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Spatial variation in parasitic infections is common, and has the potential

to drive population divergence and the reproductive isolation of hosts.

However, despite support from theory and model laboratory systems, little

strong evidence has been forthcoming from the wild. Here, we show that para-

sites are likely to cause reproductive isolation in the adaptive radiation of

three-spined stickleback. Adjacent wild populations on the Scottish island of

North Uist differ greatly and consistently in the occurrence of different para-

sites that have substantial effects on fitness. Laboratory-reared fish are more

resistant to experimental infection by parasite species from their own popu-

lation. Furthermore, hybrid backcrosses between the host populations are

more resistant to parasites from the parental population to which they are

more closely related. These patterns provide strong evidence that parasites

can cause ecological speciation, by contributing to selection against migrants

and ecologically dependent postmating isolation.

1. Background
The ecological model of speciation, which proposes that reproductive isolation

between populations occurs as a result of divergent adaptation to different

environments, is widely accepted as a major explanation for how new species

arise [1,2]. However, many questions still exist about how it works and the

extent of its importance in comparison with other mechanisms [2,3]. One

important question concerns which aspects of ecology drive the divergence

between populations that initiates the process. Most effort to date has concen-

trated on competition and the acquisition of food, predation, and the role of

the environment in mate choice [4–7]. The dynamic nature of the relationship

between hosts and parasites [8], and its potential to drive divergence, suggests

a role for parasites in host speciation [9–11]. While there is both theoretical

underpinning for this idea [12,13] and support from model laboratory systems

[14], little conclusive evidence has been forthcoming from natural populations

[15]. Three prerequisites are necessary for parasites to contribute to speciation:

that parasitism should differ within or between host populations, that these

differences should remain consistent, and that parasites should impose fitness

costs on the host [15]. These conditions are not sufficient in themselves to

show that parasites do contribute to host speciation; in addition, it is necessary

to document specific reproductive isolating mechanisms.

Two forms of reproductive isolation are unique predictions of the ecological

speciation model [2]. Firstly, selection against immigrants, a form of premat-

ing isolation, occurs when immigrants to a population experience reduced

fitness because they are not adapted to local environmental conditions [16,17].

Secondly, ecologically dependent postmating isolation occurs when hybrids

between divergent populations are inferior for purely ecological reasons.

Postmating isolation happens when individuals from different populations
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Figure 1. The study system, showing the relative locations of Loch a Chadha Ruaidh (CHRU, pale green) and Ob nan Stearnain (OBSM, pale blue), their location
(black box) on the island of North Uist (brown), and its position in the UK. Examples of alizarin stained stickleback (caudal fins removed for genetic samples) from
the two water bodies are shown. Those in the top right show a marine (top, ‘OBSM’) and a resident (‘OBSE’) fish. Line drawings of their most important parasite are
shown alongside each loch: Diplostomum in CHRU and Gyrodactylus in OBSE. (Online version in colour.)
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mate, but the offspring they produce are inferior in some

way. This inferiority may arise because of intrinsic genetic

incompatibilities between populations, or because the hybrid

individuals experience an ecologically dependent mismatch

to the parental environments, as a result of divergent local

adaptation. Identification of these two types of postmating

isolation is an important task for speciation biologists because

the former can arise during several processes that lead to spe-

ciation, while the latter is exclusively a prediction of the

ecological speciation model [2,18]. Separation of the two is

not trivial, because reduced fitness of certain types of hybrids

(notably F1s) is an expectation of both models. However,

the two can be reliably separated by quantifying the perform-

ance of reciprocal backcrosses (electronic supplementary

material, figure S1) in both parental environments [19]. As

the different backcross types share the same degree of hybrid-

ity, the intrinsic hypothesis predicts no difference in their

performance. By contrast, the ecological hypothesis predicts

that backcrosses will perform best in the environments of the

parental types to which they are more closely related, resulting

in a switch in relative performance between environments

[19]. Statistically, this switch reveals itself as an interaction

between backcross type and environment when metrics of

performance in the different environments are analysed [20].

Although powerful, the reciprocal backcross method has

seldom been used as a research technique [20,21], perhaps

because of the effort required or the difficulty of raising back-

crosses between divergent populations [2]. Extension of the

reciprocal backcross method to include parental types, F1s,

and F2s, allows the use of line-cross analysis to explore

the quantitative genetic basis of variation in (resistance)

phenotypes [22].

The adaptive radiation of three-spined stickleback

(Gasterosteus aculeatus) in waterbodies on the Scottish island

of North Uist provides an ideal opportunity for testing the

role of parasites in population divergence and speciation,

given the variation in parasites between populations [23] and

the occurrence of closely related, but reproductively isolated,

sympatric ecotypes of stickleback (see below).
In order to infer a sufficient role of parasites in host spe-

ciation, we first show that the three necessary prerequisites

for parasites to contribute to speciation are true for an adja-

cent pair of stickleback populations on North Uist, which

we call CHRU (from a small freshwater loch) and OBSM

(from a brackish lagoon) (figure 1). CHRU and OBSM exhibit

substantial genetic divergence (see Material and methods). A

third population (‘OBSE’) which is sympatric with, but repro-

ductively isolated from, OBSM is morphologically similar to

CHRU, demonstrating the potential for speciation in North

Uist stickleback (figure 1).

We then apply the reciprocal backcross method for the first

time to the question of whether parasites contribute to ecologi-

cally dependent postmating isolation, by exposing backcrosses

between CHRU and OBSM to artificial infection by both a

CHRU-specific parasite and an OBSM-specific parasite. We

also compare the resistance of the parental types in order to

add to existing work [24] suggesting that parasites could

cause selection against immigrants in our system. These tests

allow strong inference about the role of parasites in ecological

speciation, because they arise from predictions that are unique

to the model [19–21]. We show that parental types are much

more resistant to the parasite that infects their own population.

The resistance of backcrosses switches, depending on the para-

site to which they are exposed, such that they are most

resistant to the parasites from the more closely related parental

population.
2. Material and methods
(a) Study area
On the island of North Uist, Scotland, many isolated freshwater

loch (lake) populations of stickleback show a high degree of phe-

notypic variation [25,26], which has probably evolved since the

end of the last glaciation, approximately 16 000 years ago,

before which North Uist was covered in ice [27]. Marine three-

spined stickleback, from which the freshwater fish are probably

derived, visit coastal brackish lagoons and some low-lying
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freshwater habitats to breed, but do not generally hybridize with

the resident fish, which inhabit these waterbodies year round.

We focus on the potential for parasites to contribute to reproduc-

tive isolation between an adjacent pair of waterbodies (figure 1),

Loch a Chadha Ruaidh (CHRU, 578360 N; 78120 W), which sup-

ports a freshwater population of stickleback, and Ob nan

Stearnain (OBSM, 578360 N; 78100 W), a brackish lagoon 1.5 km

distant. CHRU, at an altitude of about 15 m and connected by

a stream to the sea less than 400 m away, is not presently visited

by marine stickleback, although the extant population was

probably established from the sea, and migratory fish species

(catadromous European eels, Anguilla anguilla) are occasionally

present in the loch, so the potential for secondary contact is

high. OBSM contains one of the nearest breeding populations

of marine stickleback, and also supports a population of resident

stickleback with freshwater morphology. We refer to the latter as

saltwater residents, and give them the code OBSE. Given their

phenotype (figure 1), it seems likely that this population under-

went a period of evolution in freshwater before re-encountering

salt water, either as a consequence of dispersal or because of

rising sea levels. The sympatry of OBSE and OBSM during the

breeding season, with little or no hybridization (approx. 5%

hybrids, L Dean & ADC MacColl 2007–2014, unpublished

data), is important in the present context, because it demon-

strates that there is reproductive isolation between fish with

marine and freshwater morphology following secondary contact.

Values of population genetic differentiation (Fst calculated from

eight putatively neutral microsatellite markers spread across

the genome) suggest that CHRU fish are substantially

diverged from both OBSM (0.38, p , 0.0001) and OBSE (0.37,

p , 0.0001), which are much less, but still significantly, differen-

tiated from each other (0.03, p , 0.0001) [28]. The apparent

contradiction here, between our claim of strong reproductive iso-

lation between OBSM and OBSE and the low Fst value arises

easily when effective population sizes are large (which they are

likely to be for the many interconnected populations of stickle-

back living in saltwater), because standard population genetics

tells us that Fst is determined by the absolute number of migrants

exchanged per generation [29], while reproductive isolation is

defined by the proportion of hybrids [18].

(b) Field methods
Wild fish were caught in unbaited minnow traps (Gee’s, Dynamic

Aqua, Vancouver) set for 24 h around the margins of waterbodies

in water approximately 0.3–3 m deep. Captured fish were emptied

into buckets and a haphazardly selected sample returned to

the laboratory in styrofoam boxes. Fish were assayed for parasite

infections within 24 h (usually within 8 h). They were first eutha-

nized by an overdose of MS222, weighed and measured.

External surfaces were carefully examined under a 10�–40� dis-

secting microscope, and all Gyrodactylus and other ectoparasites

(including Cryptocotyle sp.) counted. Eyes were removed and dis-

sected to count Diplostomum sp. and Apatemon gracilis.

Schistocephalus solidus in the body cavity and Proteocephalus filicollis
in the intestine were also recorded. All fish had their liver removed,

blotted and the wet weight recorded. Hepatosomatic index (HSI), a

measure of medium-term energy reserves [30], was calculated as

(liver weight � 100/(fish weight 2 (Schistocephalus weight þ
liver weight)).

(c) Crossing methods
Fish that were used in artificial infection experiments were

raised in the laboratory from wild (grand)parents, according to

standard in vitro methods. Briefly, testes were removed from

mature wild males, minced and, in 1 ppt marine salt solution,

mixed with eggs stripped from fully gravid wild females from

both their own and the other population, to create pure parental
and F1 crosses (electronic supplementary material, figure S1).

Fertilized eggs were returned to the aquarium at the University

of Nottingham, where they were reared to maturity (approx.

12–14 months). Eggs and sperm from these mature fish were

then used to produce a full range of cross types (pure parentals,

F1, F2, and reciprocal backcrosses) between the three populations,

without inbreeding.

(d) Experimental infections
Laboratory-raised fish, representing the full range of cross types,

were exposed to infection by Gyrodactylus sp. and Diplostomum
sp. in two experiments. In our experimental infections, we used

parasites that were allopatric to the ones to which the fish are

naturally exposed. This removes any possibility that our results

are simply due to host–parasite local adaptation, making our

conclusions more generic. For Diplostomum infections, pond

snails (Lymnaea peregra) were collected from a lake on the

campus of the University of Nottingham, returned to the labora-

tory and exposed to bright light in a change of water, which

elicits the release of Diplostomum cercariae. Each fish was exposed

to a dose of 20 cercariae in 1 l of aquarium water. Fish were

euthanized after 48 h, their eyes removed and the total number

of cercariae present was counted. For Gyrodactylus infections,

fish were individually housed in 10 l tanks. Each fish was anaes-

thetized and infected with two Gyrodactylus worms removed

from wild fish caught at Barkby Brook, Syston, Leicestershire,

UK (528420 N; 18040 W). Gyrodactylus were then counted every

fourth day until the infection was lost (which takes up to six

weeks). Peak infection was used as the metric of susceptibility,

although the use of other metrics of infection severity, such as

number of worms at day 28 or ‘area under the infection curve’

(the sum of all counts for a fish for the whole infection period),

makes no difference to the outcome of analyses. The CHRU �
OBSM Gyrodactylus experiment used 58 fish from 26 families.

The CHRU � OBSM Diplostomum experiment used 68 fish from

30 families.

Under UK Government Home Office regulations, which

determine the treatment of animals in research, it is illegal to

subject vertebrates to treatments where death is an endpoint: ani-

mals must be euthanized before this, e.g. if they begin to show

symptoms which suggest the onset of severe infections. Gyrodac-
tylus infections of stickleback sometimes result in secondary

infection by bacteria, fungi, and protozoa. These infections

develop rapidly and are commonly fatal in the absence of inter-

vention. In our experiments, we immediately intervened in such

cases by euthanizing fish, as legally required. However, we

assumed that these fish would have died in the absence of inter-

vention, and we used such cases of euthanasia to calculate ‘case

fatality rates’ (CFR).

(e) Statistical analysis
Parasite occurrence data from wild fish were analysed in Genstat

15 using generalized linear models (GLMs) with appropriate

error distributions and link functions. Initially, we analysed data

from artificial infection experiments using generalized linear

mixed models (GLMMs) that included ‘family’ as a random

term, but family never accounted for a significant proportion of

the variance, and we reverted to the use of GLMs. In line-cross ana-

lyses, we followed Lynch & Walsh [22]. The Rundle–Whitlock

method [19] for testing for ecologically dependent postmating iso-

lation depends on showing that there is an interaction between

backcross type and environment in determining performance

[20]. Carrying out such an analysis requires the measurement

of performance on the same scale in different environments.

Our measures of performance are susceptibility to infection,

but to two different parasites, and therefore on different scales.

We therefore converted them into standardized deviates
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Figure 2. Patterns of parasitism by Gyrodactylus (left) and Diplostomum (right) on freshwater (CHRU, green triangles), marine (OBSM, dark blue diamonds), and
saltwater resident (OBSE, pale blue squares) sticklebacks from North Uist. Prevalences over several years are shown in (a) (sample sizes are 10 – 30, mean 21.8)
and (b) (sample sizes are 19 – 30, mean 23.1). Relationships of infection with measures of performance are shown in (c) and (d ). (c) Case fatality rates (see
Material and methods) resulting from artificial infections with Gyrodactylus of different cross types of CHRU (freshwater) � OBSM (marine) fish. Pie symbols illus-
trate the expected genomic composition of each cross type, left to right: n ¼ 10, 10, 12, 13, 5, 8. (d ) The relationship between infection with Diplostomum and
hepatosomatic index (relative liver size), n ¼ 83. Panels (e) and ( f ) show parasite abundances resulting from artificial infection experiments of CHRU
(freshwater) � OBSM (marine) crosses. Dashed lines highlight the switch in relative performance of the two backcross types following infection with the different
parasites. For Diplostomum left to right, n ¼ 11, 12, 13, 12, 9, 11. (Online version in colour.)
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(z scores) [31], which can be understood as ‘environment specific

susceptibility to infection’.
3. Results
Two different parasites, Gyrodactylus sp. (probably arcuatus)
and Diplostomum sp. (probably gasterostei) (ectoparasitic

and ocular trematodes, respectively) differed strongly in preva-

lence between CHRU and OBSM (figure 2a,b and table 1):

Gyrodactylus was very common on fish in brackish water,

but almost absent from the freshwater loch. By contrast,
Diplostomum infected the majority of fish in freshwater, but

was completely absent in brackish water. These patterns have

remained consistent over several years, in fulfilment of the

second necessary prerequisite. These differences are to some

extent constrained to be true because both parasites are sensi-

tive to changes in salinity. Diplostomum is not transmitted in

saltwater because the freshwater snails (Radix spp.) that are

its intermediate host are not present. Gyrodactylus does exist

in freshwater, but is generally less prevalent and abundant

than in salt (ADC MacColl 2007–2014, unpublished data).

Both parasites are individual elements of larger parasite com-

munities which differed dramatically in mean abundance



Table 1. Summary of statistical analyses of differences between CHRU and
OBSM in prevalence and abundance of six common parasite species.
Samples of at least 20 fish were taken from each population in 2011 and
2013. Population differences in prevalence were compared with Z tests;
those for abundance, with GLMs with negative binomial errors and
logarithm link functions.

parasite statistic d.f. p-values

prevalence Z

Gyrodactylus sp. 9.34 1,94 ,0.001

Diplostomum sp. 8.03 1,94 ,0.001

abundance Wald F

Gyrodactylus sp. 416.31 1,94 ,0.001

Diplostomum sp. 263.47 1,94 ,0.001

Apatemon gracilis 130.50 1,94 ,0.001

Schistocephalus solidus 44.30 1,94 ,0.001

Proteocephalus filicollis 42.98 1,94 ,0.001

Cryptocotyle sp. 129.48 1,94 ,0.001
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between the two populations (electronic supplementary

material, figure S2; table 1).

Gyrodactylus and Diplostomum have well documented effects

on the fitness of fish hosts, largely through effects on survival,

fulfilling the third necessary prerequisite. Gyrodactylus is one

of the most widespread and common of all fish parasite

genera. They have a direct life cycle with no need for alternative

hosts, can reproduce parthenogenetically, and worms are born

pregnant, giving the parasite a high potential for a rapid increase

in numbers. Gyrodactylus salaris is well known for its disastrous

effects on Norwegian salmon fisheries [32]. Previous studies of

Gyrodactylus infections on a variety of fish species have shown

that higher abundance of the parasite is associated with reduced

survival of the host and other pathological effects [33–35]. In our

experiments, parental CHRU and CHRU backcross fish exhib-

ited higher CFRs following infection than other types of

crosses (figure 2c; electronic supplementary material, table S1).

Diplostomum is also a widespread and common parasite

of freshwater fish, with pathological effects on hosts that lead

to reduced survival [36–38]. It has previously been shown

that infections reduce growth rate in marine fish experimen-

tally translocated to freshwater [24], suggesting that parasites

cause selection against immigrants. Previous experimental

studies have shown that infections can interfere with food

intake, leading to a reduced metabolic rate and enlarged liver

size [39]. In our study, Diplostomum infection in wild caught

fish from CHRU was associated with liver enlargement

(greater HSI, figure 2d, GLM, F1,81 ¼ 17.86, p , 0.0001),

suggesting metabolic consequences of infection [39]. Thus, it

seems likely that both Gyrodactylus and Diplostomum reduce fit-

ness, although this remains to be demonstrated in wild

stickleback. Doing so would fulfil the necessary conditions

for parasites to contribute to host speciation for CHRU and

OBSM, but the results presented here are strongly suggestive.

The susceptibility of backcrosses to experimental infection

clearly switched depending on the parasite to which they

were exposed, with each backcross type (i.e. CHRU BC or

OBSM BC) performing similarly to the most closely related

parental type (figure 2e,f; GLM: environment � backcross

type, F1,30 ¼ 19.27, p , 0.001, backcross type F1,31 ¼ 0.39,
p ¼ 0.54, environment F1,31 ¼ 0.15, p ¼ 0.71). This strongly

suggests that hybrids between CHRU and OBSM, should

they occur in the wild, would have reduced fitness in the

environment of either parental type. We also found that the

susceptibility to experimental infection by both Gyrodactylus
and Diplostomum differed significantly between pure CHRU

and OBSM, with fish being more susceptible to foreign

parasites in both comparisons (figure 2e,f; for Gyrodactylus,

Wald F1,10 ¼ 9.28, p ¼ 0.012; for Diplostomum, Wald F1,20 ¼

58.1, p , 0.001). Full quantitative genetic line-cross analysis

of our data for all crosses (parentals, F1s, F2s, and back-

crosses; electronic supplementary material, table S1) reveals

the genetic architecture of differences between environments

in host susceptibility. In Gyrodactylus infections, for both peak

infection and CFR, differences are additive, whereas for

Diplostomum there are also elements of dominant suscepti-

bility. Such a pattern of dominance will also contribute to

the inferiority of hybrids in the freshwater environment,

further strengthening reproductive isolation.
4. Discussion
We have shown that parasites with known effects on fitness can

differ greatly and consistently between adjacent populations.

Host populations have higher, presumably evolved, resistance

to the parasites in their own environment, but are susceptible

to parasites that they seldom or never encounter. Resistance

of backcrosses between the populations switches between

environments, such that it is higher in the environment of the

parental population to which each backcross type is more

closely related. Fish would therefore be at a disadvantage if

they migrated between populations, fuelling selection against

immigrants. Crosses between the populations would also be

at a disadvantage in the environments of either parental type,

not just because they are hybrids per se, but because they are

less well adapted than the parents to the ecological (parasito-

logical) conditions existing in those environments. Thus, in

the event of secondary contact between our populations,

environment-specific parasites would be likely to contribute

to reproductive isolation. Because neither Gyrodactylus sp. nor

Diplostomum sp. is contracted through the diet, the adaptation

to differences in infection is likely to be primary, and not a

secondary consequence of changes in feeding ecology [15].

The total effect of environment-specific parasites on divergence

and speciation in our system is likely to be greater than we have

shown here, because there are at least another four parasites

which are almost completely environment specific.

It has previously been shown that parasites of stickleback

can have a negative effect on growth when they are trans-

located between locations, although previous experiments

or effects have tended to be directional, rather than reciprocal

[17,24]. Such effects, and those we have documented here,

may be at least partly the result of differences in major histo-

compatibility (MHC) genes, which have been shown to be

under divergent selection in stickleback [40].

In stickleback, the transition from salt- to freshwater

environments is clearly associated with many ecological

changes and with rapid adaptation and even speciation [41].

It is important in our study system, because both Gyrodactylus
and Diplostomum are sensitive to salinity. Among the genetic

changes that occur when stickleback adapt to freshwater,

some of the clearest involve changes in genes that are likely
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to have an effect in the immune system such as TNFsf13b

(BAFF), GARP, and Muc5b [42,43]. These changes could have

implications for parasite resistance although the functional

significance of them is unknown.

Hybrids between different taxa (commonly congeneric

species) have previously been shown to have increased suscep-

tibility to infection [44] but reciprocal exposure of (within

species) host populations to (different species of) parasites

from different environments does not previously seem to

have been carried out. This may result from the difficulty of

assembling the information to satisfy the prerequisite criteria

[15] and carrying out the necessary crossing and infection

experiments. We hope that our work may encourage others

to see this as worthwhile, and to explore whether the

contribution of spatial variation in parasitic infection to the

evolution of reproductive isolation is a general one.
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