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The hippocampus has exhibited navigation-related changes in volume and activity after

visual deprivation; however, the resting-state functional connectivity (rsFC) changes

of the hippocampus in the blind remains unknown. In this study, we focused on

sub-region-specific rsFC changes of the hippocampus and their association with the

onset age of blindness. The rsFC patterns of the hippocampal sub-regions (head, body

and tail) were compared among 20 congenitally blind (CB), 42 late blind (LB), and 50

sighted controls (SC). Compared with the SC, both the CB and the LB showed increased

hippocampal rsFCs with the posterior cingulate cortex, angular gyrus, parieto-occpital

sulcus, middle occipito-temporal conjunction, inferior temporal gyrus, orbital frontal

cortex, and middle frontal gyrus. In the blind subjects, the hippocampal tail had more

extensive rsFC changes than the anterior hippocampus (body and head). The CB and

the LB had similar changes in hippocampal rsFC. These altered rsFCs of the hippocampal

sub-regions were neither correlated with onset age in the LB nor the duration of

blindness in CB or LB subjects. The increased coupling of the hippocampal intrinsic

functional network may reflect enhanced loading of the hippocampal-related networks

for non-visual memory processing. Furthermore, the similar changes of hippocampal

rsFCs between the CB and the LB suggests an experience-dependent rather than a

developmental-dependent plasticity of the hippocampal intrinsic functional network.

Keywords: functional connectivity, hippocampus, congenitally blind, late blind, resting state

INTRODUCTION

Sighted people mainly depend on the visual system to locate objects and to navigate through their
environment. It is interesting to know how blind people use limited spatial information conveyed
by the remaining sensory modalities to accomplish these functions. Blind subjects usually exhibit
comparable or even superior non-visual spatial abilities compared to sighted subjects, including
sound localization (Lessard et al., 1998; Gougoux et al., 2005), tactile orientation (Van Boven
et al., 2000; Norman and Bartholomew, 2011), and navigation (Fortin et al., 2008; Kupers et al.,
2010), although some studies report an impaired performance (Zwiers et al., 2001; Gori et al.,
2014). During the non-visual spatial-related tasks, the occipital cortex has frequently been found
to be activated in the early blind (EB) (Arnott et al., 2013), such as middle temporal area (MT)
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activation in motion discrimination and dorsal visual pathway
activation in spatial discrimination and navigation (Cohen et al.,
1997; Weeks et al., 2000; Vanlierde et al., 2003; Gougoux et al.,
2005; Poirier et al., 2006; Ricciardi et al., 2006; Voss et al., 2006;
Kupers et al., 2010; Matteau et al., 2010; Gagnon et al., 2012). The
cross-modal activation of the occipital cortex has been associated
with the superior non-visual spatial abilities in the EB (Gougoux
et al., 2005; Simon-Dack et al., 2008). Furthermore, early studies
had reported newly established anatomical connectivities (Bridge
et al., 2008) between the subcortical visual relays and the intact
visual areas, and reshaped effective connectivities (Silvanto et al.,
2007, 2009) in both the ipslesional and contralesional spared
visual areas after cortical blindness. However, the reorganization
of the hippocampus, a structure for spatial mapping and
navigation, in the blind is seldom considered.

The involvement of the hippocampus in processing spatial
information is evidenced by both hippocampal activation
during navigation tasks (Iaria et al., 2003) and spatial memory
impairment due to hippocampal lesions (Bohbot et al., 1998).
The processing precision of spatial memory in the hippocampal
formation (HF) varies along its longitudinal axis. For example,
the fields (a measure of neuronal spatial scale) of place cells
are smaller in the posterior HF than in the anterior HF in
rats, indicating that the posterior hippocampus processes spatial
memory with more details (Jung et al., 1994; Maurer et al.,
2005; Kjelstrup et al., 2008). Moreover, the anterior hippocampus
is connected with the anterior temporal system that mainly
supports object and verbal memory, whereas the posterior
hippocampus is connected with the posterior medial system that
mainly supports memory for scene and spatial layout (Ranganath
and Ritchey, 2012), indicating segregated memory functions of
the HF along its longitudinal axis.

The size of the hippocampus depends on experience. A species
with a larger hippocampal volume indicates that spatial memory
is more important to its survival (Barnea and Nottebohm, 1994;
Clayton and Krebs, 1994; Lee et al., 1998). London taxi drivers
show increased volume in the posterior hippocampus with an
increase in years of experience, suggesting that the structural
organization of the hippocampus is shaped by navigational
experience (Maguire et al., 2000). The spatial navigation of
blind subjects is challenged by their lack of visual input
because only limited spatial information can be supplied by
non-visual sensory modalities. Thus, the hippocampus of blind
subjects may reorganize itself to adapt to these changes. In
this context, several studies have reported reduced volume in
the posterior area and increased volume in the anterior area
of the right hippocampus in blind people (Chebat et al., 2007;
Fortin et al., 2008; Leporé et al., 2009). Moreover, congenitally
blind (CB) but not blindfolded sighted subjects have shown
increased activation in the middle and posterior areas of
the right hippocampus when they perform a tactile T-maze
navigation task (Gagnon et al., 2012). These findings confirm
experience-dependent plasticity in the hippocampus in the blind,
and suggest a sub-region-dependent reorganization. However,
the reorganization of intrinsic functional network of the
hippocampal sub-regions in the blind remains unknown. Recent
studies showed that spatial navigation needs the synergism

of distributed brain areas which constitute a navigational-
related network, including hippocampus, parahippocampal
cortex (PHC), posterior cingulate cortex (PCC), retrosplenial
cortex (RSC), dorsal occipital-parietal pathway, inferior temporal
gyrus (ITG), prefrontal cortex (PFC), orbital frontal cortex
(OFC), angular gyrus (AG), and anterior thalamus (Committeri
et al., 2004; Feierstein et al., 2006; Kupers et al., 2010; Kravitz
et al., 2011). Among these brain regions, the hippocampus is
a critical hub of the navigational-related network. Measuring
the potential connectivity changes of the hippocampus may
shed light on navigational-related functional reorganization after
visual deprivation.

In blind people, experience-dependent plasticity may interact
with the developmental stages at which the individuals lost
their sight. In this context, EB (or CB) and late blind (LB)
subjects have exhibited different changes patterns in cortical
thickness (Jiang et al., 2009; Park et al., 2009; Kupers et al., 2011),
glucose metabolism (Wanet-Defalque et al., 1988; Veraart et al.,
1990), task-evoked activation (Büchel et al., 1998), and functional
connectivity density (FCD) (Qin et al., 2015) in the occipital
cortex. However, the influence of the onset age of blindness on the
intrinsic functional reorganization of the hippocampus remains
unclear.

In this study, we compared group differences in resting-state
functional connectivity (rsFC) of the hippocampal sub-regions
among CB (n = 20), LB (n = 42) and sighted control (SC, n =

50) participants. Because the anterior and posterior hippocampal
regions demonstrate different structural changes in the blind
(Chebat et al., 2007; Fortin et al., 2008; Leporé et al., 2009) and
they demonstrate different contributions on spatial processing in
sighted subjects (Ranganath and Ritchey, 2012), we segmented
the hippocampus into head, body and tail along the anterior-
posterior axis. We hypothesize that the hippocampal sub-regions
may exhibit different rsFC changes after visual deprivation. Based
on the interaction between experience-dependent plasticity of
the brain and the onset age of blindness (Voss, 2013), we also
hypothesize that the rsFC changes of the hippocampus may be
different between the CB and the LB.

MATERIALS AND METHODS

Subjects
This study included 20 CB (13 males; mean age: 26.6± 5.0 years,
age range: 20–39 years), 42 LB (onset age of blindness >12 years;
30 males; mean age: 30.2 ± 5.8 years, age range: 21–45 years),
and 50 SC (33 males; mean age: 28.8 ± 7.0 years, age range:
19–44 years). All the subjects were peripheral blindness, right
handed, and they had no history of neurological or psychiatric
disorders. In addition, all of the blind subjects had no pattern
vision. Demographic data of these subjects are shown in Table 1

and detailed demographic information are shown in Table S1.
The mean onset age of blindness in the LB was 19.1 ± 5.0 years.
The mean duration of blindness was 26.6 ± 5.0 and 11.1 ±

5.3 years for the CB and the LB, respectively. There were no
significant differences in age (one-way ANOVA, F = 2.34, P =

0.10) and gender (chi-square test, χ
2 = 0.14, P = 0.93) among

the three groups. This experiment was approved by the Medical
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TABLE 1 | Demographic data of the subjects.

Groups Gender Age (years) Age of blindness

onset (years)

Duration of

blindness

(years)

CB (M/F) 13/7 26.60 ± 5.02 0 26.60 ± 5.02

LB (M/F) 29/13 30.24 ± 5.78 19.14 ± 5.40 11.10 ± 5.29

SC (M/F) 33/17 28.76 ± 6.99

Statistics χ
2 = 0.14 F = 2.36

P values 0.93 0.10

Data are presented as mean ± standard deviation. CB, congenitally blind; F, female; LB,

late blind; M, male; SC, sighted controls.

Research Ethics Committee of TianjinMedical University, and all
participants gave their written informed consent.

MRI Acquisition
The MR images were obtained using a 3.0-Tesla MR scanner
(Trio Tim system; Siemens, Erlangen, Germany) that was
equipped with a 12-channel head coil. Tight but comfortable
foam padding was used to minimize head motion, and
earplugs were used to reduce scanner noise. The acquisition
of structural images used a 3D magnetization-prepared
rapid-acquisition gradient echo (MPRAGE) sequence with
the following parameters: repetition time (TR)/echo time
(TE)/inversion time (TI) = 2000/2.6/900 ms, flip angle = 9◦,
matrix = 256 × 224, field of view (FOV) = 256 mm × 224
mm, slice thickness = 1 mm, and 176 continuous sagittal slices.
The acquisition of resting-state fMRI data used a single-shot
gradient-echo echo-planar imaging (SS-GRE-EPI) sequence:
TR/TE = 2000/30 ms, matrix = 64 × 64, flip angle = 90◦, FOV
= 220 × 220mm, 32 interleaved axial slices, thickness = 3 mm,
slice gap = 1 mm, time points = 180. During the fMRI scans,
all subjects were instructed to keep their eyes closed, relax, move
as little as possible, think of nothing in particular and remain
awake. After the fMRI scan, the fMRI images and the subjects’
conditions were checked to confirm whether they satisfied the
requirement, and if they did not, the fMRI data were abandoned
and the subjects were rescanned.

Data Preprocessing
The resting-state fMRI data were preprocessed using Statistical
Parametric Mapping (SPM8; http://www.fil.ion.ucl.ac.uk/spm).
The first 10 volumes were discarded to remove signal shift
caused by incomplete T1-relaxation. The remaining 170 volumes
were then corrected for timing difference between slices. Rigid
realignment was used to correct the displacement between
volumes. During this process, the three translational and three
rotational motion parameters as well as frame-wise displacement
(FD) were calculated (Power et al., 2012). If the fMRI data had
a maximum translational displacement higher than 1 mm or a
maximum rotational displacement higher than 1.0◦, the dataset
of this subject would be discarded. All subjects’ fMRI data were
within defined motion thresholds. There were no significant
differences in FD (one-way ANOVA, F = 0.33, P = 0.72)
among the three groups, indicating that head motion might not

contaminate the inter-group comparisons in rsFC. The 6 rigid
motion parameters, and their first-order derivation, the mean
signal of cerebrospinal fluid and white matter, and the spike
point (time point with FD higher than 0.5) were regressed from
data. The datasets were then band-pass filtered with a frequency
range of 0.01–0.08Hz. Individual structural images were linearly
coregistered to the mean functional image; then the transformed
structural images were segmented into gray matter (GM), white
matter, and cerebrospinal fluid. The GM maps were linearly
coregistered to the tissue probability maps in the Montreal
Neurological Institute (MNI) space. Finally the motion-corrected
functional volumes were spatially normalized to the MNI space
using the parameters estimated during linear coregistration. The
functional images were resampled into 3 × 3 × 3 mm3 voxels.
After normalization, all datasets were smoothed with a Gaussian
kernel of 6× 6× 6 mm3 full-width at half maximum (FWHM).

Extraction of the Hippocampal
Sub-regions and rsFC Computation
The hippocampus was segmented using the probabilistic map
of Harvard-Oxford cortical and subcortical structural atlases
(implemented in the FSL package) with a probabilistic threshold
higher than 50%. Each side of the hippocampus was then
trisected into head, body and tail along the anterior-posterior
axis of the MNI space (Figure 1A). Then the time courses of
average blood oxygen level dependent (BOLD) signals of the six
sub-regions of the hippocampus (head, body and tail in each
side) were extracted for the calculation of rsFC (Figure 1B).
For an individual dataset, Pearson’s correlation coefficients
between the mean time series of each defined regions of interest
(ROIs) and the time series of each voxel in other parts of
the brain GM were computed and converted to z values using
Fisher’s r-to-z transformation to improve the normality. We
also calculated the relative signal intensity of each hippocampal
sub-region (relative to the whole brain) for each subject. The
mean relative signal intensity of each hippocampal sub-region
of each group is shown in Figure 1C. The mean relative
signal intensities of hippocampal sub-regions were acceptable
and comparable across groups (ranges: 0.72–1.17 for the CB,
0.68–1.23 for the LB, and 0.71–1.27 for the SC), suggesting
that the rsFC changes of hippocampal sub-regions cannot
be simply explained by artifact or abnormality of the BOLD
signals.

Statistical Analysis
One-sample t-tests were used to identify brain regions showing
positive rsFC with each hippocampal sub-region of each group
within the brain gray matter mask. A Monte Carlo simulation
method was used to correct for multiple comparisons with a
corrected threshold of P < 0.05 (AlphaSim program, parameters
including: single voxel P = 0.01, 5000 simulations, estimated
FWHM, cluster connection radius = 5 mm) (Song et al., 2011).
Then, a one-way analysis of covariance (ANCOVA) was used to
test the rsFC differences of the hippocampal sub-regions among
the CB, LB and SC controlling for age and gender effects (P <

0.05, AlphaSim corrected). For each hippocampal sub-region,
the ANCOVA analysis was restricted to a mask that showed
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FIGURE 1 | Hippocampal sub-regions. (A) The hippocampus is segmented into 3 equal-long areas along the longitudinal axis, which are shown in the sagittal,

coronal and axial planes, respectively. The green, blue and red areas represent the hippocampal head, body and tail, respectively. (B) An example of the time course

of BOLD signal of each hippocampal sub-region of one subject from each group. (C) The mean relative signal of each hippocampal sub-region of each group. The

relative signal of a sub-region is calculated as the quotient between the average signal of each sub-region and that of the whole brain of each subject. BOLD, blood

oxygen level dependent.

positive rsFC in at least one group. This mask was generated
by adding the significant maps of one-sample t-tests of the
three groups. For each subject, the ROIs that showed significant
group differences in rsFCs were extracted for post-hoc analyses
using a general linear model with the group as the independent

variable and gender and age as nuisance covariates (P < 0.05).
Partial correlation coefficients between the rsFC and the onset
age of blindness in the LB, and those between the rsFC and the
duration of blindness in the CB and LB, were also analyzed when
controlling for the gender effect (P < 0.05).
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RESULTS

The rsFC Patterns of the Hippocampal
Sub-regions
The rsFC patterns of each hippocampal sub-region of each group
are shown in Figure 2. Although, the hippocampal tails had
relatively weaker rsFCs than the hippocampal heads and bodies,
these three hippocampal sub-regions were all strongly connected
with the medial (MTL) and lateral temporal lobes (LTL),
thalamus, PCC and middle cingulate cortex (MCC), medial
prefrontal cortex (MPFC), and occipito-temporal conjunction.

The Changes in rsFC of the Hippocampal
Sub-regions in the Blind
ANCOVA showed significant differences in rsFCs of the bilateral
hippocampal sub-regions among the CB, the LB, and the SC
(Figures 3, 4). Altered rsFCs were present between the left
hippocampal tail and the bilateral AG, PCC, parieto-occpital
sulcus (POS), bilateral middle occipito-temporal conjunction
(MOT), right ITG, right lateral OFC and right middle frontal
gyrus (MFG), between the right hippocampal tail and the left AG,
PCC, bilateralMOT, and right ITG, between the left hippocampal
head and the PCC, between the right hippocampal body and the
right MOT, and between the right hippocampal head and the
right MOT and right ITG. There was no significant alteration in
the rsFC of the left hippocampal body. In general, the rsFCs of
the hippocampal tails showed more extensive changes among the
three groups than those of the bodies and heads.

The post-hoc analyses revealed that both blind groups
showed significantly strengthened rsFCs with the hippocampus
compared to the SC group (Figures 2, 3). Specifically, the rsFC
between the left hippocampal tail and the rightMFC and between
the right hippocampal body and the right MOT were increased
in only the LB. Moreover, the LB exhibited increased rsFC
between the right hippocampal head and the right OFC and ITG
compared to the CB and the SC. The remaining brain regions had
strengthened rsFCs with the hippocampal sub-regions in both the
CB and the LB.

Correlations between the Hippocampal
rsFC and the Onset Age and Duration of
Blindness in the Blind Subjects
Partial correlation analyses showed that the onset age of blindness
was not correlated with the rsFCs of any hippocampal sub-
regions in LB subjects. The duration of blindness was not
correlated with the rsFCs of any hippocampal sub-regions in
either the CB or LB subjects (Table S2, Figures S1–S3).

DISCUSSION

In this study, we investigated the alterations in rsFCs of the
hippocampal sub-regions after visual deprivation and found
that these sub-regions (especially the hippocampal tails) had
increased functional connectivity with several navigational-
related areas. Furthermore, we found the alteration patterns of

hippocampal functional connectivity were dramatically similar
between the CB and the LB.

Strengthened Connectivity in the
Hippocampal-Related Functional Network
in the Blind
We detected enhanced rsFCs between the hippocampus and the
MOT, PCC, RSC, AG, ITG, MFG, and OFC, most of which
are components of navigational-related areas (Committeri et al.,
2004; Feierstein et al., 2006; Kupers et al., 2010; Kravitz et al.,
2011). The MOT is an important component of the occipital-
parietal circuit, which integrates information from the visual
fields and represents space mainly in an egocentric frame of
reference (Kravitz et al., 2011). Our finding of increased rsFC
between the hippocampus and the MOT in the blind was
consistent with previous studies showing cross-modal activation
of the middle occipital cortex and MT+ for spatial processing in
the CB/EB (Weeks et al., 2000; Burton et al., 2003; Poirier et al.,
2006; Saenz et al., 2008; Arnott et al., 2013; Collignon et al., 2013)
and the LB (Collignon et al., 2013), and was also consistent with
structural and activation changes in the hippocampus after visual
deprivation (Chebat et al., 2007; Fortin et al., 2008; Leporé et al.,
2009; Gagnon et al., 2012). Our findings provided a potential
link between the occipital and hippocampal reorganization after
visual deprivation.

The PCC and RSC are important hubs in the parieto–
medial temporal pathway that mainly supports spatial navigation
(Kravitz et al., 2011). The PCC/RSC and AG have reciprocal
connections with the hippocampus, PHC, anterior thalamic
nuclei, and mammillary bodies (Taube, 2007; Buckwalter et al.,
2008; Boccara et al., 2010; Uddin et al., 2010), which constitute
a network for spatial memory and navigation. The PCC/RSC are
closely related to spatial memory and navigation and involved in
coordinating and translating between egocentric and allocentric
reference frames (Knight and Hayman, 2014). As a result, the
increased rsFCs between the hippocampus and these spatial
processing hubs (PCC, RSC, and AG) in our study may represent
functional reorganization within the navigation network after
visual deprivation.

The MFG is the highest terminal of the parieto–prefrontal
pathway (Schall et al., 1995). It has direct connections with
the IPL and MT+ (Sakata and Kusunoki, 1992; Clower et al.,
2005). The MFG is involved in top-down control of visual-
spatial processing, such as spatial attention and working memory
(Friedman and Goldman-Rakic, 1994). The increased rsFC
between the hippocampus and the MFG may indicate the
increased integration between the cognitive control network and
the hippocampal-related network in the blind.

The ITG also had strengthened rsFC with the hippocampus
in the blind. As a component of the ventral visual stream,
the ITG is connected with parahippocampal cortex (Webster
et al., 1991), which is a necessary relay for hippocampal signal
transmitting (Insausti et al., 1987). Thus, our finding of increased
rsFC between the hippocampus and the ITG may represent
functional reorganization of the ventral visual stream. Actually,
the CB/EB subjects have shown cross-modal plasticity in many
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FIGURE 2 | The resting-state functional connectivity patterns of the hippocampal sub-regions. CB, congenitally blind; LB, late blind; rsFC, resting-state

functional connectivity; SC, sighted controls.

areas of the ventral visual stream, such as the parahippocampal
place area (PPA) for objects processing (He et al., 2013), the visual
word form area (VWFA) for Braille reading (Reich et al., 2011),
and the ITG for auditory shape (Striem-Amit et al., 2012) and
Braille semantic processing (Melzer et al., 2001; Burton et al.,
2003). Furthermore, the ITG is involved in navigation tasks in
both sighted and congenitally blind subjects (Kupers et al., 2010),
indicating a general role of this area in navigation processing.

The OFC also showed increased rsFC with the hippocampus.
The OFC directly connects to brain regions for spatial processing,
including the posterior parietal cortex, hippocampus, PHC, PCC,
and RSC (Cavada et al., 2000). Although, the OFC is frequently

reported in reward processing (Kahnt et al., 2010; Riceberg and
Shapiro, 2012), it also participants in spatial navigation (Vafaei
and Rashidy-Pour, 2004; Feierstein et al., 2006). The increased
rsFC between the hippocampus and the OFC is also consistent
with a recent study reporting increased FCD in these two regions
in both the CB and LB (Qin et al., 2015).

More Extensive Increase in rsFC of the
Hippocampal Tails than the Anterior Parts
We found that the hippocampal tails showed more extensive
increase in rsFC than the hippocampal heads and bodies in the
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FIGURE 3 | Differences in resting-state functional connectivity of hippocampal tails among the CB, the LB and the SC. For each sub-region, the upper

panel shows brain regions exhibiting significant intergroup differences in rsFC with the hippocampal head or body (P < 0.05, corrected), and the lower panel shows

post-hoc comparisons. Asterisk denotes significant rsFC difference between groups (P < 0.05, uncorrected). Error bars indicate the standard error of the mean. AG,

angular gyrus; CB, congenitally blind; ITG, inferior temporal gyrus; LB, late blind; MFG, middle frontal gyrus; MOT, middle occipital temporal conjunction; OFC, orbital

frontal cortex; PCC, post cingulate cortex; rsFC, resting-state functional connectivity; SC, sighted controls.

blind, which is consistent with a previous study that showed
increased activation in the posterior and middle areas of the
hippocampus when CB subjects performed a tactile T-maze
navigation task (Gagnon et al., 2012). However, these functional
enhancements seem contrary to the observation that the volume
in the posterior hippocampus was reduced in the blind (Chebat

et al., 2007), and contrary to the report of no changed
hippocampal activation during virtual route recognition in the
CB (Kupers et al., 2010). The posterior hippocampus prefers to
process memory for scene and spatial layout (Köhler et al., 2002),
and structural plasticity of the posterior hippocampus has been
associated with navigation experience in London taxi drivers
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FIGURE 4 | Differences in resting-state functional connectivity of hippocampal heads and bodies among the CB, the LB and the SC. For each

sub-region, the left panel shows brain regions exhibiting significant intergroup differences in rsFC with the hippocampal sub-region (P < 0.05, corrected), and the right

panel shows post-hoc comparisons. Asterisk denotes significant rsFC difference between groups (P < 0.05, uncorrected). Error bars indicate the standard error of the

mean. CB, congenitally blind; ITG, inferior temporal gyrus; LB, late blind; MOT, middle occipital temporal conjunction; PCC, post cingulate cortex; rsFC, resting-state

functional connectivity; SC, sighted controls.

(Maguire et al., 2000). In this context, the enhanced rsFCs of
the hippocampal tails may explain the compensatory behavior
for non-visual spatial navigation in the blind (Fortin et al.,
2008; Kupers et al., 2010). In sighted people, visual information
is critical for the hippocampus to construct spatial memory;
visual deprivation may directly induce the disuse atrophy of the
neurons and connections that normally serve visual processing
in the posterior hippocampus, which may explain the decreased
volume in the posterior hippocampus in the blind. However,
the neurons and connections of the posterior hippocampus
that serve non-visual processing may be strengthened due to
experience-dependent plasticity in the blind. This hypothesis
may explain why the blind subjects have strengthened rsFC

(of our finding) and activation (Gagnon et al., 2012) of the
posterior hippocampus and exhibit comparable or even superior
non-visual spatial navigation abilities (Fortin et al., 2008; Kupers
et al., 2010). It should be noted that the hippocampal activation
by non-visual spatial navigation in the blind is task-dependent
(Kupers et al., 2010; Gagnon et al., 2012), because hippocampus is
more likely recruited during the initial formation of the cognitive
map and not during its retrieval (Iaria et al., 2003).

The anterior hippocampus also had increased rsFCs with
brain regions related to spatial processing in the blind, which
is consistent with a previous observation of increased volume
in the anterior hippocampus in the blind (Fortin et al., 2008;
Leporé et al., 2009). The “place cells” are also found in the
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anterior part of the hippocampus (Maurer et al., 2005; Kjelstrup
et al., 2008). Thus, the structural and rsFC changes of the
anterior hippocampusmay reflect the enhanced use of non-visual
spatial memory to compensate for the visual deprivation-induced
deficit. Another possibility is that the increased rsFC of the
anterior hippocampal parts may be also related to an enhanced
use of non-spatial memory, because the anterior hippocampus
is frequently reported as a memory processing center for objects
(Köhler et al., 2002), and the anterior hippocampus is connected
with the anterior temporal system that mainly supports object
and verbal memory (Ranganath and Ritchey, 2012).

The Possible Functional Relevance of the
Strengthened rsFC of the Hippocampus in
the Blind
A major limitation of this study is that we had neither
collected navigational- or spatial-related behavioral variables, nor
performed a navigational task to clarify how the strengthened
hippocampal rsFC in the blind would affect spatial processing
both at the behavioral and the functional levels. However, we
think that it may be associated with spatial navigational functions
in the blind based on the following evidence: First, brain regions
showing enhanced rsFC with the hippocampus were located in
navigational-related network (Committeri et al., 2004; Feierstein
et al., 2006; Kupers et al., 2010; Kravitz et al., 2011). Second, the
hippocampal tails showed increased rsFC with more extensive
regions than the hippocampal heads and bodies in the blind;
the hippocampal tails have also exhibited stronger navigational-
related activation in the blind (Gagnon et al., 2012) and larger
volume in Taxi drivers with extensive navigation experience
(Maguire et al., 2000) than the hippocampal heads. Third,
in the sighted subject, the posterior hippocampus prefers to
connect with the posterior medial system to support visual spatial
memory (Ranganath and Ritchey, 2012).

If the strengthened hippocampal rsFC of the blindness
really indicate the reorganization of the spatial navigational
network, another question is how would it affect the spatial
processing at the behavioral level? Sighted subjects prefer to code
spatial information in the form of survey-like (simultaneous)
representations (Ruotolo et al., 2012), which facilitates
integration of spatial information. However, blind subjects tend
to code spatial information in the form of route-like (sequential)
representations (Ruotolo et al., 2012); this form of processing
requires more cognitive efforts (Thinus-Blanc and Gaunet, 1997).
Thus, blind subjects need greater efforts and more exercises
to develop comparable navigational/spatial skills as sighted
subjects, suggesting that the enhanced hippocampal rsFC in the
blind may reflect experience-dependent plasticity. Additionally,
sighted subjects prefer to process spatial information using an
external coordinate (allocentric) frame of reference because of
the simultaneously perceptive properties of vision. In contrast,
blind individuals tend to rely onmore egocentric and experience-
based representations (Röder et al., 2004, 2008; Collignon et al.,
2009; Pasqualotto et al., 2013). Furthermore, it was reported
that visual experience is critical for the development of the
allocentric frame for multisensory action control (Röder et al.,

2007; Pasqualotto et al., 2013). Thus, the CB may predominantly
use egocentric frame while the LB may use both egocentric
and allocentric frames for non-visual navigation (Röder et al.,
2004, 2008; Collignon et al., 2009). As a result, the increased
hippocampal rsFC in the blind may be associated with the altered
preference of navigational processing strategies from allocentric
to egocentric representation of space (Zaehle et al., 2007;
Kravitz et al., 2011), which is also indirectly supported by the
functionality of brain regions that exhibited an enhanced rsFC
with the hippocampus: in sighted subject, the occipito-parietal
areas mainly participant in egocentric spatial processing (Zaehle
et al., 2007; Kravitz et al., 2011), and the PCC/RSC are core nodes
involved in coordinating and translating between egocentric
and allocentric reference frames (Kravitz et al., 2011; Knight
and Hayman, 2014). However, this hypothesis should be directly
confirmed in future by integrating behavioral and neuroimaging
information.

However, we could not excluded the possibility that the
increased rsFC of the hippocampus may also reflect an enhanced
use of non-spatial memory. In this study, we also found
strengthened rsFC in the hippocampal head and body, and
the brain regions showing increased rsFC with the head
and body were highly overlapped with that with the tail.
Furthermore, the anterior hippocampus is frequently reported
as a memory processing center for objects (Köhler et al., 2002),
and the anterior hippocampus is connected with the anterior
temporal system that mainly supports object and verbal memory
(Ranganath and Ritchey, 2012). It is critically important to collect
spatial and non-spatial behavioral variables in the future to clarify
this issue.

Similar Reorganization of the Hippocampal
Intrinsic Functional Network in the CB and
the LB
We initially hypothesized that the CB would exhibit stronger
functional reorganization in the hippocampus than the LB
because the brain has a stronger plastic potentials in response
to visual deprivation within the critical period of development
than thereafter. This hypothesis is supported by a series of
studies on task-evoked activation (Voss et al., 2008; Collignon
et al., 2009), glucose metabolism (Veraart et al., 1990), and
connectivity (Leporé et al., 2010) in the occipital cortex in the
blind. It is also supported by studies showing that the PHC
had increased nodal importance in the anatomical network (Li
et al., 2013) and PHC-hippocampus had increased functional
connectivity density (Qin et al., 2015) in the CB than in the
LB. However, we found both the CB and the LB demonstrated
comparable strengthened hippocampal rsFC, which is consistent
with previous studies reporting that both the CB and LB
groups showed superior non-visual navigational skills (Fortin
et al., 2008) and auditory motion perception (Lewald, 2013)
compared to the sighted group; and the two blind groups
did not differ in hippocampal volume (Fortin et al., 2008). In
contrast to the consistent association between occipital plasticity
and blindness onset ages, the inconsistent findings between
hippocampal plasticity and blindness onset ages may be related
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to the differences in sensory inputs between the hippocampus
and occipital cortex. The early visual areas predominantly receive
visual inputs; however, the hippocampus can process spatial
information from multiple sensory sources (Tamura et al., 1992;
Moita et al., 2003; Pereira et al., 2007). Animal studies showing
that the activity of hippocampal place cells in early visual-
deprived rats is similar to that in sighted rats (Save et al., 1998).
The lack of visual input alone at an early developmental stage
would not dramatically influence thematuration of hippocampus
because it can maturate by receiving inputs from non-visual
sensory modalities. Thus, the enhanced hippocampal rsFC in
both the CB and LB may be a reflection of experience-dependent
plasticity because they would make greater efforts and more
exercises to develop navigational/spatial skills than sighted
subjects.

It should be noted that the low spatial resolution data is a
limitation of this study in consideration of the small structure
of hippocampus. For the restrictions by hardware equipment
(Siemens Trio Tim 3.0-Tesla MR scanner with maximum
gradient strength of 45 mT/m) and routine single-shot EPI
sequence, it is difficult to satisfy both high spatial resolution
acquisition and whole brain coverage within TR of 2 s. In
present study, we focused on the functional connectivity between
the hippocampal subregions and whole brain, so we adopted a
relative lower resolution to reach a whole-brain coverage. Further
studies usingMRI scanner with higher-level hardware equipment
(for example, a maximum gradient strength of 80 mT/m and
32-channels or more head coils) and simultaneous multi-slice
acquisition technique may be preferable to obtain higher spatial
resolution fMRI images of hippocampus.

‘

CONCLUSIONS

In summary, we found increased intrinsic functional coupling
between the hippocampus (especially the hippocampal tail)
and several navigational-related areas after visual deprivation,
which may reflect enhanced loading of the hippocampal-related
networks for non-visual memory processing. We also found
the changes of hippocampal rsFC were similar between the CB
and the LB, suggesting an experience-dependent rather than a
developmental-dependent plasticity of the hippocampal intrinsic
functional network.
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