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The amygdala is known to be related to cognitive function. In this study, we used
an automated approach to segment the amygdala into nine nuclei and evaluated
amygdala and nuclei volumetric changes across the adult lifespan in subjects carrying
the apolipoprotein E (ApoE) ε3/ε3 allele, and we related those changes to memory
function alteration. We found that except the left medial nucleus (Me), whose volume
decreased in the old group compared with the middle-early group, all other nuclei
volumes presented a significant decline in the old group compared with the young
group. Left accessory basal nucleus (AB) and left cortico-amygdaloid transition area
(CAT) volumes were also diminished in the middle-late group. In addition, immediate
memory recall is impaired by the process of aging, whereas delayed recall and delayed
recognition memory functions were not significantly changed. We found significant
positive correlations between immediate recall scores and volumes of the bilateral basal
nucleus (Ba), AB, anterior amygdaloid area (AAA), CAT, whole amygdala, left lateral
nucleus (La), left paralaminar nucleus (PL), and right cortical nucleus (Co). The results
suggest that immediate recall memory decline might be associated with volumetric
reduction of the amygdala and its nuclei, and the left AB and left CAT might be
considered as potential imaging biomarkers of memory decline in aging.

Keywords: amygdala nuclei, aging, ApoE, immediate recall, delayed recall, delayed recognition

INTRODUCTION

The amygdala is a prominent limbic formation and plays a key role in emotional and
cognitive processes (AbuHasan et al., 2020). Dysfunction of the amygdala has been implicated
in a number of different neurodevelopmental disorders and psychopathologies (Davis and
Whalen, 2001; Belkhiria et al., 2020; Cui et al., 2020), such as depression (Abercrombie et al.,
1998), social anxiety disorder (Klumpp and Fitzgerald, 2018), post-traumatic stress disorder
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(Rauch et al., 2000), dementia (Cavedo et al., 2011), and
schizophrenia (Prestia et al., 2011). Previous studies have shown
that the amygdala is also involved in advanced cognitive
abilities (Belkhiria et al., 2020; Li et al., 2021), such as
memory (Adolphs et al., 1997; McIntyre et al., 2003; Schaefer
et al., 2006; Taujanskaitė et al., 2020), learning (Fried et al.,
2001; Aquino et al., 2020), decision-making (Bechara et al.,
2003), reward behavior (Sharp, 2019), and intelligence (Gray
et al., 2003; Li et al., 2021). In recent years, more and more
studies have reported that the amygdala is associated with
memory function, such as emotional memory (Dolcos et al.,
2017), memory consolidation (Huff et al., 2013; Lalumiere,
2014), working memory (Fried et al., 2001; McIntyre et al.,
2003; Schaefer et al., 2006), state-dependent memory (Baidoo
et al., 2020), autobiographical memory (Young et al., 2017),
and episodic memory (Kensinger et al., 2011). Most studies
have treated the amygdala as a whole structure. However, the
amygdala is composed of multiple nuclei with unique functions
and connections in the limbic system and to the rest of the
brain. Hence, it is possible that amygdala nuclei may differ
from each other in age-related volumetric changes and their
relation to memory.

Age and apolipoprotein E (ApoE) are the mightiest risk factors
for Alzheimer’s disease (AD), but the underlying mechanisms
remain unclear. In human, ApoE is expressed by the polymorphic
alleles: E2, E3, and E4. The ε4 allele is the most risky gene
for AD, ε2 allele may provide a protective effect, and ε3 is the
most common allele in all human populations, at frequencies
ranging from 69 to 85% (Belloy et al., 2019). Evidence shows
that amygdala nuclei volumes are affected by ApoE genotype.
For example, a study (Aghamohammadi-Sereshki et al., 2019)
segmented the amygdala manually and compared amygdala
nuclei volumes between healthy younger (18–54 years) and
older (≥55 years) carriers of the same ApoE allele. They
found smaller lateral, basal, and accessory basal nuclei and
total amygdala volume, among older ApoE ε3 and ApoE ε4
allele carriers compared to their younger counterparts, while
older ApoE ε2 allele carriers did not differ in any amygdala
nuclei volumes from younger counterparts. Furthermore, they
found that the effect size of age-related volumetric differences
was the largest among the ApoE ε4 carriers. To date, few
studies have studied the association between amygdala nuclei
and memory function, especially with the ApoE genotype taken
into consideration.

The objective of this study is to describe age-related
volumetric growth and/or decline of the amygdala and
its nuclei structures across the human adult lifespan.
Furthermore, we examined the relationship between the
amygdala and its nuclei volume and memory function. We
hypothesized that specific nuclei of the amygdala would
be associated with memory recall scores. To this end, we
used a cross-sectional sample of 315 individuals, aged from
20 to 89 years, to investigate different stages of the adult
lifespan with respect to alterations in amygdala and its nuclei
volume and memory function. Simultaneously, in order to
eliminate the potential impact of ApoE, only ApoE ε3/ε3 allele
carriers were analyzed.

MATERIALS AND METHODS

Participants
A total of 315 healthy adults, aged 20–89 years, were selected
from the Dallas Lifespan Brain Study (DLBS).1 The inclusion and
exclusion criteria were as follows:

Inclusion criteria: (1) right-handed and native English
speakers, (2) without a history of neurological disease, (3)
well-educated and cognitively normal as measured with the
Mini-Mental State Examination (MMSE > 26), and (4) with
high-quality sMRI data.

Exclusion criteria: (1) No genotype information, (2) ApoE
ε2 or ε4 carriers, and (3) incomplete cognitive tests.
Therefore, 70 subjects with no genotype information, 56
ApoE ε2 or ε4 carriers (ε2/ε2 = 2, ε2/ε3 = 12, ε2/ε4 = 5,
ε4/ε3 = 32, ε4/ε4 = 5), 40 subjects with incomplete cognitive
tests were excluded.

Finally, a total of 149 subjects (58.49 ± 19.81 years; 90 females,
59 males) were included in the present study. The subjects
were classified into four groups: Young group (20–35 years,
F/M = 17/12), Middle-early group (36–50 years, F/M = 11/12),
Middle-late group (51–65 years, F/M = 23/11), and Old group
(66–89 years, F/M = 39/24).

Neuropsychological Assessment for
Memory Function
In the present study, participants went through the Hopkins
verbal learning test and the Cambridge Neuropsychological
Test Automated Battery verbal recognition memory
(CANTAB_VRM) test for memory assessment. The Hopkins
verbal learning test is composed of three consecutive tasks for
immediate recall, delayed recall, and delayed recognition. First,
participants listened to a list of 12 words, and then they were
asked to recall as many words from the list as they could. Twenty
minutes later, participants were asked again to recall as many
words as they could remember. After that, participants listened
to a new list of 24 words and had to determine if the words
were part of the initial list. The three scores were as follows:
HOP immediate recall, number of words correctly recalled; HOP
delayed recall, number of words correctly recalled after a 20-min
delay; HOP recognition, number of items correctly identified as
“old” or “new” in delayed recognition.

The CANTAB_VRM task also assesses immediate recall. In
this task, the participants were shown a list of 12 words and
asked to read each word aloud one at a time. Immediately after
presentation, participants were asked to recall as many words as
they could remember. The task was scored on the total number
of words remembered.

Structural MRI Data Acquisition
All participants underwent T1-weighted imaging in a Philips
Achieva 3T scanner (Amsterdam, Netherlands). The MRI data
acquired were 160 sagittal slice high-resolution T1-weighted

1http://fcon_1000.projects.nitrc.org/indi/retro/dlbs.html

Frontiers in Aging Neuroscience | www.frontiersin.org 2 December 2021 | Volume 13 | Article 747288

http://fcon_1000.projects.nitrc.org/indi/retro/dlbs.html
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-747288 December 14, 2021 Time: 9:16 # 3

Liao et al. Amygdala Nuclei and Memory Decline

FIGURE 1 | Amygdala nuclei segmentation: (A) Amygdala nuclei segmentation in coronal view; (B) enlarged view of the right amygdala segmentation. La, lateral
nucleus; Ba, basal nucleus; AB, accessory basal nucleus; Ce, central nucleus; Me, medial nucleus; Co, cortical nucleus; AAA, anterior amygdaloid area; CAT,
cortico-amygdaloid transition area; PL, paralaminar nucleus; Whole, whole amygdala.

TABLE 1 | Demographic information.

Characteristics Young Middle-early Middle-late Old χ2a/Fb Pb Fc Pc

(n = 29) (n = 23) (n = 34) (n = 63)

Age (years) 28.4 ± 4.24 43.93 ± 4.77 59.22 ± 4.51 77.27 ± 6.91 n.d. n.d. n.d. n.d.

Gender (F/M) 17/12 11/12 23/11 39/24 2.365a 0.500 n.d. n.d.

Education (years) 16.64 ± 1.97 16.46 ± 2.31 16.24 ± 2.20 16.01 ± 2.36 1.328a 0.722 n.d. n.d.

MMSE 28.76 ± 1.15 28.57 ± 1.16 28.65 ± 1.07 27.63 ± 1.29 9.071 <0.001*** 8.823 <0.001***

Data expressed as mean ± SD; MMSE, Mini-Mental State Exam; n.d., not done; ***P < 0.001.
aChi-square test.
bANOVA, no covariates.
cANCOVA, controlling for gender and education years.

TABLE 2 | Cerebral compartment volumes.

Compartment (mm3) Young Middle-early Middle-late Old Fa Pa Fb,c Pb,c

(n = 29) (n = 23) (n = 34) (n = 63)

eTIV 1408.21 ± 17.83 1394.82 ± 20.07 1381.02 ± 16.46 1429.89 ± 12.09 1.608 0.190 2.129b 0.099b

Gray matter 673.59 ± 9.23 633.32 ± 5.81 607.31 ± 10.36 593.79 ± 8.52 40.88 <0.001*** 143.00 <0.001***

White matter 533.74 ± 10.92 539.94 ± 12.26 508.63 ± 10.08 488.61 ± 7.41 6.35 <0.001*** 24.49 <0.001***

Cerebro-spinal fluid 224.22 ± 13.58 269.67 ± 15.25 308.46 ± 12.54 429.08 ± 9.21 64.49 <0.001*** 103.65 <0.001***

Data expressed as mean ± SD; eTIV, estimated total intracranial volume; n.d., not done; ***P < 0.001.
aANOVA, no covariates.
bANCOVA, controlling for gender and education years.
cANCOVA, controlling for gender, education years and eTIV.

images using magnetization-prepared rapid gradient-echo (MP-
RAGE) sequences with a voxel size of 1 mm3. The parameters
were as follows: slice thickness = 1 mm, repetition time
(TR) = 8.135 ms, echo time (TE) = 3.7 ms, flip angle = 12◦,
matrix = 256 × 256, field of view (FOV) = 204 × 256.

Imaging Processing
In this study, volumetric segmentation was performed with the
FreeSurfer image analysis software (version 7.1.1).2 The “recon-
all” processing stream with default parameters was used for

2http://surfer.nmr.mgh.harvard.edu/

subcortical volume analysis. Details of the segmentation methods
and procedures are described in prior publications (Fischl et al.,
2002; Jayakar et al., 2020). Briefly, the T1-weighted image was
segmented into gray matter, white matter, and cerebrospinal
fluid. Subsequently, the segmentation of subcortical structures
was examined by a non-linear warping atlas, yielding volumetric
measures of deep gray matter, including the thalamus, caudate,
putamen, amygdala, hippocampus, pallidum, and accumbens.
Furthermore, the amygdala subnuclei segmentation module was
used to parcellate the hippocampus, amygdala, and thalamus
subnuclei further. A probabilistic atlas and a modified version
of Van Leemput’s algorithm (Iglesias et al., 2015) was applied on
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TABLE 3 | Neuropsychological tests scores.

Characteristics Young Middle-early Middle-late Old Fa Pa Fb Pb

(n = 29) (n = 23) (n = 34) (n = 63)

CANTAB_VRM 8.14 ± 1.81 7.78 ± 1.68 7.62 ± 1.88 6.05 ± 1.76 12.630 <0.001*** 12.508 <0.001***

HOP immediate recall 8.14 ± 1.73 7.57 ± 2.00 7.24 ± 2.10 6.48 ± 1.63 6.116 0.001** 5.953 0.001**

HOP delayed recall 6.14 ± 2.76 5.61 ± 3.26 6.12 ± 2.54 4.68 ± 2.27 3.281 0.023* 3.129 0.028*

HOP delayed recognition 21.14 ± 1.96 21.00 ± 2.54 20.74 ± 2.35 20.29 ± 2.27 1.175 0.322 1.206 0.310

Data expressed as mean ± SD; n.d., not done; *P < 0.05, **P < 0.01, ***P < 0.001.
aANOVA, no covariates.
bANCOVA, controlling for gender and education years.
CANTAB_VRM, Cambridge Neuropsychological Test Automatic Battery Verbal Recognition Memory; HOP, Hopkins.

FIGURE 2 | Pairwise comparisons of memory scores between age groups.
X-axis, age groups; Y-axis, memory scores. ∗∗P < 0.01, ∗∗∗P < 0.001.
CANTAB_VRM, Cambridge Neuropsychological Test Automated Battery
verbal recognition memory; HOP immediate recall, Hopkins immediate recall;
HOP delayed recall, Hopkins delayed recall; HOP delayed recognition,
Hopkins delayed recognition.

the segmentation of amygdala (Saygin et al., 2017). Ultimately,
the amygdala was divided into nine nuclei—the lateral nucleus
(La), basal nucleus (Ba), accessory basal nucleus (AB), central
nucleus (Ce), medial nucleus (Me), cortical nucleus (Co), anterior
amygdaloid area (AAA), cortico-amygdaloid transition area
(CAT), and paralaminar nucleus (PL), as shown in Figure 1.

Volumes were visually inspected for misclassifications during the
reconstruction process.

Statistical Analysis
Statistical analysis was performed using SPSS software (version
21.0, IBM, Armonk, NY, United States). The chi-square test
was used to evaluate the differences in gender among four
groups. The Kruskal-Wallis test was used to analyze group
differences in education years. Amygdala nuclei volumes and
cognitive tests scores were standardized using Z-score method.
Analysis of covariance (ANCOVA) was performed for group
differences in MMSE and memory tests scores, with gender
and education years as covariates. To examine amygdala
nuclei volume group differences, we performed ANCOVA
with gender, education years, and estimated total intracranial
volume (eTIV) as covariates. Pairwise comparisons using the
Bonferroni method were performed for indexes with significant
group differences. Spearman correlation analysis was applied to
examine the correlations between memory scores and amygdala
nuclei volumes across the life span, P-values and correlation
coefficients (r) were calculated, with gender, education years, and
eTIV regarded as covariates. Correlation results were corrected
by the false discovery rate (FDR). Meanwhile, we tested the
mediating effect of the hippocampus in the relationship between
amygdala nuclei volumes and memory function, using single-
mediator model with gender, education years and eTIV as
covariates. The significance level for all results was set at
P < 0.05.

RESULTS

Differences in Demographics and
Cognitive Test Scores
Description and analysis of demographic characteristics
for the 149 subjects are shown in Table 1. There was
no significant difference among groups in gender or
education years. MMSE scores, although still within
the normal range, significantly declined with age
(P < 0.001). Pairwise comparison results are detailed in
Supplementary Table 1. An apparent decline of MMSE
scores was observed in the Old group compared with the
other three groups.
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TABLE 4 | Statistical analysis of amygdala and nuclei volumes among the four groups.

Characteristics Young Middle-early Middle-late Old Fa Pa Fb Pb

(n = 29) (n = 23) (n = 34) (n = 63)

L La 670.62 ± 67.65 661.24 ± 88.74 647.89 ± 71.90 602.48 ± 80.43 6.913 <0.001*** 12.951 <0.001***

Ba 454.94 ± 8.91 443.28 ± 10.05 433.55 ± 8.31 391.70 ± 6.11 9.423 <0.001*** 14.654 <0.001***

AB 281.87 ± 31.95 276.74 ± 45.04 253.86 ± 26.03 226.21 ± 38.87 20.904 <0.001*** 26.610 <0.001***

AAA 56.61 ± 5.27 54.60 ± 9.05 52.54 ± 7.32 48.57 ± 8.29 8.548 <0.001*** 10.290 <0.001***

Ce 49.80 ± 12.63 53.75 ± 12.76 45.35 ± 8.97 41.30 ± 13.03 7.290 <0.001*** 7.966 <0.001***

Me 23.58 ± 6.86 25.57 ± 8.89 22.02 ± 6.71 19.99 ± 7.00 3.965 0.009** 3.557 0.016*

Co 28.52 ± 4.93 27.91 ± 6.16 24.79 ± 4.04 22.64 ± 5.03 12.075 <0.001*** 12.529 <0.001***

CAT 195.60 ± 20.85 185.00 ± 28.73 172.30 ± 18.74 155.45 ± 25.43 21.970 <0.001*** 27.373 <0.001***

PL 50.84 ± 5.54 49.27 ± 7.63 47.58 ± 4.82 46.77 ± 7.37 2.844 0.040* 4.670 0.004**

Whole 1812.88 ± 169.66 1778.84 ± 252.17 1690.57 ± 169.50 1559.36 ± 217.82 13.078 <0.001*** 20.600 <0.001***

R La 689.98 ± 74.72 680.54 ± 74.79 681.08 ± 72.39 620.40 ± 93.32 7.228 <0.001*** 11.405 <0.001***

Ba 463.74 ± 52.90 456.78 ± 65.65 454.29 ± 52.46 403.76 ± 62.85 10.354 <0.001*** 14.993 <0.001***

AB 291.74 ± 31.83 290.12 ± 39.06 278.63 ± 33.32 235.81 ± 40.20 23.161 <0.001*** 29.385 <0.001***

AAA 60.53 ± 7.39 59.53 ± 9.19 58.75 ± 10.07 51.11 ± 8.97 10.905 <0.001*** 12.498 <0.001***

Ce 52.87 ± 13.92 57.23 ± 12.21 51.50 ± 10.65 44.15 ± 12.88 7.732 <0.001*** 9.693 <0.001***

Me 24.84 ± 6.51 25.92 ± 6.86 23.84 ± 9.11 20.54 ± 6.36 4.529 0.005** 4.991 0.003**

Co 29.57 ± 4.54 30.24 ± 5.15 27.77 ± 4.79 23.69 ± 4.53 17.247 <0.001*** 20.583 <0.001***

CAT 202.77 ± 23.16 195.70 ± 24.61 185.73 ± 24.31 161.97 ± 26.94 22.007 <0.001*** 27.790 <0.001***

PL 50.12 ± 5.71 47.99 ± 7.72 49.26 ± 6.00 46.50 ± 6.94 2.454 0.066 4.721 0.004**

Whole 1866.16 ± 190.55 1844.05 ± 222.18 1810.86 ± 187.08 1607.93 ± 241.98 13.894 <0.001*** 20.263 <0.001***

Data expressed as mean ± SD; n.d., not done; *P<0.05, **P<0.01, ***P < 0.001.
aANOVA test, no covariates.
bANCOVA test, controlling for gender, education years and eTIV.
L, left hemisphere; R, right hemisphere; La, lateral nucleus; Ba, basal nucleus; AB, accessory basal nucleus; Ce, central nucleus; Me, medial nucleus; Co, cortical nucleus;
AAA, anterior amygdaloid area; CAT, cortico-amygdaloid transition area; PL, paralaminar nucleus; Whole, whole amygdala.

Differences in Cerebral Compartment
Volumes
Description and analysis of the cerebral compartment volumes
for the 149 subjects are shown in Table 2. No significant group
difference was observed for eTIV. Apparent volumetric decline
was observed for gray matter, white matter and cerebrospinal
fluid volumes. The gray matter volume declined along aging,
cerebrospinal fluid volumes declined in the Middle-late and
Old groups, and white matter volumes declined only in the
Old group. Detailed pairwise comparison and scatter plots
are presented in Supplementary Table 2 and Supplementary
Figure 1, respectively.

Age Effects on Memory Scores
The statistical data and ANCOVA analysis results of memory
scores are provided given in Table 3. Pairwise comparisons
with Bonferroni correction are presented in Figure 2. Results of
pairwise comparison are detailed in Supplementary Table 1.

As shown in Figure 2, there were significant group differences
in CANTAB_VRM scores and Hopkins immediate recall scores.
Pairwise comparisons further demonstrated apparent declines in
CANTAB_VRM scores in the Old group compared with other
groups, as well as lower Hopkins immediate recall scores in
the Old group compared with the Young group. No significant
difference was observed in delayed recall scores or delayed

recognition scores. Hopkins delayed recognition scores presented
a trend of decrease.

Age Effects on Amygdala Nuclei Volumes
Amygdala nuclei volumes changed with age. Table 4 summarizes
the statistical analysis of group differences in amygdala
nuclei volumes. Pairwise comparisons with Bonferroni
correction results are shown in Figure 3 and detailed in
Supplementary Table 3.

Volumes of the bilateral La, Ba, AB, AAA, CAT, whole
amygdala, left Co, and left PL declined with age. The bilateral Ce,
Me, and right Co presented an inverted U shape, with the largest
volume in the Middle-early group. Right PL volume decreased in
the Middle-early group and the Old group but increased in the
Middle-late group. The Volume of the bilateral whole amygdala
declined consistently with age, and the volume in the Old group
declined significantly (P < 0.001) compared with the other three
groups. The volumetric changes of most amygdala nuclei were
similar to those of the whole amygdala, including the bilateral
La, Ba, AB, AAA, CAT, as well as the right Ce and right Co
(P < 0.05). In addition, a significant decrease in left AB and left
CAT volumes was observed in the Middle-late group, earlier than
in the whole amygdala. The volumes of the left Ce, right Me, and
left Co decreased in the Old group compared with the Young and
Middle-early groups. The volume of the left PL declined in the
Old group compared with the Young group, and that of the right
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FIGURE 3 | Pairwise comparisons of amygdala nuclei volumes between age groups. X-axis, age groups; Y-axis, amygdala nuclei volumes. The left and right
amygdala were presented in groups. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001. L, left hemisphere; R, right hemisphere; La, lateral nucleus; Ba, basal nucleus; AB,
accessory basal nucleus; Ce, central nucleus; Me, medial nucleus; Co, cortical nucleus; AAA, anterior amygdaloid area; CAT, cortico-amygdaloid transition area; PL,
paralaminar nucleus; Whole, whole amygdala.
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PL decreased in the Old group compared with the Young and
Middle-late groups. Additionally, the left Me volume decreased
in the Old group compared with the Middle-early group.

Associations Between Immediate
Memory Function and Amygdala Nuclei
Volumes
Spearman correlation analysis was applied to examine the
association between the two immediate recall memory scores,
CANTAB_VRM scores and Hopkins immediate recall scores,
and the amygdala nuclei volumes. As shown in Figures 4, 5, both
CANTAB_VRM scores and Hopkins immediate recall scores
were significantly correlated with the bilateral Ba, AB, AAA,
CAT, and whole amygdala as well as the left La and right Co
(P < 0.05). CANTAB_VRM scores were also correlated with the
left Co and right Ce (P < 0.05). Hopkins immediate recall scores
were also correlated with the left PL (P < 0.05). Details of the
Spearman correlation were presented in Supplementary Table 4.
The mediation analysis revealed no significant mediation effect
for the hippocampus on the relationship between amygdala and
memory. Details could be found in Supplementary Table 5.

DISCUSSION

In this cross-sectional study of cognitively normal ApoE
ε3/ε3 carriers, we explored the volumetric changes of the
whole amygdala and the amygdala nuclei across the adult
lifespan, as well as the correlations between neuroimaging and
memory performance.

Except the left Me, whose volume decreased in the Old group
compared with the Middle-early group, all other nuclei volumes
presented significant decline in the Old group compared with
the Young group, though they differed in trajectory. The left
AB and left CAT volumes were already decreased in the middle-
late group. Immediate recall memory scores declined significantly
in the Old group compared with the Young group, while no
significant alteration was observed in delayed recall or delayed
recognition. The decline of immediate recall memory scores was
associated with the volumes of the bilateral whole amygdala, Ba,
AB, AAA, and CAT and the left La and right Co (P < 0.05).

Age Effects on Amygdala Nuclei Volumes
We observed that in ApoE ε3/ε3 allele carriers, the total amygdala
volume declined with age and decreased significantly in the
Old group compared with the other groups. Similarly, previous
research (Aghamohammadi-Sereshki et al., 2019) found that
ApoE ε3/ε3 allele carriers presented significant non-linear age-
related volumetric decline—supporting our finding that for ApoE
ε3/ε3 allele carriers, the amygdala volume is negatively affected by
the aging process.

Other studies of amygdala volume failed to consider the
ApoE genotype, and the results were inconsistent with each
other. Amygdala volume was observed to decline with age in
some neuroimaging studies (Fjell et al., 2009; Narvacan et al.,
2017; Wang et al., 2019) but presented no significant age-related
change in other studies (Frodl et al., 2008; Cherbuin et al., 2011;

Jiang et al., 2014; Wegiel et al., 2017). As the effect of age on
amygdala volume is affect by ApoE genotype (Aghamohammadi-
Sereshki et al., 2019), this inconsistency might be explained
by the difference in ApoE genotype inclusion, highlighting the
necessity to consider the ApoE genotype when studying age-
related volumetric changes of the amygdala.

Furthermore, we found that except the left Me, whose volume
decreased in the Old group compared with the Middle-early
group, all other nuclei volumes presented a significant decline
in the Old group compared with the Young group, though
the trajectories differed among nuclei. Similar to our results, a
previous study (Aghamohammadi-Sereshki et al., 2019) found
significant non-linear age-related volumetric decline in the La,
Ba, AB, and Co but not in the centromedial nucleus in ApoE ε3/ε3
allele carriers. Kurth et al. (2019) described significant negative
correlations between age and the volume of the centromedian,
laterobasal, and superficial nuclei; they also observed that the
decline accelerated with age.

In addition, it is worth noting that for the left AB and
left CAT nuclei, the volumetric decrease was observed not
only in the Old group but also in the Middle-late group,
while volumes of the other nuclei and the whole amygdala
only decreased in the Old group. This indicates that the
left AB and left CAT might be more sensitive to the aging
process than other nuclei and the whole amygdala and suggests
that these two nuclei could be used as early neuroimaging
biomarkers for age-related changes. Volumes of bilateral Ce,
Me, and right Co present the inverted U shape, with the
largest volume in the Middle-early group. A similar quadratic
trajectory was reported for left superficial nuclei of the amygdala
(Kurth et al., 2019).

Compared with previous amygdala nuclei volumetric studies,
which segmented the amygdala into three (Bzdok et al., 2013;
Kurth et al., 2019) or five (Aghamohammadi-Sereshki et al., 2019)
nuclei, the present study achieved greater spatial specificity by
studying nine nuclei. Nevertheless, caution should be paid when
comparing reports, because the segmentation atlas has varied
among studies. Further scrutiny of atlas consistency is required.

Associations Between Immediate Recall
Memory and Amygdala Nuclei
Our analysis revealed a significant decline of immediate recall
memory in the Old group compared with the Young group,
in accordance with our previous study using the same cohort
but without ApoE genotype filtering (Zheng et al., 2018). Age-
related immediate recall memory decline was also found in
other studies (Ronnlund et al., 2005; Kramer et al., 2007;
Josefsson et al., 2012; Nyberg, 2017; Golchert et al., 2019;
Rhodes et al., 2019). As ApoE ε4 carrier status is negatively
related to immediate free recall memory scores (Golchert et al.,
2019), this consistency demonstrates that immediate recall
memory function declines in the aging process, even after
excluding the confounding factor of ApoE ε4 carrier status.
Furthermore, in our cohort, the reduction happened only in
the Old group and not in the younger groups, similar to
previous reports (Ronnlund et al., 2005; Nyberg, 2017), which
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FIGURE 4 | Scatter plots of the Spearman partial correlation between amygdala nuclei volumes and CANTAB_VRM, HOP_immediaterecall scores in the left
hemisphere. Only results with significance (P < 0.05) were presented. R, correlation coefficient; P, p-value of the partial correlation analysis; La, lateral nucleus; Ba,
basal nucleus; AB, accessory basal nucleus; Ce, central nucleus; Me, medial nucleus; Co, cortical nucleus; AAA, anterior amygdaloid area; CAT, cortico-amygdaloid
transition area; PL, paralaminar nucleus; Whole, whole amygdala; CANTAB_VRM, Cambridge Neuropsychological Test Automatic Battery Verbal Recognition
Memory; HOP_immediaterecall, Hopkins immediate recall.
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FIGURE 5 | Scatter plots of the Spearman partial correlation between amygdala nuclei volumes and CANTAB_VRM, HOP_immediaterecall scores in the right
hemisphere. Only results with significance (P < 0.05) were presented. R, correlation coefficient; P, p-value of the partial correlation analysis; La, lateral nucleus; Ba,
basal nucleus; AB, accessory basal nucleus; Ce, central nucleus; Me, medial nucleus; Co, cortical nucleus; AAA, anterior amygdaloid area; CAT, cortico-amygdaloid
transition area; PL, paralaminar nucleus; Whole, whole amygdala; CANTAB_VRM, Cambridge Neuropsychological Test Automatic Battery Verbal Recognition
Memory; HOP_immediaterecall, Hopkins immediate recall.

found significant episodic memory reduction only after the
age of 60, indicating possibly preserved immediate memory
function in middle age.

In the present study, we found no significant age-related
change in either delayed recall or delayed recognition memory
function. However, our previous study using the same cohort but
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without ApoE genotype filtering (Zheng et al., 2018) reported
that delayed recall memory declined in the Old group compared
with the Young and Middle-late groups. This inconsistency is
derived from the fact that the present research studied only
ApoE ε3/ε3 allele carriers, while our previous study (Zheng et al.,
2018) also included subjects carrying ApoE ε2 or ε4 alleles. The
inconsistency indicates a significant effect of ApoE genotype
on age-related alteration of delayed recall memory function, in
accordance with a longitudinal study (Golchert et al., 2019) that
found that ApoE ε4 carrier status is an important risk factor for
delayed free recall memory decline.

Moreover, other studies reported significant decline in delayed
free recall with age (Davis et al., 2003) and recognition
memory (Rhodes et al., 2019). However, none of the previous
studies excluded ApoE ε2 or ε4 allele carriers. Previous
studies have demonstrated that ApoE ε4 carrier status is
risk factor for age-related memory decline (Caselli et al.,
2007; Josefsson et al., 2012; Golchert et al., 2019) in a
dose-dependent manner (Caselli et al., 2007) and negatively
related to immediate free recall and delayed free recall scores
(Golchert et al., 2019). Hence, the previously reported age-
related decline of delayed recall and delayed recognition memory
function might have resulted from the inclusion of ApoE
ε4 allele carriers in the study cohorts. As discussed before,
ApoE ε3/ε3 allele carriers are better representative of age-
related memory in normal subjects than cohorts including all
ApoE genotypes; thus, we conclude that delayed recall and
delayed recognition memory functions are preserved in the
aging process. The inconsistencies also highlight the necessity of
considering ApoE genotype when studying age-related changes
of delayed recall and delayed recognition memory function.
In addition, subjects in the present cohort were characterized
by high education years (16.25 ± 2.24 years), which help
preserve memory function in later life (Habib et al., 2007;
Golchert et al., 2019).

In our cohort, delayed recall and delayed recognition
memory functions represented no significant age-related change
in aging, while previous studies have revealed an abnormal
decline of these two functions in various dementia disorders.
Delayed recall memory function has been reported to decline
in conditions such as AD and mild cognitive impairment
(Olson et al., 2021), Huntington’s disease (Zakzanis, 1998b),
Parkinson’s disease (Higginson et al., 2005), and fronto-
temporal dementia (Zakzanis, 1998a). Delayed recognition
memory function was observed to decline in Parkinson’s
disease (Higginson et al., 2005). Furthermore, it has been
reported that individuals with mild cognitive impairment
or subjective memory complaints who do not progress to
dementia perform better on delayed recall memory function at
baseline compared with individuals who progress to dementia
(Prado et al., 2019). This suggests the potential use of
these two memory functions as diagnostic or prognostic
biomarkers for dementia disorders. Further research is
necessary to replicate these findings in other samples and
advance our understanding of the effects of ApoE genotype
on these two memory functions under both healthy and
disorder conditions.

LIMITATIONS

There are several limitations in this study that should be
considered. All data included in this study were acquired
from the DLBS dataset, so we were unable to obtain more
clinical information (body mass index, chronic diseases, smoking,
alcohol abuse, and lifestyles), which may have influenced our
results. At the same time, the DLBS indicated that all participants
were healthy adults, but it did not specify the excluding criteria
in the subject screening procedure. Therefore, we cannot rule
out that our results were affected at least to some extent
by these factors.

CONCLUSION

To our knowledge, this is the first study to relate immediate recall
memory to the amygdala and its nuclei on ApoE ε3/ε3 allele
carriers. Our findings suggest that immediate recall is impaired by
aging. Furthermore, the volumetric decrease of the bilateral Ba,
AB, AAA, and CAT nuclei, whole amygdala, and left La and right
Co associated with the reduction of immediate recall memory
function. The present study highlights the left AB and left CAT
might be considered as potential imaging biomarkers of memory
decline in aging.
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