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Metabolic reprogramming and epithelial-mesenchymal plasticity are both hallmarks of the

adaptation of cancer cells for tumor growth and progression. For metabolic changes,

cancer cells alter metabolism by utilizing glucose, lipids, and amino acids to meet the

requirement of rapid proliferation and to endure stressful environments. Dynamic changes

between the epithelial and mesenchymal phenotypes through epithelial-mesenchymal

transition (EMT) and mesenchymal-epithelial transition (MET) are critical steps for cancer

invasion and metastatic colonization. Compared to the extensively studied metabolic

reprogramming in tumorigenesis, the metabolic changes in metastasis are relatively

unclear. Here, we review metabolic reprogramming, epithelial-mesenchymal plasticity,

and their mutual influences on tumor cells. We also review the developing treatments for

targeting cancer metabolism and the impact of metabolic targeting on EMT. In summary,

understanding the metabolic adaption and phenotypic plasticity will be mandatory for

developing new strategies to target metastatic and refractory cancers that are intractable

to current treatments.

Keywords: cancer metabolism, aerobic glycolysis, epithelial-mesenchymal plasticity, metastasis, drug resistance

BACKGROUND: ADAPTIONS OF CANCER CELLS FOR TUMOR
GROWTH AND METASTASIS

Cancer cells are characterized by rapid proliferation and metastasis (1). Adaptation of cancer cells
to stressful environments is mandatory to ensure their growth and metastasis. Cancer cells utilize
metabolic reprogramming to meet their energy requirements for growth (2), whereas the dynamic
changes between epithelial and mesenchymal states are important for the successful development
of metastatic tumors (3). Understanding the relationship between these two events is not only
scientifically interesting but also important for developing strategies to target metastatic cancers.

Metabolic rewiring allows uncontrolled proliferative cancer cells to meet their requirements for
energy-demanding activities and macromolecule biosynthesis (1, 2). Cancer cells are dependent
on exogenous nutrients because endogenous nutrients are insufficient to maintain their active
proliferation (4–6). Blockage of cancer-specificmetabolism retards tumor growth or induces cancer
cell death through modulation of various signaling pathways (7–10). Compared to the extensive
understanding of metabolic reprogramming during the carcinogenic process, knowledge about the
metabolic changes of cancer cells in late-stage progression and metastasis is relatively limited.
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Epithelial-mesenchymal transition (EMT) is a process in
which epithelial cells lose their intercellular adherence and
cellular polarity and acquire the mesenchymal phenotype
(11). EMT is a crucial mechanism for embryogenesis, organ
fibrosis, and cancer metastasis (11). In cancer cells, activation
of EMT leads cells to acquire migration, invasion, stemness,
and drug resistance, whereas the reverse process of EMT,
i.e., mesenchymal-epithelial transition (MET), is important
for metastatic colonization (3). The updated concept suggests
that dynamic changes between epithelial and mesenchymal
phenotypes, i.e., epithelial-mesenchymal plasticity, rather than a
fixed phenotype, are preferred for developing metastatic tumors,
and a hybrid epithelial-mesenchymal state harbors a higher
plasticity for metastasis (12).

Here, we will review the metabolic changes and current
strategies for targeting cancer metabolism, epithelial-
mesenchymal plasticity, and the mutual influences between
these two events. The impact of metabolic targeting on
epithelial/mesenchymal phenotypes and metastasis will also
be reviewed.

METABOLIC REPROGRAMMING IN
CANCER CELLS: MECHANISMS,
BIOMARKERS, AND THERAPEUTIC
TARGETING

Mechanism for Metabolic Changes in
Cancer Cells
Cells break down nutrients to generate energy and building
blocks through metabolic pathways. Adenosine triphosphate
(ATP), as the cellular energy currency, is generated by aerobic
or anaerobic respiration. Cells take up glucose and convert it
into pyruvate through glycolysis. Under normoxic environments,
cells further convert pyruvate into acetyl coenzyme A (acetyl-
CoA) in mitochondria, which provides an acetyl group to the
tricarboxylic acid (TCA) cycle, a major reaction for energy
generation. Under hypoxic conditions, cells convert pyruvate
into lactate through anaerobic glycolysis. However, cancer cells
produce lactate regardless of oxygen availability (13), and this
phenomenon is called the Warburg effect or aerobic glycolysis
(14, 15). Cancer cells generate ATP and glycolytic intermediates
quickly through only 10 reaction steps within aerobic glycolysis
compared to the highly complicated oxidative phosphorylation.
18F-deoxyglucose-positron emission tomography confirmed the
increased glucose uptake in tumors compared to normal
tissues in cancer patients (16). Interestingly, cancer cells
do not completely depend on aerobic glycolysis; instead,
they also maintain functioning mitochondria and oxidative
phosphorylation (17, 18). A possible explanation is that the
mitochondrial electron transport chain generates high levels of
reactive oxygen species (ROS) during oxidative phosphorylation
of cancer cells. ROS activate signaling pathways to stimulate
cancer cell proliferation (18). Cancer cells also generate high
levels of nicotinamide adenine dinucleotide phosphate (NADPH)
as an antioxidant in both the mitochondria and the cytosol
to limit excessive ROS to prevent ROS-induced apoptosis

(19). Both the Warburg effect and oxidative phosphorylation
generate sufficient energy and glycolytic carbon intermediates,
which are essential for the synthesis of macromolecules to
meet the requirements of highly proliferative cancer cells. In
addition to the derangement of glucose metabolism, mutations
of the key enzymes in TCA cycle/glucose metabolism have
been identified in human cancers. Isocitrate dehydrogenase
(IDH) includes three main isoforms. IDH3 is the main
isoform in the TCA cycle that catalyzes the irreversible
conversion of isocitrate to α-ketoglutarate in the mitochondria
and generates NADH. IDH1 and IDH2 generate NADPH by
catalyzing the reversible isocitrate-to-α-ketoglutarate conversion
in the cytoplasm and the mitochondria, respectively. Mutations
of IDH1 and IDH2 have been recognized as oncogenic
events through decreasing α-ketoglutarate and increasing D-
2-hydroxyglutarate production (20), and the neomorphic IDH
mutant has been shown in acute myeloid leukemia (21) and
gliomas (22).

In addition to aerobic glycolysis, there are several major
metabolic derangements noted in cancer cells. The pentose
phosphate pathway (PPP) is recognized as an important pathway
for catabolizing glucose in cancer cells. The PPP is important
because it not only utilizes glucose for energy but also maintains
the biosynthesis of lipids and nucleotides and the antioxidant
responses of cancer cells (23). Furthermore, reprogramming
of lipid metabolism is an important feature of cancer cells.
Oxidation and synthesis of lipids support cancer cell proliferation
by providing building blocks for membrane synthesis and
additional energy sources (24). Fatty acids are mostly obtained
from environmental sources in normal cells; in contrast, de novo
synthesis of fatty acids is frequently increased in cancer cells
(25). Another well-recognized metabolic alteration in cancer
cells is glutamine dependency. Glutamine not only provides
an important metabolite in the TCA cycle (α-ketoglutarate by
glutaminase) (26) but also provides the nitrogen building blocks
for nucleotide and amino acid synthesis (2).

Deregulation of nucleotide metabolism, especially ATP, has
also been noted as a major event in cancer metabolism,
and it mainly influences antitumor immunity. High levels of
extracellular ATP generation are induced by inflammation,
ischemia, or hypoxia within tumor microenvironments through
various pathways, including channel or transporter-mediated
release, vesicular exocytosis, or direct release due to cell
destruction (27). Extracellular ATP is sequentially converted to
adenosine monophosphate (AMP), and AMP is hydrolyzed to
adenosine through ectonucleotidase CD39- and CD73-mediated
dephosphorylation (28). Adenosine is not only involved in
cancer growth but also generates anti-inflammatory responses by
modulating various cells in the tumor microenvironment, such
as endothelial cells, mast cells, natural killer cells, neutrophils,
macrophages, dendritic cells, and lymphocytes (29). In addition,
adenosine stimulates the differentiation of naive CD4+CD25− T
cells to CD4+CD25+Foxp3+ regulatory T cells and induces T-
cell anergy (30). Notably, HIF-1α induced by the hypoxic tumor
microenvironment enhances the expression of adenosinergic
molecules, including CD39 andCD73, as well as the adenosine 2B
receptor (A2BR) (31, 32). Overexpression of these adenosinergic
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molecules is associated with metastasis and poor patient
outcomes in different cancers (28, 33).

Thus, the metabolic reprogramming of cancer cells includes
aerobic glycolysis, the PPP, lipid metabolism changes,
glutaminolysis, nucleotide metabolism, and many other
events. These adaptive changes provide sufficient energy for
sustaining cancer cell proliferation, providing building blocks for
macromolecule synthesis, and suppressing antitumor immunity
for immune evasion.

Therapeutic Targeting for Cancer
Metabolism
Canonical cancer treatments preferentially target proliferation-
related pathways with unavoidable toxicity to proliferating
normal cells such as intestinal crypt cells, hematopoietic cells,
and hair follicle cells. In addition, certain normal cells exhibit
a higher proliferation rate than cancer cells (34). Targeting
tumor-specific metabolism is therefore an attractive strategy for
anticancer treatment. However, the complex crosstalk between
tumor cells and the microenvironments substantially increases
the difficulty of specific targeting of cancer metabolism. For
example, lactate produced by cancer cells shuttles not only to
neighboring cancer cells but also to the surrounding stromal
cells and vascular endothelial cells (35). Here, we review the
recent progress in targeting cancer metabolism, including the
amino acid catabolism and the metabolism of lipids and glucose.
Preclinical and clinical studies targeting cancer metabolism are
summarized in Table 1.

AMINO ACID METABOLISM

Glutamine
Glutamine addiction has been extensively found in cancer cells
(61). Glutamine is involved in various metabolic processes of
cancer cells: glutamine acts as a nitrogen donor for nucleic acid
and amino acid biosynthesis, drives oxidative phosphorylation
and is the substrate for lipid and glutathione synthesis (62).
Moreover, Muir et al. showed that glutamine is probably a more
important substrate in vitro in cell culture than in vivo (63).
There are two strategies for targeting glutamine metabolism
in cancer cells: inhibition of glutaminase that can convert
glutamine into glutamate and blockage of the major glutamine
transporter alanine-serine-cysteine transporter 2 (ASCT2) to
suppress the influx of glutamine into the cancer cells (64, 65).
Inhibition of the glutaminase GLS1 and GLS2 either alone or
in combination with other therapies enhanced the antitumor
effects in preclinical studies (36, 37, 66–68). The tolerability
and promising antitumor efficacy of the GLS1 small molecular
inhibitor CB-839 combined with the vascular endothelial growth
factor receptor (VEGFR)/MET inhibitor cabozantinib have been
demonstrated in phase I/II clinical trials for patients with
metastatic renal cell carcinoma (38–40). Overexpression of
ASCT2 has been shown in various cancer types, including
lung cancer (41), breast cancer (69), colorectal cancer (70),
prostate cancer (71), and melanoma (72). Blockage of ASCT2 via
monoclonal antibodies inhibits glutamine-dependent colorectal
cancer cell growth in vitro and in vivo (42).

Asparagine
Asparagine bioavailability significantly influences the metastatic
potential of cancer cells. Asparagine serves as an essential amino
acid for protein synthesis to adapt to the relatively low levels
of extracellular glutamine in cancer cells (73). Suppression of
the bioavailability of asparagine through dietary restriction or
L-asparaginase, which catalyzes the hydrolysis of asparagine to
aspartic acid and ammonia, suppresses breast cancer metastasis
(43). L-asparaginase administration has been extensively used
in treating acute lymphoblastic leukemia (ALL) because ALL
cells cannot synthesize adequate levels of asparagine and highly
depend on exogenous asparagine tomaintain cell growth (44, 45).
However, intolerable toxicities have been reported in patients
treated with L-asparaginase in different clinical trials (74, 75),
which may limit the clinical application of L-asparaginase in the
treatment of solid tumors.

Arginine
Arginine plays a crucial role in major physiological events,
including cell proliferation, cell signaling, nitric oxide synthesis,
and T-cell functions (76). Cancer cells are unexpectedly
dependent on arginine for their growth, and depletion of arginine
induced cancer cell death and tumor suppression in preclinical
studies (77). Reduced expression of arginosuccinate synthase 1
(ASS1) has been observed in melanoma, glioma, lymphoma,
and prostate cancer (78), and arginine deprivation therapy may
generate antitumor efficacy in these cancer cells due to ASS1-
involved arginine synthesis. A pegylated recombinant human
arginase polyethylene glycol (PEG)-BCT-100 depleted systemic
arginine. In advanced hepatocellular carcinoma (HCC) patients,
PEG-BCT-100 demonstrated its safety and efficacy in a phase
I trial (46). However, another arginine depletion therapy by
administration with pegylated arginine deiminase ADI-PEG 20
as the second-line monotherapy in advanced HCC patients
did not show a survival benefit in the phase III trial (47). In
addition to cancer metabolism mediated by arginine, arginine
is also involved in the immune escape of cancer cells (79) and
immunomodulation of macrophages (80). Arginine deprivation
therapy in combination with immunotherapy may be a rational
modality for cancer treatment in the future.

NUCLEOTIDE METABOLISM

Adenosinergic molecules have been shown to activate
immunosuppressive signals in tumor microenvironments.
Inhibition of adenosinergic molecules is therefore a promising
strategy for cancer treatment. Preclinical data showed that
using the B7-DC/Fc fusion protein significantly improves the
antitumor immune response in adenosine A2A receptor (A2AR)
knockout mice (81). The A2AR inhibitor SCH58261 combined
with the anti-CD73 monoclonal antibody TY/23 generated
synergistic antitumor effects and reduced cancer metastasis in a
syngeneic mouse tumor model (48). A human monoclonal anti-
CD73 antibody, MEDI9447, has been developed for anticancer
treatment (49). The oral A2AR inhibitor CPI-444 in combination
with immune checkpoint blockades, such as antibodies against
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TABLE 1 | Developing treatments for targeting cancer metabolism.

Drug Target Pathway Cancer type Stage References

CB-839 GLS1 Gln TNBC Pre-clinical (36)

CB-839 GLS1 LC Pre-clinical (37)

CB-839 GLS1 CRC Phase II (38)

CB-839 GLS1 Solid tumors Phase I (39)

CB-839 GLS1 RCC Phase II (40)

GPNA ASCT2 NSCLC Pre-clinical (41)

Ab3-8 mAb ASCT2 CRC Pre-clinical (42)

L-ASNase Asn Asn BC Pre-clinical (43)

L-ASNase Asn ALL FDA approval (44, 45)

PEG-BCT-100 Arg Arg HCC Phase I (46)

ADI-PEG 20 Arg HCC Phase III (47)

SCH58261 A2AR Ado Solid tumors Pre-clinical (48)

MEDI9447 CD73 Solid tumors Phase I (49)

CPI-444 A2AR Solid tumors Phase I (50)

CPI-006 CD73 Solid tumors Phase I (51)

TVB-2640 FASN Lipid synthesis BC Phase II (52)

TVB-2640 FASN MA Phase II (53)

ND-646 ACC NSCLC Pre-clinical (54)

ND-654 ACC Lipid synthesis HCC Pre-clinical (55)

AZD3965 MCT Glycolysis Solid tumors Phase I (56)

Enasidenib IDH2 TCA cycle AML FDA approval (57)

Ivosidenib IDH1 AML FDA approval (58)

CPI-613 PDH NSCLC, PaC Pre-clinical (59)

CPI-613 PDH PaC Phase I (60)

TNBC, triple-negative breast cancer; LC, lung cancer; CRC, colorectal cancer; RCC, renal cell carcinoma; NSCLC, non-small cell lung cancer; BC, breast cancer; ALL, acute

lymphoblastic leukemia; HCC, hepatocellular carcinoma; MA, malignant astrocytoma; AML, acute myeloid leukemia; PaC, pancreatic cancer; Gln, glutamine; Asn, asparagine; Arg,

arginine; Ado, adenosine.

programmed death 1 (PD-1) or cytotoxic T-lymphocyte-
associated protein-4 (CTLA-4), generated synergistic antitumor
effects and significant tumor regression and led to memory
antitumor immune responses in preclinical studies (82). The
safety and tolerability of CPI-444 alone or in combination
with the anti-programmed death ligand 1 (PD-L1) antibody
atezolizumab have been investigated in phase I clinical trials (50).
The safety and efficacy of the humanized anti-CD73 monoclonal
antibody CPI-006 administered alone or in combination with
CPI-444 or pembrolizumab were studied in phase I clinical trials
for advanced cancers (51).

LIPID METABOLISM

Endogenous fatty acid production is partially mediated by
increased glycolytic metabolites in cancer cells (83). Frequent
alterations of fatty acid synthase (FASN), a crucial metabolic
multienzyme complex that is involved in the final process of fatty
acid synthesis, have been revealed in various malignancies (84).
FASN inhibition was proposed to induce antitumor activity by
regulating apoptosis, cell membrane integrity, DNA replication
(85), and Akt signaling (86, 87). The oral FASN inhibitor
TVB-2640 combined with different cancer treatments has been
assessed in clinical trials, including combined paclitaxel and

trastuzumab for human growth factor receptor-2 (HER2)-
positive advanced breast cancer (52), combined paclitaxel for
patients with heavily pretreated breast cancer, and combined
bevacizumab for high-grade astrocytoma (53). Acetyl-CoA
carboxylase (ACC) catalyzes the rate-limiting step of fatty
acid synthesis by carboxylation of acetyl-CoA to malonyl-
CoA. Preclinical data showed that an inhibitor of ACC ND-
646 administered alone or in combination with carboplatin
exhibits antitumor efficacy in non-small cell lung cancer-
bearing mice (54). Another liver-specific ACC inhibitor, ND-
654, used alone or in combination with the multikinase inhibitor
sorafenib, inhibited lipogenesis and cancer development in HCC-
bearing rats (55). The antitumor efficacy of the lipid synthesis-
targeting agents ND-646 and ND-654 are under investigation in
clinical trials.

TCA CYCLE AND GLUCOSE METABOLISM

The mutant IDH2 inhibitor enasidenib has been approved by
the U.S. Food Drug Administration (FDA) for the treatment of
mutant IDH2 recurrent or refractory acute myeloid leukemia
(AML) (57). Furthermore, another mutant IDH1 inhibitor,
ivosidenib, was approved by the U.S. FDA for the treatment
of mutant IDH1 relapsed or refractory AML (58). Lipoate
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(lipoamide) is a cofactor that acts collaboratively with pyruvate
dehydrogenase (PDH) and the α-ketoglutarate dehydrogenase
(KGDH) complex in the TCA cycle. Elevated lipoate induces
functional impairment of PDH through phosphorylation of
PDH, which blocks the mitochondrial entrance of pyruvate
to disrupt the TCA cycle (88). The small molecule lipoate
analog CPI-613 not only inhibited the activities of PDH and
KGDH but also exhibited antitumor effects in preclinical
settings (59, 89). A phase I clinical trial showed that CPI-613
combined with chemotherapy maximizes the tolerated dose in
patients with metastatic pancreatic cancer in a phase I clinical
trial (60). Acidic tumor microenvironments caused by aerobic
glycolysis are associated with metastasis, angiogenesis, and drug
resistance (90). Targeting lactate through its transport, named
monocarboxylate transporter (MCT), including MCT-1 and
MCT-4 isoforms that are frequently expressed in cancer cells
(91–94), is an anticancer strategy mediated through regulating
the influx and efflux of lactate. The MCT-1 inhibitor AZD3965
combined with doxorubicin or rituximab showed synergistic
antitumor efficacy in lymphoma in vitro (95). AZD3965 exhibited
good tolerability and promising efficacy in preclinical studies
and early-phase clinical trials of patients with advanced solid
tumors (56).

Applications of Cancer Metabolism as a
Biomarker
The development of biomarkers for cancer metabolism is
important for prognostication and assessment of metabolism-
targeting treatment responses. However, the available
metabolism-related markers are limited. Neomorphic IDH
mutants are oncogenic drivers for generating the oncometabolite
2-hydroxyglutarate in AML and gliomas (21, 22). Recently, two
mutant IDH inhibitors, enasidenib (AG-221) and ivosidenib
(AG-120), have been approved for IDH-mutant refractory AML
(57, 58). IDH mutation is therefore a biomarker for selecting
IDH inhibitors. Another example is the KEAP1 mutation as
the biomarker for glumaminolysis inhibitors. Approximately
20% of KRAS-mutant non-small cell lung cancers carry loss-
of-function mutations of the KEAP1 gene (96). The major
target of KEAP1 is Nrf2, which triggers antioxidative stress
genes to endure oxidative stress (97). Enhanced Nrf2 activities
further trigger the transcription of genes encoding antioxidants,
drug pumping proteins, and other metabolic enzymes (98). In
addition, increased glutamine addiction in cancer cells activates
Nrf2. In a KRAS-mutant lung cancer mouse model, KEAP1
or Nrf2 mutations increased the sensitivity of glutaminase
inhibitors (99). KEAP1 mutation may be considered a potential
biomarker for anti-glutamine treatment. A further example is the
application of the hexokinase isoform as a prognostic marker.
The glycolytic enzyme hexokinase catalyzes glucose to glucose-6-
phosphate, and high levels of hexokinase are expressed in cancer
cells to accelerate glucose metabolism (100). Hexokinase isoform
2 has been identified as a prognostic biomarker in HCC, gastric
cancer, and colorectal cancer (101).

In summary, deregulation of metabolism is important
for cancer cells to adapt to rapid proliferation-induced

environmental stress. Targeting cancer-specific metabolism is
a promising therapeutic strategy, and future development of
biomarkers for guiding this treatment is mandatory.

EPITHELIAL-MESENCHYMAL PLASTICITY
IN CANCER PROGRESSION

Mechanism of EMT
In cancer metastasis, primary cancer cells acquire a mesenchymal
phenotype to exhibit enhanced migration, invasion, and
metastasis (102). In metastatic sites, tumor cells regain
the epithelial phenotype for colonization to form secondary
tumors via mesenchymal-epithelial transition (MET) (103). The
expression levels of epithelial markers such as E-cadherin,
epithelial cell adhesion molecule (EpCAM), cytokeratin, and
occludin and mesenchymal markers including N-cadherin
and vimentin are used to define the epithelial/mesenchymal
status (104). We recently demonstrated that cancer cells
in the intermediate status of EMT exhibit more aggressive
properties to form collective cancer clusters to overcome stressful
environments during metastasis (105).

EMT is regulated by multiple signaling networks via
regulation at the levels of transcription, epigenetic regulation,
translation, and post-translation (106). EMT transcription
factors (EMT-TFs), including Snail, Twist1/Twist2, and the
zinc finger E-box-binding homeobox (ZEB) families, are the
major regulators of EMT (107). EMT-TFs act as transcriptional
repressors to suppress the expression of epithelial genes; in
addition, they act as activators to induce the transcription
of mesenchymal and other metastasis-related genes (108). For
example, Snail is a transcriptional repressor that induces EMT
by suppressing E-cadherin. We showed that CREB-binding
protein (CBP) acetylates Snail. Acetylation of Snail prevents the
formation of a repressive complex and switches Snail from a
repressor to an activator (109). Similarly, the bifunctional switch
is also demonstrated in another important EMT transcriptional
factor (EMT-TF), zinc finger E-box-binding homeobox 1 (ZEB1):
it acts as a repressor of E-cadherin by binding to the E-boxes
located at the CDH1 promoter (110). The interaction between
the ZEB1 and Smad proteins and p300 also changes ZEB1 to an
activator (111, 112).

In addition to transcriptional control, epigenetic regulation of
epithelial and mesenchymal genes is crucial for providing
plasticity and dynamic changes between epithelial and
mesenchymal states. Snail recruits polycomb repressive
complex 2 (PRC2) to repress CDH1 expression by enriching
the repressive mark H3K27me3 on the regulatory region (113).
We demonstrated that Twist1 interacts with the polycomb
repressive protein Bmi1 to act coordinately for EMT induction
through suppression of CDH1 and P16INK4A (114). MicroRNAs
(miRNAs) are also involved in EMT by selectively suppressing
the mRNAs of EMT-TFs by cleavage-mediated degradation
or translational repression (115). The reciprocal regulation
between ZEB1 and miR-200 family miRNAs plays an important
role in maintaining epithelial-mesenchymal plasticity (116).
The major external stimuli of EMT in cancer cells include
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TGF-β and hypoxic conditions. TGF-β is the best-known
inducer that activates EMT-TFs to induce EMT (117, 118). We
previously revealed that intratumoral hypoxia caused by the
rapid proliferation of tumor cells activates EMT through the
directional regulation of Twist1 by hypoxia inducible factor-1α
(HIF-1α) (119).

Functional Role of EMT in Metastasis and
Treatment Resistance
Regarding the functional impacts of EMT on cancer cells, EMT
induces stem-like properties (120) and enhances resistance to
chemotherapy (3). Enriched cancer stem cells (CSCs) are shown
in murine or human breast tumors with high expression of
EMT-TFs (121). In colorectal cancers, we showed that Snail not
only upregulates interleukin-8 (IL-8) to induce CSC formation
(122) but also promotes the asymmetrical cell division-to-
symmetrical cell division switch for expanding CSC pools (123).
Both Snail and Twist1 conferred chemoresistance in a genetically
engineered mouse model of pancreatic cancer (124). Twist1
and ZEB are commonly expressed in chemoresistant triple-
negative breast cancers (125). Snail contributes to cisplatin
resistance by upregulating the DNA repair protein excision
repair cross complementation group 1 in head and neck
cancer (126). Various EMT signatures have been shown to
predict resistance to epidermal growth factor receptor (EGFR)
or phosphatidylinositol 3-kinase (PI3K) inhibitors in clinical
samples and cell lines derived from non-small-cell lung cancer
patients (127). In summary, dynamic changes between epithelial
and mesenchymal states are crucial for metastasis and the
malignant characteristics of cancer cells, such as cancer stemness
and therapeutic resistance.

Feasibility of EMT as a Therapeutic Target
and Biomarker
EMT is an attractive target for antimetastatic therapy owing
to the significant contribution of EMT to metastasis (128).
However, inhibiting EMT may simultaneously promote MET,
which is a crucial step for metastatic colonization. Ideally,
specific killing of metastatic mesenchymal-type cancer cells will
be effective; however, extensive drug resistance has been noted in
these cells. In addition, distinct mechanisms for inducing EMT
hinder the development of anti-EMT therapy. Theoretically,
anti-EMT therapies include precise targeting of mesenchymal-
type cancer cells and reversing EMT/transdifferentiation of
EMT cancer cells into innocuous cells (128). Direct targeting
of EMT-undergoing cancer cells is relatively difficult because
drug resistance frequently exists in EMT cancer cells, and
EMT-TFs are mostly undruggable. An alternative approach
to intercept EMT is to target the downstream signals of
EMT. For example, miR-200 family microRNAs downregulate
the metastasis-inhibiting secretory protein tubulointerstitial
nephritis antigen-like 1 (Tinagl1) during MET. Treatment with
recombinant Tinagl1 suppressed triple-negative breast cancer
progression and metastasis (129).

EMT-induced mesenchymal markers on circulating tumor
cells (CTCs) are also potential biomarkers for cancer metastasis

(130). For example, cell-surface vimentin (CSV) is detected on
CTCs from the blood of patients with metastatic colon cancer.
CSV expression is significantly higher in metastatic tumors than
in primary tumors, implying that CSV expression is correlated
with colon cancer metastasis and could serve as a metastatic
biomarker (131). CSV-positive CTCs also serve as a diagnostic
and prognostic biomarker in pancreatic cancer (132). Moreover,
the other EMT-induced CTCmarker, plastin3 (PLS3), which acts
as an actin-bundling protein known to inhibit cofilin-mediated
depolymerization of actin fibers, is a prognostic biomarker
in colorectal cancer (133) and breast cancer (134). Recently,
EMT has also been associated with the immunosuppressive
tumor microenvironment (135) and thus has become a potential
biomarker to predict the responses to PD-1/PD-L1 blockade
immunotherapy (136).

Together, anti-EMT therapies should be rationally combined
with other modalities of cancer treatments to maximize
antitumor efficacy. Identification of more druggable targets
of EMT as cancer therapeutics will be mandatory for the
development of anti-EMT treatment.

INTERPLAY BETWEEN CANCER
METABOLISM AND
EPITHELIAL-MESENCHYMAL PLASTICITY

Evidence of Their Mutual Influences
Accumulating evidence indicates the distinct energy
requirements in different steps of metastasis. A favorable
reprogramming of metabolism has been noted to provide
a survival advantage for metastatic cancer cells such as
CTCs by prioritizing energy production (102). Adaptation
of metabolism was shown to modulate cancer cell motility
through mitochondrial regulation (137) as well as detachment
of cancer cells from the extracellular matrix (138) and invasion
(139). The major EMT inducer transforming growth factor-
β (TGF-β) also affects various cancer metabolic processes,
such as glycolysis, mitochondrial respiration, and lipid
metabolism (117, 118). The major metabolic changes of the
different epithelial/mesenchymal states can be summarized
as several categories, including mitochondrial dynamics, lipid
metabolism, and the influence of cell-matrix interactions on
energy production. Figure 1 summarizes the major metabolic
events in different epithelial-mesenchymal states of cancer cells.

The maintenance of mitochondrial morphology is balanced
by mitochondrial fission and fusion (140–142). Fragmented
mitochondrial formation is mediated by either enhanced
mitochondrial fission or repressed mitochondrial fusion
through fission or mitofusin-related proteins, respectively.
Epithelial or mesenchymal cells display distinct mitochondrial
morphologies that regulate their mitochondrial function
for cellular proliferation. In epithelial-type cancer cells, the
mitochondrial fission protein dynamin-related protein 1 (DRP1)
mediates fragmented mitochondria (141, 143) and impaired
oxidative phosphorylation (144, 145). Recently, Wu et al.
demonstrated that Snail and TGF-β direct mesenchymal cells
to display fused/tubulated mitochondria via activation of the
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FIGURE 1 | Correlation between cancer metabolism and epithelial-mesenchymal plasticity. The schema presents the differential characteristics of metabolism in

cancer cells in the epithelial, mesenchymal, and hybrid states. MFN1, mitofusin-1; ROS, reactive oxygen species; DRP1, dynamin-related protein-1. Please note that

the size of mitochondria is disproportionately magnified for presenting the molecular events in epithelial/mesenchymal states.

mitochondrial fusion protein mitofusin-1 (MFN1), which
enhances glutathione synthesis and the ROS scavenging capacity
in mammary stem cells (137). Together, fused mitochondria are
associated with increased oxidative phosphorylation and the
TCA cycle (146, 147), and a reversal of the EMT phenotype is
correlated with decreased fused mitochondria with impaired
mitochondrial function (137).

TGF-β1 induces EMT in cancer cells through the induction
of EMT-TFs such as Snail (117, 118). In addition to inducing
EMT-TFs, TGF-β1 directs the metabolic switch from glycolysis
to oxidative phosphorylation through suppression of pyruvate
dehydrogenase kinase 4, which acts as a checkpoint of TCA cycle
entry by repressing the activity of pyruvate dehydrogenase (148).
In addition, TGF-β1-induced EMT and metastasis suppress
lipogenesis and enhance oxidative phosphorylation in lung
cancer (149). Cancer cell migration, invasion, and metastasis
enhance oxidative phosphorylation and mitochondrial
biogenesis mediated by upregulation of the transcriptional
coactivator peroxisome proliferator-activated receptor gamma
coactivator 1 alpha (PGC-1α) in breast cancer (150). However,
contradictory studies have shown that Snail facilitates glucose
uptake, macromolecule biosynthesis, and respiration inhibition
by repressing fructose-1,6-bisphophatase 1 in basal-like
breast cancer (151). In addition, Snail was shown to promote
glycolytic metabolism by inhibiting phosphofructokinase
(152) or cytochrome C oxidase (153) in breast cancer.
Therefore, the role of EMT in regulating cancer metabolism is
still controversial.

Metastatic cancer cells acquire their motile and invasive
capacity to detach from primary tumors, enter into and leave the
bloodstream, and colonize to form metastatic tumors. Metabolic
alterations of lipids have been shown to be involved in these
processes. Alterations of structural components of the cell
membrane, including lipid rafts, cholesterol, and sphingolipids,
together with regulators of cellular motility/invasiveness, such
as CD44, extracellular matrix (ECM) as a degraded non-cellular
structure, and invadopodia formation enhance cancer cell
motility (154). High levels of cholesterol in membranes impede
cellular fluidity and subsequently decrease metastasis by limiting
cell motility during EMT and intra/extravasation (155). Cancer
cells upregulate the ATP-binding cassette transporter ABCA1
to increase cholesterol efflux, and overexpression of ABCA1
in human cancers increases metastasis (155). Sphingolipids
enhance EMT (156) and the motile phenotype (157, 158)
by modulating sphingosine-1-phosphate receptor-dependent or
receptor-independent signaling pathways in cancer cells. In
addition, various enzymes of lipid metabolism are involved in
EMT of cancer cells (159). For instance, the lipogenic enzyme
ATP-citrate lyase (ACLY) has been shown to interact with
the low molecular weight isoform of cyclin E to promote
the transformation, migration and invasion of breast cancer
cells (160).

The absence of cell-matrix interactions induces a type of
programmed cell death, anoikis (161), which occurs during
the detachment of non-hematopoietic cells from the ECM
due to insufficient glucose uptake-induced shortage of ATP
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(162). In contrast, CTCs rewire their metabolism not only
to prevent anoikis but also to enhance the acquisition of
anchorage independence during metastatic dissemination (163,
164). CTCs diminish the levels of ROS caused by ECM
detachment to evade anoikis (162, 165). In lung cancer cells,
the detachment process suppresses both cell growth pathways
and carboxylation of cytosolic α-ketoglutarate and then induces
citrate intomitochondria to further enhance NADPHproduction
to relieve oxidative stress (166). Elevated ROS levels are
also found in melanoma CTCs compared to their primary
tumors. To withstand oxidative stress, metastatic melanoma
cells undergo reversible metabolic alterations to enhance
NADPH-generating enzymes through the folate pathway (167).
Together, alterations of cell-matrix interactions increase the
oxidative stress of metastatic cancer cells. Cancer cells undergo
metabolic reprogramming to overcome oxidative stress to
sustain survival.

Potential Therapies for Intercepting EMT
Through Metabolic Targeting
EMT is highly associated with cancer metastasis through
alterations of multiple crucial events, including metabolic
rewiring (168). For amino acid metabolism, cancer cells
mainly utilize glutamine to synthesize nucleotides and
nonessential amino acids as well as to provide substrates
for the TCA cycle (34). Glutamine metabolism has been
reported to regulate EMT. Inhibition of glutaminolysis,
the deamination process of glutamine into glutamate, by
targeting glutaminase GLS1 alleviates cancer metastasis by
suppressing Snail in lung cancer (169). The mitochondrial
isoform of glutaminase GLS2 inhibits migration, invasion,
and metastasis through repression of Snail in HCC (170).
These findings suggest that targeting glutaminase in
cancer cells not only blocks glutamine addiction but also
suppresses EMT.

Cancer cells increase lipogenesis and lipolysis to rewire
lipid metabolism. The fatty acid synthetic enzyme FASN
induces EMT by enhancing TGF-β expression in non-small
cell lung cancer (171). In addition, EMT promotes FASN
expression. FASN and EMT are reciprocally and coordinately
upregulated in non-small cell lung cancer (171). The FASN
inhibitor TVB-2640 may inhibit tumor growth and metastasis,
and the efficacy is under evaluation in clinical trials. In
addition, peroxisome proliferator-activated receptor (PPAR)
family members, regulators of fatty acid synthesis and oxidation,
are involved in lipid synthesis or degradation as well as
EMT inhibition (172). Pharmacological and genetic inhibition
of PPARβ/δ increased metastasis through EMT induction in
melanoma (172). Moreover, PPARγ knockout induced both EMT
and stemness in prostate cancer (173). These studies indicate that
targeting PPARβ/δ or γ may have potential clinical applications
for the treatment of cancer patients by reducing metastasis. In
addition to the FASN and PPAR members, a membranous lipid
with a sphingosine backbone, sphingolipid, as described earlier,
is also involved in EMT induction by regulating sphingosine

kinase 1 (SPHK1), which converts sphingosine into sphingosine
1-phosphate (S1P) (174, 175) in cancers. SPHK1 has been
reported to induce EMT through autophagic degradation of E-
cadherin (176) or activation of focal adhesion kinase (177) in
HCC or colorectal cancer, respectively. S1P has a role in EMT
induction via the matrix metalloproteinase-7 (MMP-7)/TGF-
β autocrine loop in HCC (178). Therefore, SPHK1 and S1P
may serve as promising therapeutic targets to alleviate EMT-
mediated metastasis by disrupting sphingolipid metabolism
in cancers.

In glucose metabolism, cancer cells increase glucose
uptake and glycolysis flux, mitochondrial dysfunction, or
the acidic tumor microenvironment to promote progression.
For example, MMP-2 expression is increased by the major
glucose transporter GLUT1 to further enhance EMT and
invasion in cancer cells (179, 180). Consequently, cancer-
specific GLUT1 targeting may reduce metastasis in cancers.
In summary, EMT-mediated cancer metastasis may be
attenuated by targeting cancer metabolites, including
amino acids, lipids, and glucose, as a potential alternative
anti-cancer modality.

CONCLUSIONS

Metabolic reprogramming and epithelial-mesenchymal
plasticity are the major adaptive strategies of cancer
cells to endure rapid proliferation and metastasis-related
environmental stress. Understanding the dynamic changes
of the epithelial and metabolic states during the metastatic
process is essential for developing optimal strategies to
target disseminated cancers. Although a growing number
of drugs have been developed to target cancer-specific
metabolism, there are still issues that must be addressed
before wide application of this treatment. Discovery
of biomarkers for guiding antimetabolic treatment and
elucidation of the interplay between metabolism and
EMT to prevent metabolic change-induced adverse events
will be important for the treatment of highly dynamic
metastatic cancers.
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