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Simple Summary: The widely spread microplastic component and endocrine disruptor BPA is a
hazardous material recognized for a long time. Here, for the first time, we demonstrated that BPA,
administered into mice in a very specific developmental step of the animal (3 days post-natal), induces
an increase in metastasis to the lung in the adult life, compared to the control or vehicle mice. In
addition, of novelty, it is the analysis of the cytokine tumor microenvironment, which is the reason
for the increased metastasis by BPA (BPA induce the increase in pro-metastatic cytokines).

Abstract: Breast cancer (BC) metastasis represents the main physiopathology leading to poor prog-
nosis and death. Bisphenol A (BPA) is a pollutant, classified as an endocrine-disrupting chemical
compound with estrogenic properties, their exposure in the early stages of neonatal life leads to
an increase in the size and weight of breast tumors and induces cellular changes in the tumoral
immune microenvironment where cytokines play a key role. Thus, we used female BALB/c mice
exposed neonatally to a single dose of BPA. Once mice reached sexual maturity, a mammary tumor
was induced, injecting 4T1 cells in situ. After 25 days of injection, we evaluated endocrine alterations,
cytokine expression, tissue alterations denoted by macro or micro-metastasis in the lung, and cell
infiltration induced by metastasis. We found that BPA neonatal treatment did not show significant
endocrine alterations. Noteworthy, BPA led to an augmented rate of metastasis to the lung associated
with higher intratumoral expression of IL-1β, IL-6, IFN-γ, TNF-α, and VEGF. Our data suggest
that cytokines are key players in the induction of BC metastasis and that BPA (an environmental
pollutant) should be considered as a risk factor in the clinical history of patients as a possible inductor
of BC metastasis.

Keywords: breast cancer; metastasis; cytokines; tumor microenvironment; Bisphenol A;
endocrine disruptors
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1. Introduction

Breast cancer is the leading cause of death in productive women between 20–50 years
old, and the most prevalent cancer in women worldwide. In 2020, 2.3 million women
were newly diagnosed with this disease, and 685,000 deaths were registered globally [1].
Breast cancer is also an economic burden because it is the leading cause of lost disability-
adjusted life-years (DALYs) worldwide among any other type of cancer. Breast cancer is a
heterogeneous disease where tumors can localize in different areas in the breast like the
lobules, ducts, and connective tissue [2]. Specifically, lobular carcinoma is classified as the
most common and invasive subtype [3]. Early detection is crucial in achieving long-term
survival. Unfortunately, breast cancer cells can migrate to distant sites along the body,
especially the lung, liver, bone, and brain, in a process known as metastasis, which is the
leading cause of death; less than 20% of breast cancer patients with distant metastasis
survive after five years [4,5].

Tumor progression and metastasis are highly influenced by the tumor microenviron-
ment (TME). On this site, communication among tumor cells, tumor stromal cells, and
immune cells are essential components [6]. In the beginning, tumor cells and stromal
cells secrete soluble factors such as cytokines, chemokines, and growth factors, modifying
cell-cell or cell-ECM (extracellular matrix) interactions and disrupting the normal epithelial
organization [7]. This intercellular communication requires a complex network between
stromal and immune cells [8]. This organization favors the proliferation, migration, and
differentiation of tumor cells, suppresses the immune cells, and degrade ECM, which
sooner or later will lead to a more invasive tumor that can break the connective tissue
and metastasize [9].

Breast cancer etiology is associated not only with levels of specific hormones or their
receptors, but importantly with more general environmental factors. Human industrial
activity has provoked a colossal release of environmental chemicals to the atmosphere
for decades, many of them with an unknown toxic effect on human health. Additionally,
several daily use products, like plastic food and beverage containers, sunscreen, cosmetics,
and cleaning products, along many, contain toxic chemicals [10,11]. Moreover, several
epidemiological studies have provided strong evidence that associates toxicants with
an increased risk to develop cancer in later stages of life. The possibility to develop a
more aggressive type of breast cancer coincides with landmark events. For example,
changes during prenatal, pubertal, pregnancy, and menopausal periods, where breast
tissue suffers several changes in structure and function, and is more susceptible to specific
environmental chemicals [12].

The endocrine-disrupting chemicals (EDC) are very important environmental chemical
compounds because they can affect the hormone balance and the endocrine system [13].
The mechanism of action of EDC relies on binding to hormone receptors such as estrogen
(ER) or androgen (AR) receptors, where they interrupt the functions of endogenous steroid
hormones. Bisphenol A (2,2-Bis propane), known as BPA, is a synthetic chemical widely
used in daily used products, from polycarbonate plastics to epoxy resins and dental
sealants, and it is contained in food packing, baby bottles, medical devices, and personal
care products, among others [14]. BPA has been classified as an EDC with estrogenic
character, since it can bind to estrogen receptors, triggering signaling pathways, even when
its affinity is lower than the endogenous ligand, 17 β-estradiol [15].

BPA is a compound that can be easily released from the plastics due to incomplete
polymerization or hydrolysis of the polymers that conform the material, its detachment can
be induced by high temperatures, acidic conditions, or enzymatic processes [16]. The main
source of exposure to BPA in humans and animals is through food and beverages contained
in materials where detachment from the matrix has occurred and it can be ingested, inhaled,
and introduced by dermal exposure, dental sealants, or injections [17]. Despite the Food
and Drug Administration (FDA) and the European Food Safety Agency (EFSA), which
calculated that the tolerable daily intake of BPA is 50 µg/kg/day, it has been estimated
that exposure to BPA per food package was higher in children from 1–2 months of age [18].
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Exposure to BPA at tolerable concentrations or below is related to unfavorable effects on
the health of humans and rodents [11,19].

The nature and magnitude of BPA’s adverse effects depend on the dose, the course of
exposure, and the developmental stage in which exposure occurs. Exposure of BPA can
occur as early as during gestation, according to reports of BPA presence in amniotic fluid,
fetal serum, and breast milk [20,21]. In this regard, there is an existing concern about the ef-
fects that BPA could exert on a developing organism, including the immune system [22–24].
Several studies indicate that estrogen and progesterone stimulate the expression of the
vascular endothelial growth factor (VEGF) in breast cancer and tumors [25]. VEGF is a
key angiogenic factor that stimulates endothelial cells to proliferate and migrate, allowing
tumors to progress easily [26]. In breast cancer, VEGF expression is increased depending
on the microenvironment compared with normal mammary glands [27,28].

Previously, we have shown that after 25 days of injection, mice exposed to BPA
presented no major endocrine alterations, developed larger tumors, higher proportion of
regulatory T lymphocytes, together with decreased expression of TNF-α, IFN-γ, and the
M2 macrophage marker Fizz-1. Furthermore, the cytometric analysis revealed differences
in the expression of estrogen receptor (ER-α) in T lymphocytes, macrophages, and NK cells,
both associated with exposure to BPA and tumor development [29].

Therefore, we decided to assess whether exposure to BPA in a critical development
period affects not only tumor size, but also lung metastasis and cytokine expression pattern
in tumors. Our results demonstrated that BPA administered during the neonatal period
evoked an increase in lung metastasis and intratumoral cytokine pro-inflammatory pattern
during adult life.

2. Results
2.1. Endocrine Parameters

As previously shown by us [29], to assess the potential reproductive effects of a single
250 µg/kg bw BPA dose, puberty onset was determined by the age of vaginal opening. We
observed that exposure of female mice to BPA did not alter puberty onset. Furthermore,
BPA did not influence baseline serum levels of estradiol during the diestrus phase (data
not shown).

2.2. Tumor Size and Weight

We observed a remarkable increase in tumor development in the BPA-exposed group.
At 25 days after the inoculation of tumor cells, it was evident that the mice subjected to
neonatal BPA exposure developed bigger tumors. In fact, we confirm and extend our
previous findings that after measuring tumor weight, those found in mice exposed to BPA
showed an 88% increase in weight compared to the unexposed and vehicle groups [29]
(data not shown).

2.3. IL-1β, IL-4, IL-6, and IL-10 Intratumoral Expression Pattern

Figure 1 shows a representative set of immunofluorescence images corresponding
to the intratumoral expression of IL-1β, IL4, IL-6, and IL-10 in the different experimental
groups, namely: control, vehicle, and BPA. Table 1 shows the quantification of the four
cytokines expressed by the mean fluorescence intensity of the previous images. The results
demonstrated that the expression of IL-1β was higher in the BPA group than in the control
and vehicle treatments (Figure 1 and Table 2). We also detected an IL-4 intratumoral
expression pattern, shown in Figure 1, where it contained representative images of the
immunofluorescence stains corresponding to the expression of this cytokine in the different
experimental groups. When IL-4 was quantified (Table 2), the tumors belonging to the
control or vehicle groups showed a higher expression of IL-4 than tumors from animals
treated with BPA, where there is a clear decrease in its expression (Figure 1 and Table 2).
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Figure 1. Intratumoral expression of cytokines. Representative images belonging to the intratumoral 

expression of IL-1β, IL-4, IL-6, and IL-10 corresponding to the three experimental groups, namely 

control, vehicle, and BPA, are shown. The staining was performed with rhodamine and pictures 

were taken in a confocal microscope, using Newarsky contrast, being red the cytokine expressed 

and gray the not stained tumor. 

Table 1. Summary of the quantitation of immunofluorescence cytokine (IL1-β, IL-4, IL-6, and IL-10) 

staining in tumors. It shows the obtained MFI (Mean Fluorescence Intensity) (+SD) of the different 

experimental groups. It is highlighted the results that were considered statistically significant * p < 

0.05, ** p < 0.01. Of note, only IL-4 decreased its expression in the BPA neonatally treated group. 

Experimental 

Group 

Immunohistochemical Staining of Cytokines (MFI) 

IL1-β IL-4 IL-6 IL-10 

Control 183 ± 19.7 243 ± 10 256 ± 83 206 ± 83 

Vehicle 206 ± 29 204 ± 67 208 + 42 188 ± 42 

BPA 531 ± 61 ** 136 ± 64 * 541 ± 30 ** 431 ± 30 ** 

Regarding the IL-6 intratumoral expression pattern, we observed that its expression 

was elevated in the control and vehicle groups as denoted by the increased fluorescence 

intensity; meanwhile in the BPA group, there was a significantly higher expression of IL-

6 (Figure 1 and Table 1). It is noteworthy that fluorescence quantification produced a 2.9 
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the contrary, we found increased levels of fluorescence in the tumors of the BPA-treated 
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sion of IL-10. Notably, the different negative controls of each cytokine evaluated are com-

piled in Supplementary Figure S1. 

2.4. TNF-α IFN- and VEGF Intratumoral Expression Pattern 

Figure 1. Intratumoral expression of cytokines. Representative images belonging to the intratumoral
expression of IL-1β, IL-4, IL-6, and IL-10 corresponding to the three experimental groups, namely
control, vehicle, and BPA, are shown. The staining was performed with rhodamine and pictures were
taken in a confocal microscope, using Newarsky contrast, being red the cytokine expressed and gray
the not stained tumor.

Table 1. Summary of the quantitation of immunofluorescence cytokine (IL1-β, IL-4, IL-6, and IL-10)
staining in tumors. It shows the obtained MFI (Mean Fluorescence Intensity) (±SD) of the different ex-
perimental groups. It is highlighted the results that were considered statistically significant * p < 0.05,
** p < 0.01. Of note, only IL-4 decreased its expression in the BPA neonatally treated group.

Experimental
Group

Immunohistochemical Staining of Cytokines (MFI)

IL1-β IL-4 IL-6 IL-10

Control 183 ± 19.7 243 ± 10 256 ± 83 206 ± 83

Vehicle 206 ± 29 204 ± 67 208 ± 42 188 ± 42

BPA 531 ± 61 ** 136 ± 64 * 541 ± 30 ** 431 ± 30 **

Regarding the IL-6 intratumoral expression pattern, we observed that its expression
was elevated in the control and vehicle groups as denoted by the increased fluorescence
intensity; meanwhile in the BPA group, there was a significantly higher expression of
IL-6 (Figure 1 and Table 1). It is noteworthy that fluorescence quantification produced
a 2.9 increase in BPA-induced intratumoral levels of IL-6 compared to control or vehicle
groups (Table 2). We also quantified immunoregulatory cytokine IL-10 in the tumors of all
of the experimental groups. Intact and vehicle groups developed low fluorescence of IL-10.
On the contrary, we found increased levels of fluorescence in the tumors of the BPA-treated
mice (Figure 1). Regarding the quantification of IL-10 (Table 2), when we compared the
expression of a control or vehicle, with BPA, we found a two-fold increase in the expression
of IL-10. Notably, the different negative controls of each cytokine evaluated are compiled
in Supplementary Figure S1.
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2.4. TNF-α IFN-γ and VEGF Intratumoral Expression Pattern

Intact and vehicle groups developed a mild fluorescence of TNF-α, with increased
levels of fluorescence in the tumors of the BPA-treated mice (Figure 2). As for the quantifi-
cation of TNF-α (Table 2) comparison between the expression of control or vehicle with
BPA, it showed a 3-fold increase in TNF-α expression. Regarding intratumoral IFN-γ
expression (Figure 2), the BPA-treated group showed higher levels of fluorescence com-
pared to the control or vehicle groups, which showed mild levels of fluorescence (Figure 2).
Quantification of fluorescence levels (Table 2), showed a significant 1.7-fold increase in
the IFN-γ intratumoral expression in the BPA group, compared to the control or vehicle
groups. As for VEGF, a pro-metastatic factor, we also evaluated its expression (Figure 2).
Interestingly, tumors exposed to BPA presented higher levels of fluorescence than the
control or vehicle groups (Figure 2). It is noteworthy that the presence of this cytokine was
distributed along with the evaluated tumor court. Visual evaluation of VEGF matches its
quantification (Table 2), since BPA-treated animals developed a 3-fold increase in VEGF
expression compared to the control and vehicle groups. Notably, the different negative
controls of each cytokine evaluated are compiled in Supplementary Figure S1, which do
not show any background or expression of cytokines.
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Experimental Group 
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Control 186 ± 9.7 235 ± 10 206 ± 83 

Figure 2. Intratumoral expression of cytokines. Representative images belonging to the intratumoral
expression of TNF-α, IFN-γ, and VEGF corresponding to the three experimental groups, namely
control, vehicle, and BPA, are shown. The staining was performed with rhodamine and pictures were
taken in a confocal microscope, using Newarsky contrast, being red the cytokine expressed and gray
the non-stained tumor.

Table 2. Summary of the quantitation of immunofluorescence cytokine (TNF-α and IFN-γ) and
VEGF staining in tumors. It shows the obtained MFI (Mean Fluorescence Intensity) (±SD) of the
different experimental groups. It is highlighted the results that were considered statistically significant
* p < 0.05, ** p < 0.01, *** p < 0.001.

Experimental Group Immunohistochemical Staining of Cytokines (MFI)

TNF-α IFN-γ VEGF

Control 186 ± 9.7 235 ± 10 206 ± 83

Vehicle 208 ± 59 204 + 67 198 ± 42

BPA 573 ± 61 ** 366 ± 64 * 631 ± 30 ***
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2.5. Macro Metastasis at the Pulmonary Level

In addition to assessing the effect of BPA on tumor growth and due to the migration
of cancer cells in mammary tumors that have tropism towards the lungs, we decided to use
this organ to evaluate the phenomenon of metastasis. Figure 3 shows a comparison of the
lungs of all of the experimental groups. We observed noticeable damage in the lungs of the
BPA-treated animals compared to the control and vehicle-treated groups, which seemed
to collapse. In the image, although not very clear, there are macroscopic lesions on the
surface of the lung. It is important to remark that at this time of sacrifice, even when we
observed extensive damage in the lungs, the animals did not show apparent signs of pain
or suffering.
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Figure 3. Macro metastasis at the pulmonary level. Representative images of the macro metastasis
(tissue lesions) identified in the lungs belonging to the control, vehicle, and BPA-treated groups;
millimetric grid as the background.

2.6. Histological Examination of Lungs in Normal Animals without Tumors

Then, we decided to explore the histological damage of the lungs due to exposure to
BPA in the female mice without tumors. Figure 4 shows the comparison of the microarchi-
tecture of the lungs among experimental groups of the control, vehicle, and BPA-treated
animals at different magnifications (4×, 20×, 10×, and 40×). We found no signs of inflam-
mation, nor necrotic foci, and no new vascularization in any of the representative images
shown. Of note, BPA treatment induced a slight inflammatory infiltrate into the lungs, as
was judged at the 100× magnification in the center of the image. Moreover, the animals
had no signs of disease (fur appearance, motility, mobility, food and water intake, and other
behaviors were similar among non-tumor groups).
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2.7. Histological Examination of Lungs and Micro Metastases

Micrometastasis of the control animals is shown at the pulmonary level at the same
magnifications as previously mentioned to analyze the morphology and cellular infiltrate.
We observed several different types of micrometastasis, namely multiple, bilateral, sharply
outlined; rapidly growing; and more pleomorphic and necrotic sites in both groups. The
lung metastasis was generally multiple, well-circumscribed, and spread rapidly. The metas-
tasis looked like multiple discrete nodules in the periphery of the lungs or as lymphangitic
carcinomatosis (peribronchial and perivascular patterns via the lymphatics). They rarely
appeared as intra-lymphatic microscopic foci that cause pulmonary hypertension (Figure 5).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 16 
 

 

 

Figure 5. Histological examination of the lungs of female mice exposed to BPA without tumors. 

Representative images of the lungs in female mice exposed to BPA without tumor induction at dif-

ferent magnifications (4×, 20×, 40×, and 100×). 

2.8. Histological Examination of the BPA-Treated Animals with Tumors 

We decided to show here the analyses of the micrometastasis of the BPA-treated an-

imals. The results showed that the animals exposed to BPA had severe histological 

changes (Figure 6). For example, we observed an alveolar collapse; remarkably, the alveoli 

were significantly infiltrated with neutrophils at the arterial level (center) and in medium 

vessels (arrows). The above can correlate with the air spaces (right) observed. On the other 

hand, the parenchyma had less density of neutrophils, which present good alveolar ven-

tilation. The bronchioles (star) show focal epithelial detachment.  Micrometastasis and 

neutrophils in the lung parenchyma were higher in animals exposed to BPA than in the 

control or vehicle groups. 

Photomicrographs showed higher magnifications of the metastasis (100×). In this se-

ries of photomicrographs, we observed several micrometastatic sections; we found in-

creased subpleural micrometastasis, with a broad presence of neutrophils and macro-

phages (Figure 6). Parenchymal (A−F) and subpleural (G−H) micrometastasis in the lungs 

of mice neonatally exposed to BPA and orthotopically implanted at eight weeks of age 

with tumor cell line 4T1. The infiltration of neutrophils in the alveolar wall and even inside 

a micrometastasis was noted (F). In the subpleural metastasis, we observed a mixed infil-

trate of neutrophils and some macrophages (Figure 6). 

Figure 5. Histological examination of the lungs of female mice exposed to BPA without tumors.
Representative images of the lungs in female mice exposed to BPA without tumor induction at
different magnifications (4×, 20×, 40×, and 100×).

Eight weeks old mice were orthotopically implanted with tumor cell line 4T1. We
found an increase in the inflammatory infiltrate, mainly by neutrophils, in the alveolar
wall and neutrophilia in intact lung/4T1, in vehicle/4T1, and notably in mice neonatally
exposed to BPA (BPA/4T1). These histopathological changes were associated with de-
creased alveolar ventilation in the mice implanted with 4T1, which presented subpleural
and parenchymal metastasis. Clearly, the BPA treated group had more micrometastasis and
high immune cell infiltration compared to the control 4T1 group. Vehicle-treated animals
injected with 4T1 have similar histology patterns and metastasis as the control 4T1 group.

2.8. Histological Examination of the BPA-Treated Animals with Tumors

We decided to show here the analyses of the micrometastasis of the BPA-treated
animals. The results showed that the animals exposed to BPA had severe histological
changes (Figure 6). For example, we observed an alveolar collapse; remarkably, the alveoli
were significantly infiltrated with neutrophils at the arterial level (center) and in medium
vessels (arrows). The above can correlate with the air spaces (right) observed. On the
other hand, the parenchyma had less density of neutrophils, which present good alveolar
ventilation. The bronchioles (star) show focal epithelial detachment. Micrometastasis and
neutrophils in the lung parenchyma were higher in animals exposed to BPA than in the
control or vehicle groups.
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Figure 6. Histological examination of the BPA-treated animals with tumors. Parenchymal (A–F) and
subpleural (G,H) micrometastasis in the lungs of mice neonatally exposed to BPA and orthotopically
implanted at eight weeks old with tumor cell line 4T1. Representative images of the lungs of female
mice with tumor induction neonatally exposed to BPA at 100× magnification.

Photomicrographs showed higher magnifications of the metastasis (100×). In this
series of photomicrographs, we observed several micrometastatic sections; we found in-
creased subpleural micrometastasis, with a broad presence of neutrophils and macrophages
(Figure 6). Parenchymal (A−F) and subpleural (G−H) micrometastasis in the lungs of
mice neonatally exposed to BPA and orthotopically implanted at eight weeks of age with
tumor cell line 4T1. The infiltration of neutrophils in the alveolar wall and even inside a
micrometastasis was noted (F). In the subpleural metastasis, we observed a mixed infiltrate
of neutrophils and some macrophages (Figure 6).

3. Discussion

In the present work, we showed for the first time that a single neonatal administration
of BPA induces remarkable histological alterations at the pulmonary level, correlated with
important changes in the intratumoral expression of cytokines. As has been widely reported,
the metastatic process can be promoted by the systemic and intratumoral production of
cytokines [30–32]. For this reason, in a female mammary tumor model, we studied whether
BPA treatment could affect the intratumoral expression of IL-1β, IL-4, IL-6, IL-10, TNF-α,
IFN-γ, and VEGF by confocal microscopy immunofluorescence.

The effects of BPA on immune system cells have been widely reported; however, they
vary depending on the model performed [33]. In vivo, the impact reported may seem con-
tradictory, oscillating upon the animal species used, the dose, the administration route, the
gender, the age, and the animal’s development stage in which BPA is administered [34,35].
Furthermore, many reports do not employ immune challenges for different immune com-
ponents. Moreover, there is little information on the effects of BPA on the immune response
during cancer context [34]. Most of the BPA effects on the immune system, point out to BPA
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as a pro-inflammatory molecule [36–38]. Our results support and extend this notion since
the neonatal treatment of BPA clearly increased the pro-inflammatory cytokine profile.

Of particular interest is the finding that BPA decreases intratumoral expression of IL-4,
a cytokine produced mainly by innate immune system cells and Th2 cells. IL-4 plays an
important role in the humoral immune response against parasites and allergic antigens [39].
However, there are reports about the role of IL-4 in tumor growth, mediating increased
proliferation and survival by promoting tumor-associated macrophage differentiation
(TAM) towards an M2-like phenotype [40]. The decreased levels of IL-4 in BPA-treated
animals, not necessarily is opposite to the role of IL-4 as a pro-metastatic molecule. This is
not the only cytokine that promotes metastasis, also not all molecular pathways may be
activated in every context.

In our present work, IL-4 appears to be not as relevant as the other cytokines found.
Interestingly, we observed that the expression of IL-1β was higher in the BPA-treated
group. IL-1β is a pleiotropic cytokine involved in inflammatory processes [41,42]. In
different studies, elevated levels of this cytokine have been observed in breast cancer
tumors and it has been proposed as a factor that promotes metastasis [43,44]. Thus, our
present results confirm and extend the pro-metastatic role of this cytokine. Like IL-1β,
IL-6 is also considered a master pro-inflammatory cytokine [45]. Interestingly, we found a
higher intratumoral induction of IL-6 by neonatal exposure to BPA.

In breast cancer (BC), several studies have shown a positive relationship between the
serum levels of IL-6 and the progression of the disease; the elevated concentration of this
cytokine has been considered as a negative marker of prognosis in BC, independently of
many factors, including hormonal status [46]. Particularly, IL-6 can promote metastasis
by aberrantly activating the STAT3 pathway, supporting cancer stem cells (CSC) [47]. The
activation of the IL-6/JAK/STAT3 pathway has also been implicated in the progression of
BC [48]. Another pro-inflammatory molecule is TNF-α, a multifunctional pro-inflammatory
cytokine that regulates different processes, such as inflammation, cell apoptosis, tumor
growth, and cell invasion [49].

We also found an increased intratumoral expression of this cytokine after neonatal
exposure to BPA. Regarding cancer, TNF-α promotes the invasion of breast tumor cells,
as evidenced by in vitro experiments, up-regulating several genes associated with prolif-
eration, invasion, and metastasis [50,51]. In addition, it has been shown that TNF-α can
modulate the inflammatory role of macrophages, enhancing the production of VEGF [52].
Regarding BC metastasis, it has been well established that a critical regulator of this process
is the VEGF family, which can be shaped by various receptors and ligands that confer a
poor prognosis to patients with BC [53]. Specifically, VEGF-A has been closely related to
neovascularization and angiogenesis in BC cells [54,55]. It is important to note that we did
not analyze different types of VEGF in the tumor; however, we observed that the expression
of VEGF-A was outstandingly modulated by neonatal exposure to BPA as it has a three-fold
increase in response to it compared to the other experimental conditions. Our results on
the implications of VEGF and metastasis are related to recent reports carried out in a BC
lung metastasis mice model.

This work demonstrated the relevant relationship between VEGFR and metastasis-
associated macrophages (MAMs), proving that this population is firmly implicated in the
tropism of lung metastasis in this disease [56,57]. This idea agrees with our previous work,
in which neonatal exposure to BPA modulated macrophage genes, which are involved in
the polarization of the alternative phenotype with important implications in metastasis. In
addition, the stimulating role of VEGF by different disrupting compounds, including BPA,
has also been recently reported in BC cells [6,7].

Further to the above, a weakness of this work is that we did not evaluate the mech-
anisms through which BPA can modulate the expression of cytokines. Nevertheless, it
has been reported that this endocrine disruptor, through its binding to the membrane ER,
can impact the expression of various transcription factors, including PPARγ, which has
pleiotropic actions at multiple levels and is importantly involved in the functioning of
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immune cells [58,59]. Different studies that investigate the mechanism through which BPA
can modulate the expression of cytokines should be carried out to expand this information.
Interestingly, the fact that we found an angiogenic/immunological modulation driven by
BPA, which invites us to extend the cancer therapy options not only to breast cancer cells
and cytokine signaling, but also to their endocrine disruptor counterpart.

4. Materials and Methods
4.1. Ethics Statement

Animal care and experimental practice were conducted at the Unidad de Modelos
Biológicos (UMB) at the Instituto de Investigaciones Biomédicas (IIB), Universidad Na-
cional Autónoma de México. All experimental procedures performed in the animals were
approved by the Institutional Care and Animal Use Committee (CICUAL, permit number
155); adhering to Mexican regulation (NOM-062-ZOO-1999), in accordance with the recom-
mendations from the National Institute of Health (NIH) of the United States of America
(Guide for the Care and Use of Laboratory Animals). Euthanasia of the experimental ani-
mals was performed humanely by overdose of inhaled Sevorane (Abbot, CDMX, México).

4.2. Animals

Mice of the syngeneic strain BALB/cAnN (H2-d) were purchased from Harlan México
(Facultad de Química, UNAM, CDMX, México). The animals were housed at UMB with
controlled temperature (22 ◦C) and 12-h light-dark cycles, water, and Purina LabDiet 5015
(Purina, St. Louis, MO, USA) chow ad libitum. After neonatal treatment, only female mice
were used for experimentation.

4.3. Neonatal BPA Exposure

Although the main route of exposure to Bisphenol A (BPA, Sigma, St. Louis, MO, USA)
is commonly oral, a subcutaneous injection was selected instead, since we did not observe
differences between oral and subcutaneous routes in neonate mice. To resemble the human
final gestational stage and aiming at the murine critical immune system development (T
lymphocytes developmental window), the mice were exposed at postnatal day 3 (PND3).
Briefly, 72 h after birth, female pups were identified by anogenital distance. Only female
pups received treatment, although entire litters were assigned to experimental groups
to avoid pup reallocation stress. The intact group received no neonatal treatment. The
vehicle group received a dorsal subcutaneous injection of 20 µL of corn oil as the vehicle
(Sigma, St. Louis, MO, USA). The BPA group received 250 µg/k body weight (bw) of BPA,
dissolved in corn oil. Given that neonate rodents have minimal glucuronidation activity,
which is the major metabolic mechanism for BPA clearance, this dose approximates to a
brief, 5 day exposure to the FDA reference dose of 50 µg/k bw/day, but performed in a
single administration, thus avoiding excessive manipulation stress. The pups were weaned
at 21 days of age and placed in standard cages, with five mice per cage.

4.4. Assessment of Endocrine Parameters

Vaginal opening. From 25 days old onwards, the vaginal openings were examined
by holding the mice in a dorsal restraint and using a light extension of the peri-vaginal
skin. Estrous cycle. At 8 weeks old, the estrous cycles were assessed using a vaginal
smear wash of 50 µL of saline solution (PiSA, Guadalajara, México), followed by Giemsa
stain and light microscope observation. Serum samples. Corresponding to the diestrus
phase, the serum samples were used to determine the estradiol levels, using the EIA
DetectX® Serum 17β-estradiol kit (Arbor Assays, Ann Arbor, MI, USA), according to the
manufacturer’s protocol.

4.5. Cell Culture

The 4T1 cell line (ATCC® CRL-2539) was kindly donated by Dr. Pedro Ostoa-Saloma
and cultivated in RPMI 1640 medium (Sigma, St. Louis, MO, USA) supplemented with
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10% FBS (ByProductos, Guadalajara, México), 2 mM glutamine, and penicillin/streptomycin
(GIBCO, Grand Island, NY, USA). Subculture was performed at 70−80% confluency.
After a second subculture, the cells were harvested and resuspended in 0.9% saline
(250,000 cells/mL) for inoculation.

4.6. Mammary Tumor Induction

Upon sexual maturity (8 weeks old), mice from every exposure group were random-
ized into secondary experimental groups, i.e., control (without tumor induction) and 4T1
(tumor induction) groups. Mice assigned to 4T1 groups were treated as follows: Mice were
anesthetized by the inhalation of a mixture of air and 5% Sevorane (Abbot, CDMX, México).

After low abdomen asepsis, the fourth nipple was located and 104 4T1 cells were
introduced by a single injection into the mammary fat pad. Tumor growth was monitored
for 25 days.

4.7. Histological Analysis of Lungs

The lung samples obtained from the experimental animals were fixed in 4% paraformalde-
hyde (J.T. Baker, CDMX, México), and were dehydrated and embedded in paraffin. Non-
serial, longitudinal tissue blocks were cut into 4-m thick sections and mounted on poly-L-
lysine coated slides (Sigma, St Louis, MO, USA). The histological analyses were performed
with hematoxylin−eosin staining to identify neutrophils. The number of each cell type
in the lung was calculated using a 40× objective. Several microscope fields, equivalent to
1 mm2, were analyzed for each mouse. The empty areas within the tissue were discarded
using the software ImageJ (Version 1.39, Madison, WI, USA). A total area of 1 mm2 of
lung was analyzed per group. The identification criteria were based on the morphological
characteristics of the cells, which were also quantified according to each type.

4.8. Tumor Cytokine Immunofluorescence

Tumors from all groups were fixed in 4% paraformaldehyde for 48 h, washed with
PBS, and stored in PBS containing 30% sucrose at 4 ◦C overnight. The next day, the samples
were embedded in tissue freezing medium (Leica, Nussloch, Germany) and frozen at
−70 ◦C (dry ice hexane bath). Serial sections of 20 µm thickness were obtained using a
cryo-microtome (Leica, Buffalo Grove, IL, USA), placed on slides coated with poly-L-lysine
(Sigma, St. Louis, MO, USA), and air-dried. The sections were treated with 1% Triton X-100
(Sigma, St. Louis, MO, USA), blocked with 1% albumin (BSA, Sigma, St. Louis, MO, USA),
and incubated overnight at 4 ◦C with primary antibody diluted in 1:1000 BSA-PBS. Anti-
mouse IL-1β, IL-4, and VEGF developed in rabbit, and anti-mouse IFN-γ, TNF-α, IL-10,
and IL-6 developed in goat were used as primary antibodies (Santa Cruz Biotechnology,
Dallas, TX, USA). Anti-rabbit IgG and anti-goat IgG conjugated with rhodamine (TRITC)
were used as the secondary antibodies (ZYMED-Invitrogen Laboratories Inc., Grand Island,
NY, USA). After rinsing in PBS, sections were incubated with a secondary antibody for 1 h
at room temperature and were diluted in 1:200 BSA-PBS, washed in PBS, and embedded
in anti-fading DAKO mounting medium (DAKO, Santa Clara, CA, USA). Tumor sections
processed without the primary antibody were used as the negative controls.

4.9. Statistical Analysis

The general experimental design considers two independent variables: neonatal ex-
posure (intact, vehicle, or BPA) and mammary tumor induction (control or 4T1). The data
regarding tumor development and tumor microenvironment only consider the exposure
variable, as all animals belong to 4T1 group. Data from two to three independent exper-
iments were analyzed with Prism 6® software (GraphPad Software Inc., San Diego, CA,
USA) and charted as mean ± standard deviation. Data distribution normality was assessed
via Shapiro−Wilk test. Thereafter, one-way ANOVA (p = 0.05) was performed, followed by
a Tukey post-test. Differences were considered significant when p < 0.05, with the actual
p value being stated in each figure legend. The data regarding cytokine expression consider
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both independent variables, and therefore a two-way ANOVA (α = 0.05) was performed,
followed by a Holm−Sidak post-test, with the same significant difference criterion.

5. Conclusions

Metastasis is the major cancer pathophysiology and multiple biological interactions
converge in common signaling pathways. The knowledge of this network leads to the pos-
sibility of developing specific therapeutic target drugs. Endocrine-disrupting compounds
modulate endogenous hormone responses and cell functions. Although most studies have
focused on their reproductive effects, their potential effects on immune cells, and even
more, on the immune response towards cancer, should draw attention, given the expression
of hormonal receptors by immune cells. Although several studies have evaluated the
effects of BPA in the immune response, more studies are needed to elucidate the possible
mechanisms through which these take place. Here, we exposed different molecular targets
that should be blocked together, to offer a promising anti-metastatic drug regardless of
the expression of hormonal receptors. We also want to highlight that not only cancer
cells must be considered in the therapeutically strategy, but also the modification of the
tumor microenvironment, and the metabolism of the surrounding cells play a key role
in promoting or inhibiting the metastatic BC process, and this would result in a better
patient clinical outcome. In addition, the immune cells and cytokines are key factors whose
modulation would be important as adjuvant drug options in breast cancer metastasis.
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