone and muscle is developed, it
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could have significant potential for preventing fractures in the
elderly.

This study has several limitations. First, the design was
cross-sectional, and thus was limited to investigate whether
higher muscle mass has a protective effect for future age-
related bone loss. To verify the muscle as a therapeutic
target for osteoporosis, a longitudinal study with an inter-
ventional design is necessary. Second, muscle strength was not
assessed and therefore a relationship between muscle mass and
strength or between muscle strength and bone could not be
determined. Third, the levels of sex hormone and growth
hormone which could affect both bone and muscle were not
measured in this study. Finally, the number of hip fractures
was very small, thus we could not analyze the association
between the hip fracture risk and sarcopenia.

In conclusion, RASM has a significant relationship with
BMD and sarcopenia is an independent risk factor for osteo-
porosis. Furthermore, the effects of muscle on bone appear
stronger in males than in females and in the femur than in the
lumbar. Intensive and constant physical activity for preventing
muscle loss and engaging muscle strength could be a helpful
therapeutic approach for preventing pathological bone loss,
especially in the femur of elderly males.
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