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Brown adipocytes are a specialized cell type that is critical for adaptive thermogenesis,
energy homeostasis, and metabolism. In response to cold, both classical brown fat and
the newly identified “beige” or “brite” cells are activated by β-adrenergic signaling and
catabolize stored lipids and carbohydrates to produce heat via UCP1. Once thought to
be non-existent in adults, recent studies have discovered active classical brown and beige
fat cells in humans, thus reinvigorating interest in brown and beige adipocytes. This review
will focus on the newly discovered transcription factors and microRNAs that specify and
orchestrate the classical brown and beige fat cell development.
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Two Types of Thermogenic Cells: Classical Brown
and Beige Fat Cells

Non-shivering thermogenesis in mammals is carried out by a group of specialized fat cells known
as brown adipocytes. Classical brown adipocytes are generated during embryogenesis in distinct
brown adipose tissue (BAT) depots, such as the axillary, interscapular, and subscapular regions (1, 2).
Classical BAT is abundant in rodents and hibernating mammals and it functions to maintain their
body temperature in cold climate. Human infants are also born with classical BAT but it disappears
over time and was considered to be non-existent in adults (3). However, PET-CT imaging studies
with 18F-fluorodeoxyglucose have discovered active BAT in the neck and supraclavicular regions in
adult (4–8). These findings have revitalized the research on BAT and the efforts to utilize it as a
potential therapy against obesity and other metabolic diseases.

Recent studies in rodents and humans have discovered a second type of brown fat cells known
as the beige or brite (brown in white) cells (2, 9). Beige cells are generated postnatally within
white adipose tissues (WAT) in response to cold or adrenergic stimulation. Both classical brown
fat and beige cells are rich in mitochondria and uniquely express uncoupling protein 1 (UCP1),
an inner mitochondria membrane protein that produces heat by uncoupling the proton gradient
from ATP synthase. Although both brown and beige cells share the same thermogenic function,
they arise from entirely different cell lineages (2, 10). Classical brown fat cells arise from myogenic
progenitors that express Myf5 and Pax7 myogenic transcription factors (11, 12) in specific BAT
depots during development. In contrast, beige cells are made postnatally in WAT depots and arise
from Myf5-precursors that express platelet-derived growth factor receptor α (PDGFRα) (10, 13–
15) or through transdifferentiation of mature white adipocytes (16–18) in response to cold or β-
adrenergic stimulation. A recent study has also shown that beige cells can arise from smooth muscle
cell (Myh11+) progenitors (19). Severalmouse genetic lineage-tracing studies have led to discordant
results regarding how beige cells are generated (13, 15, 17–19). The studies that permanentlymarked
mature white adipocytes in subcutaneous (subQ) WAT showed that cold-induced beige cells are
derived frommature white adipocytes in subQWAT (17, 18), while another study showed that some
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beige cells are generated de novo from progenitors (15). In con-
trast, studies that genetically marked PDGFRα+ progenitors in
epididymalWAT (13) or smoothmuscle progenitors (Myh11+) in
subQWAT (19) demonstrated that beige cells are derived from the
respective progenitors. While further studies are needed to clarify
these issues, these studies clearly demonstrate that different WAT
depots have different “browning” capacity and might employ
different mechanisms to generate beige cells.

The discovery of active BAT in humans has raised the issue
of whether human BATs comprises classical brown or beige fat
cells. Several studies have revealed that adult human BAT is more
similar to the mouse beige cells (10, 20–22), while other studies
showed that it is closer to the classical BAT (23, 24). Hence, similar
to rodents, it is likely that adult humans possess both classical
brown and beige fat cells, depending on different anatomical
locations.

Preservation of Core Transcriptional
Hierarchy in Brown and White
Adipogenesis

During adipogenesis, external adipogenic signals activate a cas-
cade of core transcription factors that are critical for both brown
and white adipocyte differentiation. The sequential activation of
these transcription factors has been elegantly worked out in 3T3-
L1 cells (25), which were first established in Howard Green’s
lab from Swiss albino mouse embryonic fibroblasts (MEFs) (26)
using a 3T3 protocol (27). Adipogenic stimulation of either white
or brown preadipocytes leads to a sequential activation of core
transcription factors (25, 28, 29) (Figure 1). One of the earli-
est activated transcription factors are CCAAT-enhancer-binding
protein-β (CEBP-β) and CEBP-δ, which then form a heterodimer
and transcriptionally activate peroxisome proliferator-activated
receptor γ (PPARγ), along with another family member, CEBP-α.
PPARγ is a member of the nuclear hormone receptor superfamily
and is the master regulator of adipogenesis as its sole expression
is sufficient to convert fibroblasts into adipocytes (30). Upon acti-
vation, PPARγ activates the transcription of CEBP-α and many
other genes involved in fatty acid synthesis, lipid storage, and glu-
cose metabolism (25). CEBP-α then reciprocally activates PPARγ
as well as other adipogenic genes. While PPARγ and the CEBP-
family proteins are the core transcriptional regulators of both BAT
and WAT adipogenesis, auxiliary transcription factors, such as
Kruppel-like factor 5 and 15 (KLF5 and KLF15), also modulate
general adipogenesis (25). Interestingly, Zfp423, which contains
30 Kruppel-like zinc fingers and a SMAD-binding domain, was
identified as a regulator of preadipocyte determination by activat-
ing the transcription of PPARγ (31) (Figure 1). Deletion of Zfp423
in mice inhibits both brown and white adipogenesis.

Transcriptional Regulators of Brown and
Beige Fat Cells

Several recent studies have revealed brown and beige fat-specific
transcriptional regulators as well as microRNAs (miRNAs) and
long intergenic non-coding RNAs (lincRNAs), which will be
described in detail.

Early

YBX1

EWS

BMP7

UCP1

Brown fat determination

ZFP423

PRDM16

PRDM16

PRDM16

EBF2

EBF2

ZFP516

IRF4

CEBPβ

PPARγ

PPARγ

PGC-1α

CEBPδ

CEBPα

?

miR-155

miR-133a

miR-193b-365

UCP1

ZFP516

white fatbrown fat

CtBP1/2

PRDM16

FIGURE 1 | A regulatory network of transcription factors and miRNAs
in classical brown and white adipogenesis. Early transcription factors are
shown above the dotted line and the box indicates the core transcription
factors critical for brown and white adipogenesis.

PRD1-BF-1-RIZ1 Homologous-Domain
Member 16

PRD1-BF-1-RIZ1 homologous-Domain Member 16 (PRDM16)
and its close homolog PRDM3 were first identified as the histone
3-Lys 9-monomethyltransferases (H3K9me1) that are critical for
heterochromatin organization (32). By examining transcription-
related genes enriched in brown fat versus white fat, Seale et al.
identified PRDM16 as a brown fat-specific transcription fac-
tor (33). Ectopic expression of PRDM16 in WAT results in
increased beige cell formation in the mouse. Conversely, knock-
down of PRDM16 blocks brown fat differentiation. Remarkably,
knockdown of PRDM16 in primary brown preadipocytes leads
to myocyte differentiation and ectopic PRDM16 expression in
myoblasts turns them into brown fat cells upon adipogenic stim-
ulation (11). These results suggest that PRDM16 controls a cell
fate switch between brown fat and myocyte differentiation in
bipotent progenitors. Interestingly, another H3K9 methyltrans-
ferase, EHMT1, interacts with PRDM16 and is required for BAT
development (34). PRDM16 forms a complex with CEBPβ and
together, these two factors are able to convert a naïve fibroblasts
or myoblasts into brown fat cells (35). Additionally, PRDM16
interacts with C-terminal binding proteins, CtBP1 and CtBP2,
and represses white fat gene expression program (36), but this
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interaction can be displaced by PGC-1α or PGC-1β, which
induces brown fat program upon binding to PRDM16 (33, 36).
PRDM16 also interacts with PPARγ and enhances its transcrip-
tional activity (11). In addition to cold and β3-agonists, PPARγ
agonists can also induce beige cell differentiation in the mouse,
which was shown to require PRDM16 (37). Addition of PPARγ
agonists stabilizes PRDM16, likely through its interaction with
PPARγ.

Initial description of global PRDM16 knockout (KO) mice,
which was postnatal lethal, reported abnormal BAT morphology
with reduced brown fat gene expression and ectopic myogenic
gene expression (11). A recent study showed that specific deletion
of PRDM16 in postnatal adipose tissues (BAT and WAT) using
Adiponectin-Cre blocks cold- or β3-agonist-induced browning
of subQ WAT, but has minimal effects on classical BAT and
visceral (Vis) WAT (38), demonstrating that PRDM16 is essential
for beige fat formation in subQWAT (Figure 2). Furthermore, loss
of PRDM16 induces subQ WAT to adopt Vis WAT gene expres-
sion profile and reduces its thermogenic capacity. These findings
indicate that while PRDM16 is required during early brown cell
fate determination (according to earlier studies), it is dispensable
for mature BAT thermogenesis. Therefore, it was quite surprising
when a specific deletion of PRDM16 in early myogenic progen-
itors using Myf5-Cre showed normal BAT development (39). In
contrast to the Cohen et al. study which reported minimal effects
on BAT (38), adult BATs derived from Myf5-specific deletion of
PRDM16 shows increased white fat differentiation and reduced
thermogenesis in aged animals, suggesting a role of PRDM16 in
maintaining mature BAT function (39). A simultaneous deletion
of bothPRDM16 and its homologPRDM3 showsmuch earlier and
more prominent brown fat defect than the single PRDM16-KO,

although the embryonic and early postnatal (2 weeks) BAT devel-
opment are minimally affected. These studies show that in the
absence of PRDM16, PRDM3 can serve a compensatory role.

FOXC2

A role of a winged helix/forkhead gene, Foxc2, in browning of
white fat was demonstrated well before beige cell was recognized
as a distinct cell type (40). Expression of Foxc2 is highly restricted
to both BAT and WAT, and adipose-specific expression of Foxc2
using aP2 (Fabp4) promoter in mice results in browning of
WAT and hypertrophic BAT. Furthermore, Foxc2 transgenic mice
are resistant to high-fat diet (HFD)-induced obesity and insulin
and glucose resistance. This is at least partly due to increased
mitochondria number and respiration of beige cells in WAT of
transgenic mice. Intriguingly, expression of Foxc2 in 3T3-L1 cells
blocks white fat differentiation by inhibiting the expression of
certain PPARγ target genes (41).

EWS

Ewing sarcoma break point region 1 (EWSR1, herein termed EWS)
encodes a highly abundant, multifunctional RNA/ssDNA binding
protein (42). Originally presumed to play housekeeping roles in
basic transcription and RNA splicing (43), generation of EWS-
KO mouse and other studies have revealed a surprisingly diverse
role of EWS in meiosis, B-cell development, prevention of cellular
senescence, mitosis, DNA damage-induced alternative splicing,
and miRNA regulation (44–49). More recently, it was discovered
that classical BAT development was completed blocked in EWS-
KO (50). Deletion of EWS results in a complete block in early
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FIGURE 2 | Intricate networks of transcription factors and miRNAs in beige and white fat differentiation from progenitors or through
transdifferentiation.
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embryonic classical BAT development and loss of brown fat differ-
entiation in preadipocytes. As a member of TGF-β superfamily,
BMP7, bone morphogenic protein 7, plays a critical role in the
commitment of early mesenchymal progenitors to brown fat (51).
In the absence of EWS, BMP7 expression is lost in embryonic
BAT and in brown preadipocytes undergoing adipogenesis (50).
Following adipogenic stimulation, EWS forms a complex with
Y box-binding protein 1 (YBX1) and activates BMP7 transcrip-
tion. Depletion of YBX1 also results in loss of BMP7 expression
and a block in brown fat differentiation. Notably, loss of EWS
leads to ectopic myogenic expression in EWS-KO BAT, consistent
with the idea that EWS determines the classical brown cell fate.
Interestingly, EWS heterozygous mice show reduced beige cell
recruitment in inguinalWAT in response to PPARγ agonist or β3-
adrenergic stimulation (50). However, the definitive role of EWS
in beige cell development will require further studies. As both
brown fat and beige cells are rich in mitochondria, it is intriguing
to note that EWS was recently shown to regulate mitochondria
density and function by controlling PGC-1α protein stability (52).
Finally, EWS may also have a role in white adipogenesis, at least
in vitro (53).

EBF2

A search for brown fat-specific PPARγ-regulated promoters by
ChIP-seq analysis identified an enrichment of early B-cell factor
(EBF) binding sites in the PPARγ occupied DNA regions (54). It
was subsequently shown that EBF2, one of the four EBF isoforms,
is highly expressed in BAT compared to WAT or beige cells.
Ectopic expression of EBF2 in C2C12myoblasts or in stromal vas-
cular fraction (SVF, which is known to contain adipocyte progeni-
tors) leads to a strong induction of brown fat differentiation, while
depletion of EBF2 blocks differentiation in brown preadipocytes.
EBF2 recruits PPARγ to the PRDM16 promoter/enhancer region
and synergistically activates its expression. EBF2 is expressed in
early Myf5+/Pdgfrα+ brown progenitors as well as in Pdgfrα+

beige precursors from subQ WAT, serving as potential markers
of these progenitors (55). However, classical BAT of EBF2 KO
mouse shows normal levels of pan-adipocyte markers, PPARγ,
adiponectin, and Fabp4, but loss of BAT-specific Ucp1, PRDM16,
andCidea expression, demonstrating that EBF2 is not required for
general adipogenic process but specifically regulates BAT-specific
gene expression (54, 55). Interestingly, a recent study showed that
EBF2 forms a ribonucleoprotein complex with a long non-coding
RNA (IncRNA) termed brown fat lncRNA 1 (Blnc1), which is
transcriptionally regulated by EBF2 during brown adipogenesis,
to promote adipogenesis in brown adipocytes (56).

KLF11, IRF4, and ZFP516

As aforementioned and reviewed in Ref. (25, 57), several KLF-
family proteins play important roles in the common adipogenic
differentiation of BAT and WAT. Notably, KLF11 was recently
identified as an activator of beige cell differentiation of human
adipose-derived stem cells (58). KLF11 is a direct target of PPARγ
and activates the expression of beige-specific genes. Expression of
interferon regulatory factor 4 (IRF4) is induced by cold in both
BAT and WAT and overexpression of IRF4 in BAT and WAT

leads to enhanced thermogenesis and resistance to HFD-induced
obesity (59). Conversely, specific deletion of IRF4 in Ucp1+ cells
(brown and beige cells) causes a reduction in energy expenditure
and thermogenesis as well a block in beige cell formation in subQ
WAT. Interestingly, PGC-1α interacts with IRF4 and this inter-
action appeared to be crucial for activation of Ucp1 expression.
A search for transcription factors that directly activate Ucp1 led
to an identification of Zfp516 containing ten C2H2 zinc finger
protein (60). Ectopic expression or genetic deletion of Zfp516
results in browning of WAT or loss of classical BAT development.
Though the exact mechanisms of Zfp516 are not clear, it interacts
with PRDM16; however, since PRDM16 is dispensable for clas-
sical BAT development, how Zfp516 regulates BAT development
remains unresolved.

Inhibitors of Brown and Beige Cell
Differentiation: Rb Family Proteins
and MRTFA

Retinoblastoma susceptibility (Rb) family proteins, Rb and p107,
have important roles in determiningwhite versus brown adipocyte
differentiation (61, 62). Deletion of Rb in MEFs or embryonic
stem (ES) cells results in brown fat differentiation (Ucp1+) upon
adipogenic stimulation while control cells give rise to white
adipocytes (61). Consistent with this, mesenchymal progenitor-
specific Rb KO embryos show a significant increase in classi-
cal BAT mass (63). Intriguingly, while Rb is required for white
adipocyte differentiation in vitro (64, 65), adipose-specific KO
of Rb (66) or inactivation of Rb via SV40 T antigen in WAT
(67) results in browning of WAT. Expression of p107 is abundant
in the SVF from Vis WAT, lower in subQ WAT, and absent in
BAT (68). Mature white adipocytes from any WAT depots do
not express p107. Deletion of p107 in a congenic Balb/c back-
ground leads to an impairment of WAT development but not
BAT, and causes extensive browning in various WAT depots (62).
β-adrenergic stimulation reduces p107 expression in SVF and
induces beige fat differentiation (68). Thus, Rb family proteins
likely function as a negative regulator of beige cell differentia-
tion. Similarly, genetic ablation of myocardin-related transcrip-
tion factor A (MRTFA) results in browning of WAT depots with-
out affecting BAT mass and function (69). MRTFA KO mice
are protected from HFD-induced obesity and insulin resistance,
demonstrating that MRTFA is a negative regulator of beige cell
formation.

Regulation of Brown and Beige Cell
by microRNAs

Recent studies have identified several miRNAs that specifi-
cally target the expression of critical brown or beige tran-
scription factors described above. Accordingly, many miR-
NAs are expressed in BAT- or WAT-specific manner. One
such miRNA, miR-193b-365, is activated by PRDM16 and
is required for brown adipogenesis (70) (Figure 1). Forced
expression of miR-193b-365 in myoblasts blocks myogenesis
and upon adipogenic stimulation, induces brown fat differen-
tiation. In contrast, miR-133a represses PRDM16 expression
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and inhibits brown fat differentiation by targeting the 3′-UTR
of PRDM16 transcripts (71, 72). Genetic inactivation of miR-
133a has no effects on BAT development but increases beige cell
development in WAT depots, which results in improved ther-
mogenesis and glucose and insulin sensitivity. TGFβ, a potent
inhibitor of adipogenesis (73), increases the expression ofmiR-155
and inhibits adipogenesis (74). Inhibition of adipogenesis bymiR-
155 overexpression suppresses CEBPβ expression, while CEBPβ
represses miR-155 expression, forming a double negative loop in
brown adipogenesis (Figure 1). Ectopic expression of miR-155
in the mouse reduces BAT size and function while miR-155 KO
mice show improved BAT thermogenesis and enhanced beige cell
formation in WAT. Expression of miR-196a is induced in subQ
WAT following cold or β3-agonist stimulation and is required for
Ucp1 expression (75). miR-196a represses the expression Hoxc8,
homeobox c8, which is highly expressed in white fat cells and
inhibits brown fat differentiation. Adipose-specific expression of
miR-196a results in enhanced browning of WAT and protects
mice from HFD-induced obesity and insulin resistance. Intrigu-
ingly, it was found that Hoxc8 represses CEBPβ expression by
recruiting histone deacetylase, HDAC3. Thus, miR-196a regulates
the expression of CEBPβ through Hoxc8 (Figure 2). miR-26a
and miR-26b also have positive effects on converting human

preadipocytes into beige cells (76). This is mediated by repress-
ing ADAM17, ADAM metallopeptidase domain 17, expression
and knockdown of ADAM17 recapitulates the increased beige
adipogenesis. On the flip side, miR-27a/b negatively regulates
multiple critical regulators of brown and beige adipogenesis, such
as PRDM16, PPARγ, and PGC-1β, and its expression is repressed
by cold exposure in BAT and subQWAT (77).

In this short review, we highlighted the roles of the transcrip-
tional regulators andmiRNAs on brown and beige cell differentia-
tion and function.While we have learned a great deal about brown
and beige fat cells, there are still many unanswered questions.
Recent studies suggest that cold- or β-adrenergic-stimulated
induction of beige cells in WAT is transient and reversible (i.e.,
reversible transdifferentiation betweenmature white fat and beige
cells) (17, 18). To achieve this plasticity, mature white fat and
beige cells must have mechanisms to tightly and reciprocally
regulate many of the beige-specific transcriptional regulators and
miRNAs during this reversible process (Figure 2). As exempli-
fied by the CEBPβ-miR-155 regulatory loop (75), delineating the
intricate details of the interdependence and cross-regulation of the
transcription factor and miRNA networks will provide a deeper
understanding of brown and beige fat differentiation and facilitate
the development of brown or beige cell-based therapy.
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