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Abstract 

Recently, many biological experiments have indicated that microRNAs (miRNAs) are a newly discovered small mol‑
ecule (SM) drug targets that play an important role in the development and progression of human complex diseases. 
More and more computational models have been developed to identify potential associations between SMs and 
target miRNAs, which would be a great help for disease therapy and clinical applications for known drugs in the 
field of medical research. In this study, we proposed a computational model of triple layer heterogeneous network 
based small molecule–MiRNA association prediction (TLHNSMMA) to uncover potential SM–miRNA associations by 
integrating integrated SM similarity, integrated miRNA similarity, integrated disease similarity, experimentally verified 
SM–miRNA associations and miRNA–disease associations into a heterogeneous graph. To evaluate the performance 
of TLHNSMMA, we implemented global and two types of local leave-one-out cross validation as well as fivefold 
cross validation to compare TLHNSMMA with one previous classical computational model (SMiR-NBI). As a result, for 
Dataset 1, TLHNSMMA obtained the AUCs of 0.9859, 0.9845, 0.7645 and 0.9851 ± 0.0012, respectively; for Dataset 2, 
the AUCs are in turn 0.8149, 0.8244, 0.6057 and 0.8168 ± 0.0022. As the result of case studies shown, among the top 
10, 20 and 50 potential SM-related miRNAs, there were 2, 7 and 14 SM–miRNA associations confirmed by experiments, 
respectively. Therefore, TLHNSMMA could be effectively applied to the prediction of SM–miRNA associations.
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Background
MicroRNA (miRNA) is a small non-coding RNA mole-
cule (about 22 nucleotides) discovered in plants, animals, 
human beings and even some viruses, that functions in 
RNA silencing and post-transcriptional regulation of 
gene expression [1, 2]. The first miRNA was discovered 
in the early 1990s [3, 4]. However, miRNAs were not 
recognized as a distinct class of biological regulators 
until the early 2000s [5, 6]. MiRNA research revealed 
multiple roles for miRNAs in many important biologi-
cal processes [7–11]. MiRNAs function via base-pairing 
with complementary sequences within mRNA mol-
ecules, which results in these mRNA molecules silenced 

[12, 13]. Furthermore, aberrant miRNA expressions are 
implicated in various disease states [14–16], and miRNA-
based therapies are under investigation [17]. Many stud-
ies have been conducted for the detection or regulation of 
miRNAs with bio-medical implications [18–20]. Regula-
tion of miRNAs by synthesized oligonucleotides or small 
molecules is an efficient means to modulate endogenous 
miRNA function and treat miRNA-related diseases. They 
are being considered as a novel type of bio-markers or 
potential therapeutic targets for various diseases [21].

In molecular biology and pharmacology, a small mol-
ecule is a low molecular weight (< 900 Daltons) organic 
compound that may help regulate a biological pro-
cess, with a size on the order of 1 nm [22]. Most drugs 
are small molecules. Small molecule regulators can 
modulate the regulatory networks of target miRNAs, 
and have potential use as probes to identify unknown 
components of miRNA pathways [23]. Regulation of 
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oncogenic or tumor-suppressive miRNAs by small mol-
ecules can induce cancer cell apoptosis [24]. Several 
small molecules with different regulatory activities on 
miRNAs have been identified,including inhibitors of 
miR-21 and inhibitors and activators of miR-122 [25]. 
MiR-21 is a well-known oncogenic miRNA and the 
expression of which is extremely high in ovarian, breast, 
and lung cancers [26]. Regulation of miR-21 using small 
molecules may be a novel approach to cancer treat-
ment. Streptomycin was identified as a specific inhibi-
tor of miR-21 [27]. Thermal melting results indicated 
that the inhibitory activity of streptomycin was derived 
from its direct interaction with pre-miR-21 [27]. The 
decreased expression of miR-122 and over-expression 
of miR-122 in liver cancer cells can induce cancer cell 
apoptosis [28]. In addition, miR-122 could also promote 
the replication of the hepatitis C virus (HCV) [29]. 
Using dual-luciferase reporter gene, where the Renilla 
luciferase gene is regulated by miR-122, two small mol-
ecules were identified as specific inhibitors of miR-122, 
while another compound was a specific activator. They 
all targeted miR-122 transcription [30]. MiR-34a is a 
tumor-suppressive miRNA that is down-regulated in 
most cancers and targets several anti-apoptotic genes 
[31–33]. Up-regulation of miR-34a can cause cellular 
apoptosis and inhibit cellular differentiation [34]. MiR-
34a mimics with the ability to restore the expression 
of miR-34a have been examined in clinical trials [34]. 
Using a hepatocellular carcinoma cell line, a small mol-
ecule was identified from a natural product library as 
a specific activator of miR-34a [35]. QRT-PCR analysis 
showed that both mature and primary miR-34a was up-
regulated by this compound, indicating that it activated 
miR-34a at the transcriptional level [35].

Currently, a wide number of studies have been devoted 
to develop high-throughput methods to screen small 
molecule modifiers of miRNAs, which may provide a new 
direction for miRNA-targeting therapies [36]. MiRNA 
regulation by small molecules could result from infer-
ence in miRNA biogenesis at three levels: before, during 
and after transcription [37]. Small molecules increase 
or decrease miRNA expressions indirectly, by altering 
miRNA promoter regions or binding to the transcrip-
tion factors [37]. They also can disrupt the maturation 
of miRNAs by binding with essential RNA-endonucle-
ases [38]. In summary, investigating the relationships 
between small molecules and miRNAs is important for 
disease therapy and clinical applications for known drugs 
[36, 37]. However, it is time-consuming to identify the 
regulations between small molecules and miRNAs by 
experimental approaches owing to the high complexity 
of biological systems. Therefore, there is an urgent need 
to develop new computational approaches or models to 

decipher the relationships between small molecules and 
miRNAs to speed up pharmacy genomic studies.

Some computational methods have been established 
to comprehensively identify the potential associations 
between SMs and miRNAs depending on the assump-
tion that similar SMs are more likely to have associations 
with similar miRNAs. For example, Li et  al. [39] pro-
posed a miRNA pharmacogenomic framework of small 
molecule–MiRNA network-based inference (SMiR-NBI) 
model, in which they constructed a heterogeneous net-
work connecting drugs, miRNAs as well as genes and 
implemented network based inference (NBI) on the net-
work to identify the underlying mechanisms of antican-
cer drug responses mediated by miRNAs. The model with 
high prediction accuracy and low computation cost only 
takes advantage of the network topology information 
from the built network as input. Lv et al. [40] constructed 
an heterogeneous molecular network to successfully 
identify novel SM-related miRNA targets based on the 
integration of SM side effect similarity, SM chemical 
structure similarity, gene functional consistency-based 
similarity for SMs and miRNAs, disease phenotype-based 
similarity for miRNAs and SMs, known miRNA–SM 
associations using a similarity-based random walk with 
restart. Furthermore, Jiang et al. [41] introduced a novel 
computational method to discover potential miRNA–SM 
associations in 23 different cancers on the basic of differ-
ential expression of miRNA target genes and gene signa-
tures that are extracted from the gene expression profiles 
following drug treatment of the 23 cancers. As a result, 
they built the small molecule-miRNA network (SMirN) 
for 17 different cancers and identified miRNA modules 
and SM modules in each of the cancer specific SMirNs. 
Using the constructed network and identified modules, 
they predicted new miRNAs for drug target and drug 
candidates for cancer therapy. Wang et al. [42] presented 
a novel model to successfully predict potential miRNA–
SM associations based on miRNA and SM functional 
similarity network, in which they calculated functional 
similarity for each pair of SM and miRNA based on Gene 
Ontology (GO) annotations of miRNA perturbed gene 
expression profiles and SM perturbed gene expression 
profiles. It is worth noting that potential drugs-diseases 
associations could be predicted at the same time through 
combining known miRNA–SM associations with experi-
mentally validated miRNA–disease associations, which 
would be helpful for drug repositioning. Recently, Meng 
et  al. [43] built a bioactive Small molecule and miRNA 
association network in Alzheimer’s Disease (SmiRN-AD) 
to predict novel miRNA–SM associations based on the 
gene expression signatures of bioactive SM perturba-
tion and miRNA regulation. Furthermore, the topologi-
cal characteristics and functional properties of miRNAs 
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and SMs were comprehensively analyzed in SmiRN-AD. 
Lastly, they constructed a database for SmiRN-AD and 
differential expression patterns of AD-associated miRNA 
targets can also be provided. Thus, the method and its 
application may be help for providing a new view with 
respect to the treatment of AD. Currently, in large-scale 
studies, high-performance or high-precision computing 
approaches are still required to comprehensively identify 
the potential miRNA–SM associations.

In this study, we developed an effective computational 
method of triple layer heterogeneous network based 
small molecule-MiRNA association prediction (TLHNS-
MMA) by combining integrated SM similarity, integrated 
miRNA similarity, integrated disease similarity, experi-
mentally verified miRNA–SM associations and miRNA–
disease associations into a triple layer heterogeneous 
network. An iterative updating algorithm that propa-
gates information across the constructed heterogeneous 
network is then developed to predict novel associations 
between SMs and miRNAs. Moreover, new miRNA–dis-
ease associations can be automatically established at the 
same time. In this model, the known miRNA–SM asso-
ciations were download form the database of SM2miR 
v1.0 [44]. We constructed two groups of datasets based 
on the known miRNA–SM association and employed 
TLHNSMMA to predict new miRNA–SM associations 
based on the two datasets respectively. In the Dataset 
1, only a part of SMs and miRNAs were involved in the 
known miRNA–SM associations. In Dataset 2, all the 
SMs and miRNAs are implicated in the known miRNA–
SM associations. To evaluate the effectiveness of TLHN-
SMMA, global and local leave-one-out cross validation 
(LOOCV) as well as fivefold cross validation were imple-
mented. In short, The AUCs of global LOOCV are 0.9859 
and 0.8149 for Dataset 1 and Dataset 2, respectively; the 
AUCs of local LOOCV by fixing each miRNA to predict 
miRNA-associated SMs are respectively 0.9845, 0.8244 
for the two datasets; the AUCs of local LOOCV by fixing 
each SM to predict SM-associated miRNAs are respec-
tively 0.7645, 0.6057 for the two datasets. For fivefold 
cross validation, the average AUCs and standard devia-
tions are 0.9851 ± 0.0012, 0.8168 ± 0.0022 for the two 
datasets, respectively. In case studies, 2 out of the top 10 
and 14 out of the top 50 predicted miRNA–SM associa-
tions were confirmed by published references. Therefore, 
it proves that TLHNSMMA is effective in predicting 
potential associations between miRNAs and SMs.

Results
Performance evaluation
We used global and local LOOCV as well as fivefold cross 
validation based on the known SM–miRNA associations 
in SM2miR v1.0 database to evaluate the performance 

of TLHNSMMA. Meanwhile, TLHNSMMA was com-
pared with one previous classical computational meth-
ods: SMiR–NBI [39] in cross validation. SMiR–NBI 
only rely on known miRNA–SM associations [39]. The 
known miRNA–SM association dataset used for this 
comparison was the same as that in our study, i.e., the 
664 known associations between 831 miRNAs and 541 
diseases (Dataset 1) and the known 664 known associa-
tions between 39 SMs and 286 miRNAs (Dataset 2). The 
SMiR-NBI model was constructed based on the state-
of-the-art network-based inference (NBI) algorithm [45, 
46]. For initial resources of a given SM located in its reg-
ulated miRNAs. Each miRNA will distribute resources 
equally to all neighboring SMs and then redistribute their 
obtained resources to every adjacent miRNA. The final 
resources score for miRNAs represented their potential 
association to be regulated by the interested SM [46].

In LOOCV, each known miRNA–SM association in 
the dataset was alternately used as the test sample in 
turn, while other known miRNA–SM associations were 
considered as training samples. The miRNA–SM with-
out known association were regarded as candidate sam-
ples. After TLHNSMMA was implemented, we would 
obtain the prediction scores of each miRNA–SM pair. 
In global LOOCV evaluation, the score of test sample 
would be compared with the scores of all the candidate 
samples. However, In the SM-fixed local LOOCV, the 
test sample would be ranked with the scores of the can-
didate samples which composed of all the miRNAs that 
do not associated with the fixed SM. In the miRNA-fixed 
local LOOCV, the test sample would be ranked with the 
scores of the candidate samples composed of all the SMs 
without any known associations with the fixed miRNA. 
In fivefold cross validation, all the experimentally verified 
miRNA–SM associations were randomly divided into five 
equal groups. Each time, four groups were selected as 
training samples in turn and the other one group would 
be considered as test sample. Similarly, the miRNA–SM 
pairs with no known associations were regarded as can-
didate samples. Then, the score of each test sample would 
also be compared with that of all the candidate samples, 
respectively. The procedure of fivefold cross validation 
would be repeated 100 times in this model.

Finally, we plotted Receiver operating characteristics 
(ROC) curve using true positive rate (TPR, sensitivity) 
against the false positive rate (FPR, 1-specificity) at dif-
ferent thresholds. Sensitivity denotes the percentage of 
positive miRNA–SM pairs that are correctly identified 
among all positive miRNA–SM pairs. Meanwhile, speci-
ficity refers to the percentage of negative miRNA–SM 
pairs that are correctly predicted among all negative 
miRNA–SM pairs. Area under the ROC curve (AUC) 
was calculated as a form of evaluation index for the 
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model. In the model, the higher the AUC value, the bet-
ter the prediction ability. When the model has perfect 
prediction ability, the value of AUC is 1. Meanwhile, 
if the model only possesses random prediction ability, 
the value of AUC is 0.5. As a result, in global LOOCV, 
TLHNSMMA and SMiR-NBI obtained AUCs of 0.9859 
and 0.8843 based on Dataset 1, respectively. TLHN-
SMMA and SMiR-NBI obtained AUCs of 0.8149 and 
0.726 based on Dataset 2, respectively (see Fig. 1). In the 
framework of miRNA-fixed local LOOCV, the AUCs of 
TLHNSMMA and SMiR-NBI based on Dataset 1 are 
0.9845 and 0.8837, respectively. In addition, the AUCs 
of TLHNSMMA and SMiR-NBI based on Dataset 2 are 
0.8244 and 0.7846, respectively (see Fig. 2). In the frame-
work of SM-fixed local LOOCV, The AUCs of TLHNS-
MMA and SMiR-NBI based on Dataset 1 are 0.7645 and 
0.7497, respectively. Furthermore, the AUCs of TLHNS-
MMA and SMiR-NBI based on Dataset 2 are 0.6057 and 
0.6100, respectively (see Fig. 3). In fivefold cross valida-
tion, TLHNSMMA and SMiR-NBI obtained AUCs of 
0.9851 ± 0.0012 and 0.8554 ± 0.0063 based on Dataset 
1, Meanwhile, TLHNSMMA and SMiR-NBI obtained 
AUCs of 0.8168 ± 0.0022 and 0.7104 ± 0.0087 based on 
Dataset 2. Finally, in order to obtain a clear knowledge 
of the predictability performance of TLHNSMMA com-
pared with SMiR-NBI in our study. We listed evaluation 

result of TLHNSMMA and SMiR-NBI in global LOOCV, 
SM-fixed local LOOCV, miRNA-fixed local LOOCV and 
fivefold cross validation (see Table 1). In general, TLHN-
SMMA turns out to be more reliable and effective in 
predicting potential miRNA–SM associations compared 
with SMiR-NBI.

In addition, in order to assess the baseline performance 
of TLHNSMMA based on the dataset of known miRNA–
SM associations to see whether or not the dataset of 
known miRNA–SM associations exist false positives. We 
removed all known miRNA–disease associations in the 
dataset, and randomly selected 664 miRNA–SM pairs 
from all miRNA–SM pairs as known associations. Then 
we implemented TLHNSMMA on the new randomly 
created adjacency matrix to calculate the AUC value for 
global LOOCV, SM-fixed local LOOCV and miRNA-
fixed local LOOCV based on Dataset 1 and Dataset 2, 
respectively. We repeat 100 times for each process men-
tioned above. More importantly, if some false positives 
exist in the dataset of known miRNA–SM associations, 
the output of TLHNSMMA will be better than random 
prediction. On the other hand, if there are almost no false 
positives exist in the dataset of known miRNA–SM asso-
ciations, the performance of TLHNSMMA will be simi-
lar to the random prediction. Therefore, we implemented 
the hypothesis testing that the six results of LOOCV 

Fig. 1  Performance evaluation comparison between TLHNSMMA and SMiR–NBI in terms of ROC curve and AUC based on global LOOCV in Dataset 
1 (left) and Dataset 2 (right). As a result, TLHNSMMA achieved AUCs of 0.9859 and 0.8149 for Dataset 1 and Dataset 2, respectively. The predictive 
performance of TLHNSMMA is better than SMiR–NBI
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Fig. 2  Performance evaluation comparison between TLHNSMMA and SMiR–NBI in terms of ROC curve and AUC based on local LOOCV by fixing 
miRNAs to rank SMs in Database 1 (left) and Database 2 (right). As a result, TLHNSMMA achieved AUCs of 0.9845 and 0.8244 for Dataset 1 and 
Dataset 2, respectively. The predictive performance of TLHNSMMA is better than SMiR-NBI

Fig. 3  Performance evaluation comparison between TLHNSMMA and SMiR–NBI in terms of ROC curve and AUC based on local LOOCV by fixing 
SMs to rankmiRNAs in Database 1 (left) and Database 2 (right). As a result, TLHNSMMA achieved AUCs of 0.7645 and 0.6057 for Dataset 1 and 
Dataset 2, respectively. The predictive performance of TLHNSMMA is better than SMiR–NBI



Page 6 of 14Qu et al. J Cheminform  (2018) 10:30 

mentioned above equal to the random performance, i.e. 
with random AUC of 0.5, respectively. We implemented 
t test on the results of LOOCV to assess the significance 
of hypothesis testing. Based on Dataset 1, we obtained 
the p value of 0.7757 (in global LOOCV), 0.5704 (in SM-
fixed local LOOCV) and 0.0825 (in miRNA-fixed local 
LOOCV), Based on dataset 2, we obtained the p-value 
of 0.2612 (in global LOOCV), 0.6979 (in SM-fixed local 
LOOCV) and 0.6910 (in miRNA-fixed local LOOCV). 
The results shown that the p value calculated are all 
higher than 0.05, indicating that the performance of 
TLHNSMMA will be similar to the random prediction 
and hence there are almost no false positives exist in the 
dataset of known miRNA–SM associations.

Case studies
Based on the published references in PubMed data-
base, we verified the prediction results of TLHNS-
MMA. Through the case studies, we can further confirm 
the effectiveness of the TLHNSMMA. We ulteriorly 
observed the number of the verified miRNA–SM asso-
ciations in the top 10, top 20 and top 50 ones predicted 
by the computational model. As the result shown, among 
the top 10, 20 and 50 potential small molecule–miRNA 
associations, there were 2, 7 and 14 associations con-
firmed by experiments, respectively (see Table 2).

For instance, in the top 10 predicted miRNA–SM asso-
ciations, the association between mir-21 and diethylstil-
bestrol (DES) was predicted and ranked eighth. DES is 
a potent synthetic estrogen and the prototypical endo-
crine disruptor [47]. Based on the analysis of microarray 
profiling data, Padmanabhan et  al.’s study demonstrated 
that mir-21 was changed more than twofold and signifi-
cantly upregulated in the samples from DES-exposed 
compared to control uteri [48]. The progression of the 
neonatal DES-induced dysplasia/neoplasia phenomenon 
in the hamster uterus includes a spectrum of miRNA 
expression alterations that differ during the initiation and 

promotion stages of the phenomenon [48]. These find-
ings underscore the need for continued efforts to iden-
tify and assess both the classical genetic and the more 
recently recognized epigenetic mechanisms that truly 
drive this and other endocrine disruption phenomena 
[48]. What’s more, the association between mir-155 and 
5-Fluorouracil (5-FU) was predicted and ranked ninth. 
5-FU is a widely used chemotherapeutic drug in colo-
rectal cancer. Using translatome profiling, a clinically 
relevant dose of 5-FU induces a translational reprogram-
ming in colorectal cancer cell lines [49]. 5-FU increased 
the mRNA translation of HIVEP2, which encodes a tran-
scription factor whose translation in normal condition 
is known to be inhibited by mir-155 [49]. In response to 
5-FU, the expression of mir-155 decreases thus stimulat-
ing the translation of HIVEP2 mRNA [49]. These findings 
indicate that 5-FU promotes miRNA-dependent mecha-
nisms [49].

In the top 20 predicted miRNA–SM associations, we 
also revealed the potential association between mir-
146a and 5-FU ranked thirteenth. This association is 
demonstrated by Khorrami et  al. [50]. In their stud-
ies, drug resistance in transfected HT-29 cells was ana-
lyzed following treatment with 5-FU [50]. The results 
showed overexpression of miR-146a enhanced regula-
tory T cells’ frequencies in peripheral blood mononu-
clear cells [50]. The next prediction is between mir-155 
and 17β-Estradiol (E2). In estrogen responsive breast 
cancer cells, E2 is a key regulator of cell proliferation and 
survival [51]. Mir-155 is the most significantly up-regu-
lated miRNA in breast cancer [52]. Treatment with E2 in 
MCF-7 cells increased miR-155 expression, promoting 
proliferation and decreasing apoptosis of MCF-7 cells 
[53]. The results demonstrated that E2 promoted breast 
cancer development and progression possibly through 
increasing the expression of miR-155 [53].

Besides, the sixteenth predicted association 
between mir-34a and 5-FU was verified by Li et  al. 

Table 1  Performance evaluation comparison between TLHNSMMA and SMiR-NBI in global LOOCV, SM-fixed local LOOCV, 
miRNA-fixed local LOOCV and fivefold cross validation based on Dataset 1 and Dataset 2

The corresponding AUCs of TLHNSMMA are shown in the third columns, and compared with the AUCs for SMiR–NBI in the fourth column

Dataset Experimental types TLHNSMMA SMiR-NBI

Dataset 1 AUC in global LOOCV 0.9859 0.8843

AUC in SM-fixed local LOOCV 0.7645 0.7497

AUC in miRNA-fixed local LOOCV 0.9845 0.8837

Average AUC in fivefold cross validation 0.9851 ± 0.0012 0.8554 ± 0.0063

Dataset 2 AUC in global LOOCV 0.8149 0.7264

AUC in SM-fixed local LOOCV 0.6057 0.6100

AUC in miRNA-fixed local LOOCV 0.8244 0.7846

Average AUC in fivefold cross validation 0.8168 ± 0.0022 0.7104 ± 0.0087
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[54]. Inhibition of lactate dehydrogenase A by mir-
34a resensitizes colon cancer cells to 5-FU [54]. The 
nineteenth predicted association is between mir-145 
and 5-FU. Akao’s study confirmed that the exposure 
to 5-FU significantly increased the intracellular levels 
of mir-145 in the 5-FU-sensitive human colon cancer 
DLD-1 cells [55]. In addition, knockdown of mir-221 
in 5-FU resistant esophageal adenocarcinoma cells 
resulted in reduced cell proliferation, increased apop-
tosis, restored chemosensitivity, and led to inactivation 
of the Wnt/β-catenin pathway mediated by alteration 
in DKK2 expression [56]. The results demonstrated 
the association between mir-221 and 5-FU predicted 
by TLHNSMMA as the last in top 20.

The results in case studies have fully showed the out-
standing performance of TLHNSMMA. Therefore, we 
further released the prediction list of the whole poten-
tial miRNAs associated with all the SMs in Dataset 1 
and their association scores predicted by TLHNS-
MMA (see Additional file 1: Table S1).

Discussion
MiRNAs play significant roles in the development and 
progression of multiple human complex diseases and dis-
covered to be targeted by SM. Therefore, more and more 
attentions have focused on the identification of miRNA–
SM associations in diseases, which would be helpful for 
developing a novel effective miRNA-associated therapeu-
tic strategy. In this article, we integrated SM side effect 
similarity, SM chemical structure similarity, gene func-
tional consistency-based similarity for SMs and miRNAs, 
disease phenotype-based similarity for miRNAs and 
SMs, disease semantic similarity, Gaussian interaction 
profile kernel similarity for disease, known miRNA–SM 
associations and known miRNA–disease associations 
into a triple layer network. At last, an iterative updating 
algorithm based on the triple layer heterogeneous graph 
was introduced to obtain new miRNA–SM associa-
tions. The reliable results from cross validation based on 
the Dataset 1 and Dataset 2 and case studies have dem-
onstrated that TLHNSMMA could be an reliable and 

Table 2  Verification of the top 50 predicted miRNAs associated with SMs based on published references

The first column records top 1–25 related miRNAs. The second column records the top 26–50 related miRNAs

SM MiRNA Evidence SM MiRNA Evidence

CID:3385 hsa-mir-219-a Unconfirmed CID:5757 hsa-mir-125b-1 Unconfirmed

CID:448537 hsa-mir-219-a Unconfirmed CID:448537 hsa-mir-125b-2 Unconfirmed

CID:5757 hsa-mir-219-a Unconfirmed CID:3385 hsa-mir-29b-1 Unconfirmed

CID:5311 hsa-mir-219-a Unconfirmed CID:448537 hsa-mir-145 Unconfirmed

CID:3229 hsa-mir-219-a Unconfirmed CID:5311 hsa-mir-125b-1 Unconfirmed

CID:451668 hsa-mir-219-a Unconfirmed CID:451668 hsa-mir-146a 24885368

CID:60750 hsa-mir-219-a Unconfirmed CID:3385 hsa-mir-143 19843160

CID:448537 hsa-mir-21 28265775 CID:448537 hsa-mir-221 Unconfirmed

CID:3385 hsa-mir-155 28515355 CID:3385 hsa-mir-122 24898807

CID:5311 hsa-mir-21 Unconfirmed CID:5757 hsa-mir-34a Unconfirmed

CID:448537 hsa-mir-155 Unconfirmed CID:3385 hsa-let-7b 25789066

CID:5288826 hsa-mir-219-a Unconfirmed CID:60750 hsa-mir-146a Unconfirmed

CID:3385 hsa-mir-146a 28466779 CID:3385 hsa-mir-1-1 Unconfirmed

CID:5757 hsa-mir-155 23568502 CID:5757 hsa-mir-20a Unconfirmed

CID:3385 hsa-mir-125b-1 Unconfirmed CID:3229 hsa-mir-17 Unconfirmed

CID:3385 hsa-mir-34a 25333573 CID:3385 hsa-mir-181a-1 Unconfirmed

CID:3229 hsa-mir-155 Unconfirmed CID:5757 hsa-mir-125b-2 Unconfirmed

CID:3385 hsa-mir-125b-2 Unconfirmed CID:3385 hsa-mir-1-2 Unconfirmed

CID:3385 hsa-mir-145 24447928 CID:448537 hsa-mir-29a Unconfirmed

CID:3385 hsa-mir-221 27501171 CID:448537 hsa-mir-18a Unconfirmed

CID:448537 hsa-mir-146a Unconfirmed CID:5757 hsa-mir-145 28011237

CID:3385 hsa-mir-126 Unconfirmed CID:5311 hsa-mir-20a 25393367

CID:448537 hsa-mir-125b-1 Unconfirmed CID:60750 hsa-mir-125b-1 Unconfirmed

CID:5311 hsa-mir-146a 24107356 CID:60750 hsa-mir-17 Unconfirmed

CID:3385 hsa-mir-19b-1 Unconfirmed CID:3385 hsa-mir-223 Unconfirmed
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effective computational model for the new miRNA–SM 
associations identification, which would contribute to 
the diagnosis, treatment, prognosis, and prevention of 
human complex disease.

The reason of the useful performance of TLHNSMMA 
could be due to the following several factors. Firstly, the 
known experimentally confirmed miRNA–SM associa-
tions from highly reliable SM2miR v1.0 database [44] and 
miRNA–disease associations from reliable HMDD v2.0 
database [57] used in the model for the identification 
of the associations between miRNAs and SMs ensured 
its effectiveness. Secondly, several reliable biological 
datasets were integrated into the heterogeneous graph. 
Unlike some machine learning-based model, the train-
ing data TLHNSMMA requires are only positive sam-
ples. In general, since the negative samples in machine 
learning-based model are randomly selected, this inaccu-
rate chosen process would affect the model’s prediction 
accuracy. Therefore, the prediction accuracy of TLHNS-
MMA is more convincing compared with the prediction 
model that needs negative samples to train. Finally, global 
network information was used to predict potential asso-
ciations between miRNAs and SMs. Compared with local 
network information, the advantages of global network 
information have been confirmed in previous researches 
of identifying new disease-associated genes, new dis-
ease-associated miRNA [58, 59], new disease-associ-
ated lncRNA [60] and potential drug-target interaction 
prediction [61]. Furthermore, TLHNSMMA took full 
advantage of global network information by establishing 
an iterative process that propagated information across 
the heterogeneous network, which could promote the 
effective prediction of TLHNSMMA. Of course, there 
still exist several limitations in TLHNSMMA that need 
to overcome in the future. TLHNSMMA cannot predict 
the potential SM-associated miRNAs for SMs without 
any known related miRNAs and potential miRNA-asso-
ciated SMs for miRNAs without any known related SMs. 
Besides, there is no powerful approaches to obtain the 
optimal parameters for TLHNSMMA. Finally, the num-
ber of experimentally verified miRNA–SM associations 
are insufficient, there are merely 664 experimentally veri-
fied miRNA–SM associations. The more known associa-
tions between miRNA and SM need to be confirmed in 
the future. Although TLHNSMMA has significantly 
improved the prediction ability compared with previous 
methods, current prediction accuracy is still not satisfac-
tory based on the evaluation of LOOCV and case studies.

Methods
Small molecule–miRNA associations
The miRNA–SM association dataset used in this study 
was acquired from the SM2miR v1.0 database [62]. The 

dataset contains 664 distinct experimentally confirmed 
miRNA–SM associations. Dataset 1 in this paper con-
sists of 831 SMs and 541 miRNAs, only some of them are 
involved in the 664 known associations. Dataset 2 con-
sists of 39 SMs and 286 miRNAs that are fully involved 
in the 664 known associations. Then adjacency matrix A 
is defined to represent known miRNA–SM associations. 
If SM s(i) is related to miRNA m(j), the entity A(i, j) is 1, 
otherwise 0. Furthermore, variables ns and nm are used 
to indicate the number of SMs and miRNAs, respectively.

Human miRNA–disease associations
The human miRNA–disease association dataset used 
here was downloaded from HMDD v2.0 database [57]. 
In this paper, the known disease-related miRNAs that do 
not appear in the dataset of known miRNA–SM associa-
tions mentioned above need to be deleted. As a result, 
we obtained 6233 known miRNA–disease associations 
and established an adjacency matrix B to represent the 
known miRNA–disease associations. Similarly, variables 
nd were used as the number of diseases in the dataset, 
respectively. If miRNA m(i) is related to disease d(j), the 
entity B(i, j) is 1, otherwise 0.

SM side effect similarity
We obtained SM drug side effects from SIDER [63]. Here 
N(i) indicates the SM S(i)-related side effect set. Based 
on the idea that the more side effects two SMs share, the 
more similar between the two SMs. If SMs have any no 
common side effects, their value of side effect similarity 
is 0. The entity SsS(i, j) used here to indicate the side effect 
similarity of SM i and SM j. Jaccard score [64] was used 
to calculate SM side effect similarity, where the notation 
|X | is used for the cardinality of set X.

SM chemical structure similarity
SIMCOMP (http://www.genom​e.jp/tools​/simco​mp/) 
has originally been developed as a graph-based method 
for comparing chemical structures, which is one types of 
chemical structure search serves for the chemical simi-
larity search. In this work, SIMCOMP [65] was used to 
calculate SM chemical structure similarities, which were 
collected from the DRUG and COMPOUND sections 
of the KEGG LIGAND database [66]. SIMCOMP is a 
graph-based approach of searching a maximal common 
sub-graph isomorphism by finding the maximal cliques 
in an association graph, which reflects the global score 
of similarity. The approach considered different environ-
mental factors of the same atom and was widely applied 

(1)SsS = Jaccard score =

∣

∣N (i) ∩ N
(

j
)∣

∣

∣

∣N (i) ∪ N
(

j
)∣

∣

http://www.genome.jp/tools/simcomp/
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to the identification of drug-target interactions. Similarly, 
SCS (i, j) was presented here to denote the chemical struc-
ture similarity between SM i and SM j.

Disease phenotype‑based similarity for miRNAs and SMs
miRNA–related diseases were extracted from HMDD 
v2.0 [57] databases miR2Disease [67] and PhenomiR [68] 
databases. Disease phenotype-based similarity for miR-
NAs was defined using the Jaccard equation [1] accord-
ing to the assumption that the more diseases the miRNAs 
share, the more similarity between the miRNAs. Here 
N(i) indicates the miRNA m(i)-related disease set. The 
entity SDM

(

i, j
)

 indicated the disease phenotype-based 
similarity between miRNAs i and miRNA j. Similarly, 
SM-related diseases were extracted from Comparative 
Toxicogenomics Database (CTD) [69], DrugBank [70] 
and Therapeutic Targets Database (TTD) [71]. The entity 
SDS

(

i, j
)

 was defined here using the Jaccard score to indi-
cate the disease phenotype-based similarity between SM 
i and SM j.

Gene functional consistency‑based similarity for SMs 
and miRNAs
We obtained the target genes of each miRNA from Tar-
getScan [72]. Based on the assumption that if targets of 
two miRNAs have functional consistency, the similarity 
between the two miRNAs is greater. Gene Set Functional 
Similarity (GSFS) method [73] was used in this paper 
to reflect functional consistency similarity between two 
miRNAs by calculating functional consistency of their 
miRNA target gene sets [73]. The entity STM

(

i, j
)

 indicates 
the gene functional consistency-based similarity between 
miRNAs i and miRNA j. Target genes of the SMs could 
be obtained from DrugBank and TTD. The entity STS

(

i, j
)

 
indicates the gene functional consistency-based similar-
ity between SMs i and SM j.

Integrated SM similarity
In this study, we construct integrated SM similarity based 
on SM side effect similarity [74], gene functional con-
sistency-based similarity for SMs and miRNAs [75], SM 
chemical structure similarity [76], disease phenotype-based 
similarity for SMs and miRNAs [74], respectively. In order 
to reduce the deviation of each similarity and balance the 
four similarity, a weighed combination strategy was devel-
oped to integrate the similarity. As shown in Equations [2]. 
The integrated SM similarity SS can be defined as follows:

Here, the default value βj = 1 indicates each separated 
similarities have the same weight.

(2)

SS =

(

β1S
D
S + β2S

T
S + β3S

C
S + β4S

s
S

)

/
∑

j

βj
(

j = 1, 2, 3, 4
)

Integrated miRNA similarity
Integrated miRNA similarity was established in this 
model by combining gene functional consistency-based 
similarity for miRNAs and disease phenotype-based simi-
larity for miRNAs [74, 75]. Similarly, we used a weighed 
combination strategy to integrate the similarities. The 
integrated miRNA similarity SM can be defined as follows:

Here, the default value αi = 1 means each separated 
similarities possess the same weight.

Disease semantic similarity model 1
Disease semantic similarity was proposed by combina-
tion of two models on the basis of disease directed acyclic 
graph (DAG) [77]. As illustrated in the literature [78], the 
semantic information of disease d(i) was explained by a 
DAG where d(i) and its ancestor diseases were used as 
nodes. The DAGs were retrieved from the U.S. National 
Library of Medicine (MeSH) at https​://www.nlm.nih.gov/
mesh/. The DAG(D)= (D, T(D), E(D)) represents the dis-
ease D, where T(D) is the node set of node D itself and its 
ancestor nodes, E(D) indicates the edges between child 
and parent nodes. We defined the contribution of disease 
d to the semantics of disease D as follows:

Here, � is the semantic contribution factor and the 
contribution of disease D to the semantic value of itself 
is 1. Besides, the contribution of other diseases to the 
semantic value of disease D will decrease when the dis-
tance between this disease and disease D increases. The 
semantic value for disease D can be calculated as follows:

According to the assumption that two diseases with 
larger semantic similarity would share larger part of their 
DAGs, the value of semantic similarity between disease 
d(i) and d(j) in disease semantic similarity model 1 can be 
defined as follows:

Disease semantic similarity model 2
According to the different disease terms in the same 
layer of DAG (D) may appear in the different numbers 

(3)SM =

(

α1S
D
M + α2S

T
M

)

/
∑

i

αi (i = 1, 2)

(4)

{

DD1(d) = 1 if d = D

DD1(d) = max
{

� ∗ DD1
(

d′
)

|d′ ∈ children of d
}

if d �= D

(5)DV 1(D) =
∑

d∈T (D)

DD1(d)

(6)

SS1
(

d(i), d
(

j
))

=

∑

t∈T (d(i))∩T(d(j))(Dd(i)1(t)+ (Dd(j)1(t))

DV 1(d(i))+ DV 1
(

d
(

j
))

https://www.nlm.nih.gov/mesh/
https://www.nlm.nih.gov/mesh/
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of disease DAGs. For example, the first disease and 
the second disease appear in the same layer of DAG 
(D) and the first disease appears in less disease DAGs 
than the second disease. We can conclude that the 
first disease is more specific than the second disease. 
Therefore, the contribution of the first disease to the 
semantic value of disease D should be higher than the 
second disease. The contribution of disease in DAG 
to the semantic value of disease D can be defined as 
follows:

(7)

DD2(d) = −log

[

The number of DAGs including d

The number of diseases

]

The value of semantic similarity between disease d(i) 
and d(j) can be calculated in disease semantic similarity 
model 2 as follows:

Gaussian interaction profile kernel similarity for disease
Based on the idea that similar diseases are more likely to 
relate with miRNAs with similar functions. We calculate 
Gaussian interaction profile kernel similarity for diseases 
by building binary vector IP(d(u)) to represent the inter-
action profiles of disease d(u) with each miRNA, i.e. the 
ith row of the adjacency matrix B. Therefore, we defined 
Gaussian interaction profile kernel similarity between 
diseases d(u) and d(v) as follows.

where parameter γd is used to control the kernel band-
width, which can be obtain from the standardization of 
a new bandwidth γ ′

d by the average number of related-
miRNAs for per disease. Therefore, γd can be defined as 
follows.

Integrated disease similarity
We introduced a Directed Acyclic Graph (DAG) to 
describe a disease based on the MeSH descriptors. The 
semantic similarity score was calculated based on the 
assumption that two diseases with larger shared area of 

(8)

SS2
(

d(i), d
(

j
))

=

∑

t∈T (d(i))∩T(d(j))(Dd(i)2(t)+ (Dd(j)2(t))

DV 2(d(i))+ DV 2
(

d
(

j
))

(9)
KD(d(u), d(v)) = exp

(

−γd
∣

∣

∣

∣IP(d(u))− IP(d(v))
∣

∣

∣

∣

2
)

(10)γd = γ ′
d/

(

1

nd

nd
∑

n=1

∣

∣

∣

∣IP(d(u))
∣

∣

∣

∣

2

)

their DAGs may have greater similarity score. In fact, we 
couldn’t get DAGs for all diseases. In other words, for the 
specific disease without DAG, we couldn’t calculate the 
semantic similarity score between the disease and other 
diseases. Therefore, for those disease pairs with semantic 
similarity score, we used the semantic similarity score to 
denote the disease similarity, for the others, the Gauss-
ian interaction profile kernel similarity score was used to 
denote the disease similarity. Accordingly, integrated dis-
ease similarity matrix SD was constructed by integrating 
disease semantic similarity model 1, disease semantic simi-
larity model 2 and Gaussian interaction profile kernel sim-
ilarity for disease. The formulation was showed as follows:

(11)SD(d(u), d(v)) =

{

SS1(d(u),d(v))+SS2(d(u),d(v))
2 d(u) and d(v) has functional similarity

KD(d(u), d(v)) otherwise

TLHNSMMA
Based on the guilt-by-association principle [79, 80], 
potential miRNA–SM associations can be predicted by 
constructing two-layer heterogeneous network with the 
datasets of integrated miRNA similarity, integrated SM 
similarity and known miRNA–SM associations. Like-
wise, novel miRNA–disease associations can be inferred 
by constructing two-layer heterogeneous network with 
the datasets of integrated miRNA similarity, integrated 
disease similarity and known miRNA–disease asso-
ciations. Therefore, here we infer potential miRNA–SM 
associations in the newly developed three-layer model 
by integration of known miRNA–SM associations, 
miRNA–disease associations, integrated similarity for 
SMs, miRNAs and diseases using an information flow-
based method (see Fig. 4). To establish new associations 
between SMs and diseases that have no associations orig-
inally, we can calculate a new Wnew

sd  in matrix format as 
follow:

which incorporates integrated miRNAs similarity SM , 
miRNA–SM associations Wsm and miRNA–disease asso-
ciations Wmd . According to the association between SMs 
and diseases established above, new associations between 
SMs and miRNAs Wnew

sm  can be constructed using SM-
disease associations Wsd , integrated disease similarity SD 
and miRNA–disease associations Wmd.

The equation was established to infer new associa-
tions between miRNAs and SMs by consideration of dis-
eases. What’s more, new associations between miRNA 
and disease Wnew

md  can be obtained simultaneously by 

(12)Wnew
sd = Wsm × SM ×Wmd

(13)Wnew
sm = Wsd × SD ×WT

md
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incorporating SM information, which can be written as 
follows:

where SD represents integrated disease similarity and 
superscript T indicates the transpose of the correspond-
ing matrix. We set Wnew

sd  as a temporary value and replace 
it in the right sides of the Eqs. (13) and (14). Then, Eqs. 
(13) and (14) can be rewritten as follows:

In view of the above-mentioned formula, Eqs. (15) and 
(16) incorporates all diseases related to miRNA and SM, 
as well as their similarity and all SMs related to miRNA 
and disease, as well as their similarity, respectively. 
More importantly, Eq. (15) is potentially more power-
ful in predicting unobserved miRNA–SM associations 
by consideration of the information of diseases. The new 
associations between SMs and diseases as a by-product 
in the model can be predicted using Eq. (12). The same is 
true for Eq. (16). Once the new miRNA–SM associations 
Wnew

sm  and new miRNA–disease associations Wnew
md  were 

obtained, we could build an iterative updating procedure. 
To integrate the initial associations between miRNA and 
SM associations and initial associations between miRNA 
and disease associations into those predicted procedures, 
the final model can be built as follows:

(14)Wnew
md = WT

sm × SS ×Wsd

(15)Wnew
sm = Wsm × SM ×Wmd × SD ×WT

md

(16)Wnew
md = WT

sm × SS ×Wsm × SM ×Wmd

where α is a decay factor in the range of (0,1); A is the 
adjacency matrix of known miRNA–SM associations 
acquired from the SM2miR v1.0 database, defined A(i, 
j)= 1 if SM s(i) is linked with miRNA m(j) otherwise 0. B 
is the adjacency matrix of known miRNA–disease asso-
ciations downloaded from HMDD v2.0, defined B(i, j)= 1 
if miRNA m(i) is linked with disease d(j)n otherwise 0. 
In each iteration, the known miRNA–SM association 
matrix A and miRNA–disease association matrix B will 
contribute to the newly constructed interactions of Wk

sm 
and Wk+1

md  . The contribution is controlled by the scale 
factor 1− α , where α is a decay factor. We chose the 
same decay factor α (0.4) as the one in [81], which used 
the same triple layer heterogeneous network in their 
study, so the original known associations have slightly 
more weights. The associations between a miRNA and 
SM will finally include all the possible paths connecting 
them in the constructed triple layer heterogeneous net-
work by iteratively using formula [17]. The same is true 
for the new miRNA–disease associations using formula 
[18]. These two iterative update equations can be treated 

(17)
Wk+1

sm = α ×Wk
sm ×

(

SM ×Wmd × SD ×WkT
md

)

+ (1− α)A

(18)
Wk+1

md = α ×

(

WkT
sm × SS ×Wk

sm × SM

)

×Wk
md + (1− α)B

Fig. 4  Flowchart of TLHNSMMA model to predict the potential miRNA–SM associations based on the known associations in SM2miR V1.0 database
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as simulating a process in which each node with prior 
information propagates the information obtained in the 
previous iteration to its neighbors. Due to the relation 
between the end-points and the probability of looking 
into an edge among the same end-points in a random 
network with the same node degrees, the weight of an 
edge was normalized according to the degrees of its end-
points. The two iterative update equations will converge 
with proper normalization, which is summarized as a 
theorem [82]. They will be stable after some steps and 
final probability scores of potential miRNA–SM associa-
tions and miRNA–disease associations will be obtained 
(when the change value between Wk+1

sm  and Wk
sm meas-

ured by L1 norm is less than a given cutoff, here the cut-
off is set as 10−6). Wk

sm and Wk
md defined in Eqs. (17) and 

(18) will converge after proper normalization (the proof 
can be found in the Additional file 2).
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