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Abstract Recent results comparing the temporal program of genome replication of yeast species 
belonging to the Lachancea clade support the scenario that the evolution of the replication timing 
program could be mainly driven by correlated acquisition and loss events of active replication 
origins. Using these results as a benchmark, we develop an evolutionary model defined as birth- 
death process for replication origins and use it to identify the evolutionary biases that shape the 
replication timing profiles. Comparing different evolutionary models with data, we find that replica-
tion origin birth and death events are mainly driven by two evolutionary pressures, the first imposes 
that events leading to higher double- stall probability of replication forks are penalized, while the 
second makes less efficient origins more prone to evolutionary loss. This analysis provides an empir-
ically grounded predictive framework for quantitative evolutionary studies of the replication timing 
program.

Introduction
Eukaryotes, from yeast to mammals, rely on predefined ‘replication origins’ along the genome to 
initiate replication Leonard and Méchali, 2013; Musiałek and Rybaczek, 2015; Ganier et al., 2019; 
Gilbert, 2001, but we still ignore most of the evolutionary principles shaping the biological proper-
ties of these objects. Binding by initiation complexes defines origins as discrete chromosomal loci, 
which are characterized by multiple layers of genomic properties, including the necessary presence of 
autonomously replicating sequences, nucleosome depletion, and absence of transcription (Méchali 
et al., 2013; Di Rienzi et al., 2012). Initiation at origins is stochastic, so that different cells of the same 
population undergoing genome replication in S- phase will typically initiate replication from different 
origins Bechhoefer and Rhind, 2012; Rhind et al., 2010.

Initiation from a single origin can be described by intrinsic rates and/or licensing events Hawkins 
et al., 2013. Indeed, the genome- wide replication kinetics of a population of cells can be accessed 
experimentally by different techniques Hawkins et al., 2013; Baker et al., 2012; Agier et al., 2013. 
Recent techniques also allow to measure replication progression at the single- cell level Müller et al., 
2019; Hennion, 2020. The estimation of key origin parameters from data requires minimal mathemat-
ical models describing stochastic origin initiation and fork progression Retkute et al., 2012; Baker 
et al., 2012; de Moura et al., 2010; Zhang et al., 2017. Typically, one can extract from the data origin 
positions, as well as estimated origin- intrinsic characteristic firing times or rates. Knowledge of origins 
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positions and rates makes it possible to estimate the ‘efficiency’ of an origin, that is, its probability of 
actively firing during S- phase, rather than being passively replicated.

Over evolution, a genome modifies its replication timing profile by ‘reprogramming’ origin posi-
tions and rates in order to maximize fitness under the constraints of the possible changes of these 
parameters that are physically and biologically accessible. Little is known about this process, and 
finding basic rules that drive origin evolution is our main focus here Koonin, 2011. The main recog-
nized constraint determining negative selection is due to replication forks stalling between adjacent 
origins Newman et al., 2013; Letessier et al., 2011; Cha and Kleckner, 2002. If two converging 
replication forks stall with no origins in between them, it is generally agreed that replication cannot 
be rescued, and the event leads to cell death. Such deadly ‘double stalls’ can only happen with 
two converging forks generated from consecutive origins. A pioneering study by Newman et al., 
2013 used a combination of data analysis and mathematical models to understand the role of lethal 
double- stall events on origin placement. They found that the fork per- base stall probability affects the 
distance between neighbor origins, and the optimal distance distribution tends to a regular spacing, 
which is confirmed by experimental data. Thus, origin placement is far from a uniform random distri-
bution (which would translate into an exponential distribution of neighbor origin distances). Instead, 
the regular lattice- like spacing that origin tend to take is reminiscent of particles repelling each other.

Due to the streamlined genome and the experimental accessibility, yeasts are interesting systems 
to study experimentally the evolution of replication programs. However, at the level of the Saccharo-
myces genus, the replication program is highly conserved Müller and Nieduszynski, 2012. Hence, 
until recently, no experimental account of the evolution of the replication program was available. Our 
collaboration has recently produced data of this kind Agier et al., 2018 by comparing replication 
dynamics and origin usage of 10 distant Lachancea yeast species. This study highlights the dominance 
of origin birth- death events (rather than, e.g., chromosomal rearrangements) as the main evolutionary 
drive of the replication program changes and characterizes the main principles underlying origin birth- 
death events. Briefly, the fate of an origin strongly depends on its neighbourhood, particularly the 
distance from neighbor origins and their efficiency. Indeed, proximity to efficient origins correlates 
with weaker origin loss events. An evolutionary bias against weak origins could be due to the fact 
that their presence is neutral or even advantageous (e.g., in terms of reducing double stalls), but 
their advantage is not sufficiently high for them to survive drift. These findings open the question 
of capturing the relevant evolutionary biases acting on replication profiles in the framework of the 
empirical birth- death evolutionary dynamics, for which the data set Agier et al., 2018 provides an 
empirical testing ground.

Here, we define a minimal evolutionary birth- death model for replication program evolution 
encompassing all the empirical observations made by Agier et al., 2018, and we use it to investigate 
the main evolutionary trade- offs that could explain the data.

Results
Experimental data motivate an evolutionary model for origins turnover
This section presents a reanalysis of the experimental data from Agier et al., 2018. We summarize the 
main results of that study and present additional considerations on the same data, which motivate the 
evolutionary model framework used in the following.

Figure 1—figure supplement 1 recapitulates the Lachancea clade phylogenetic tree used in the 
analysis. The evolution of the temporal program of genome replication can be quantified by the 
divergence of the replication timing profiles across different species. Agier and coworkers found that 
timing profiles diverge gradually with increasing evolutionary divergence between species Agier 
et al., 2018. In principle, such divergence could be attributed to changes in the number, placement, 
and biological properties of all origins. However, a careful analysis of correlations (comparing the 
timing profiles and the activity of orthologous origins) shows that the main driver of program differen-
tiation across species is the acquisition and loss of active replication origins. Specifically, the number 
of conserved origins decreases with increasing phylogenetic distance between species, following the 
same trend as the conservation of the timing profiles. This trend is the same in regions that are close 
to or away from breakpoints, pointing to a secondary role of genome rearrangements. In addition, the 
authors of Agier et al., 2018 show that the differences in the mere number of origins and the median 

https://doi.org/10.7554/eLife.63542
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difference in origin replication timing between pairs of species are nearly constant with phylogenetic 
distance, leading to exclude that origin reprogramming (rather than birth- death) plays a primary role 
in the evolution of the timing program.

Any model for the evolution of the replication program must (i) reproduce the empirical distribu-
tion of the inter- origin distances, (ii) reproduce the empirical distribution of the origin efficiencies, and 
(iii) account for the observed origin turnover dynamics. Previous analyses Agier et al., 2018; Newman 
et al., 2013 have shown that origins are far from following a uniform distribution along the genome. 
Figure 1A shows that the inter- origin distance distribution robustly shows a unimodal shape across 
the 10 Lachancea species studied in Agier et al., 2018. Specifically, distributions for each species 
show a marked peak around 35 kbp. This peak corresponds to a typical inter- origin distance, which is 
strikingly invariant across all Lachancea species. Figure 1B shows the distribution of the efficiencies, 
which is defined as the probability to actively fire during the S phase, estimated for each origin in the 
Lachancea clade using Equation 4 and a fit inferring the firing rates of all origins assuming a standard 
nucleation- growth model (see Materials and methods and Zhang et al., 2017). The single- species 
efficiency distributions show more variability across species than the inter- origin distance distributions, 
but they are consistent with a common shape and support.

As mentioned above, a key result of Agier and coworkers is the insight that the evolution of the 
replication program is mainly shaped by the birth- death process of replication origins. Figure 1C–F 
recapitulates the main quantitative results that characterize this process. Note that the analyses in 
Figure 1C–F have been performed on the six sister species of Lachancea clade since the other species 
pairs are too distant to perform a reliable identification of conserved, newly gained, and lost origins 
Agier et al., 2018.

Figure 1C shows a box plot of the distance from the nearest origin for all the conserved (dark red), 
newly gained (red), and lost (black) origins. Lost replication origins tend to be closer to their neighbors, 
much more so than newly gained or conserved origins. This observation reveals that the distance of an 
origin from its nearest neighbor is correlated to the loss rate of the same origin over evolution. This 
is an essential feature that any evolutionary model of this process must take into account Newman 
et al., 2013; Agier et al., 2018. More in detail, Figure 1D further quantifies the correlation between 
gain and loss events of neighboring origins by comparing the fraction of observed events of loss, gain, 
or conservation, given the state of the nearest origin (conserved, lost, or gained). The distribution of 
event types for origins that are nearest neighbors of a newly gained origin deviates significantly from 
the null expectation of random uncorrelated events (i.e., in a simple scenario where the fractions of 
conserved, newly gained, and lost origins are fixed to the empirical values, and birth and death events 
of neighboring origins are independent). The same non- null behavior is observed for origins that are 
nearest to a lost origin, with the roles of gain and loss events exchanged. In summary, successive birth/
death or death/birth events happen more frequently in the same genomic location than expected by 
chance. Beyond such a spatial correlation along the chromosomal coordinate, the analysis illustrates 
that birth and death events are correlated in time as well (in fact, the analyzed evolutionary events 
took place in the terminal branches of the phylogenetic tree, and thus they must have been close in 
term of evolutionary time).

Finally, Figure 1E and F show that origins lying near loci where origins were recently lost are typi-
cally in the high- efficiency range of the distribution, and that lost origins tend to be less efficient than 
conserved origins. Figure 1E compares the distribution of the efficiency of lost, conserved, and newly 
gained origins with the distribution of efficiency of the nearest origins. The efficiency of origins neigh-
boring a loss event is higher than average, while the efficiency of lost origins is lower than average. 
These results clearly support the influence of origin efficiency on origin death events. This is confirmed 
by Figure 1F, which shows the distribution of efficiency of all conserved and newly gained origins. For 
both classes, considering only those origins that are nearest neighbors to a recently lost origin yields 
an increase in the efficiency.

Different mechanisms could lead to the correlations described above. Overall, it is clear that origin 
strength is somehow ‘coupled’ to birth- death events. For example, conserved origins may become 
more efficient after the loss of neighbor origins, or the birth of new highly efficient origins could facil-
itate the loss of neighbors, or losing an origin could expedite the acquisition of a new origin nearby. 
Overall, these results reveal that the origin birth- death process is following some specific ‘rules’ that 
involve both inter- origin distances and origin efficiency.

https://doi.org/10.7554/eLife.63542
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Figure 1. Experimental data motivate an evolutionary model for replication origins turnover. (A) Distribution of the distance between neighbor origins in 
10 Lachancea species, each histogram refers to a different species (data from Agier et al., 2018), and all the plots show a marked peak around 35 kbp. 
(B) Distribution of the efficiency (calculated from a fit, using Equation 4) for all origins in 10 Lachancea yeast species Agier et al., 2018. (C) From Agier 
et al., 2018, box plot of the distribution of the distance from the nearest origin split by evolutionary events, for conserved (dark red), newly gained (red), 

Figure 1 continued on next page
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Note that the results of Figure 1E might appear to be incompatible with Figure 1D, but they are 
not. Figure 1E shows that the efficiency of newly gained origins is lower than average, and Figure 1D 
shows that the majority of origins that are nearest to a locus with a recent loss event are newly 
gained. The apparent contradiction arises from Figure 1E, which shows that the average efficiency of 
origins close to a lost one is higher than average. This inconsistency is resolved by the analysis shown 
in Figure 1F, which shows that origins appearing close to recently lost ones are among the most 
efficient.

A birth-death model including evolutionary bias from inter-origin 
replication fork double stalling recapitulates the main features of 
replication origin turnover
The joint stalling of two replication forks in the same inter- origin region along the genome is a well- 
characterized fatal event that may occur during S- phase. The frequency of this event in a clonal 
population clearly affects fitness. A previous modeling study Newman et al., 2013 focusing on yeast 
demonstrated that, in order to minimize the probability of a double stall anywhere along the chromo-
some, origins must be placed in the most ordered spatial configuration, namely all the consecutive 
origins must be equidistant from each other. However, the previous study did not incorporate this 
principle into an evolutionary dynamics of origin turnover. Thus, the important question arises of 
whether the tendency to avoid double stalls is related to origin gain and loss. To address this question, 
we defined a birth- death model, rooted in the experimental observations discussed in the previous 
section. This ‘double- stall- aversion model,’ described in detail below, biases the turnover of replica-
tion origins in such a way that events (in particular, birth events) leading to a decreasing double- stall 
probability are promoted because they increase the fitness of the cell.

In the double- stall- aversion model, the extent to which the acquisition of a new origin changes the 
probability of a double stall  PDS

i   depends on the length li of the inter- origin region where the event 
occurred. This probability is therefore coordinate- dependent and can be derived by a procedure 
similar to the one carried out in Newman et al., 2013 (see more details in Materials and methods),

 PDS
i = 1 − (1 + πli) exp(−πli) ,  (1)

where li is the length of the genome region between the (i+1)th and the ith origin and π is the mean 
per- nucleotide fork- stall rate; we use the value from Newman et al., 2013, π = 5 × 10−8  per nucleo-
tide. Note that the double- stall probability is completely independent from the origin firing rates and 
efficiency, and depends only on the distance between the origins.

In our simulations of the model (see Materials and methods for a more detailed explanation), the 
genome was represented as a vector of origins, identified by the position and the firing rate. The 
model is a discrete- time Markov chain, and for the double- stall- aversion variant the chain is specified 
by the following update rules:

and lost origins (black), estimated comparing six sister species of the Lachancea clade Agier et al., 2018. (D) Analysis of the origins that are nearest 
to conserved, newly gained, and lost, compared to the expected result if events were uncorrelated Agier et al., 2018. (E) Distribution of the efficiency 
of lost, conserved, and newly gained origins (respectively in black, dark red, and red) and their neighbors (gray). Note that the efficiency of lost origins 
is lower than average, while the efficiency of origins flanking a lost origin is higher. (F) Box plot of efficiency of all conserved and newly gained origins 
compared to those flanking a lost origin, which tend to be more efficient. Braces indicate subsampling (the box plots on the right side are defined by 
a subset of points of the box plots on the left). Box plots show the median (bar), 25–75 (box), and 10–90 (whiskers) percentiles. The data in panel (C–F) 
refers to the six sister species of the Lachancea tree.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. The phylogenetic tree of the 10 Lachancea yeasts clade.

Figure supplement 2. The majority of new origins are born within a 20% distance from the midpoint of the associated interval.

Figure supplement 3. Experimental data on the evolutionary change of firing rates process.

Figure supplement 4. The decaying trend of the Spearman correlation coefficient defines a characteristic time for the firing rate resample.

Figure 1 continued

https://doi.org/10.7554/eLife.63542
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• In each inter- origin region, the origin birth rate is biased by the value of the double- stall prob-
ability in that region. Specifically, the origin birth rate (per unit time) in the region   , of length li 
between the ith and (i+1)th origin is given by

 bi = Nb̄(PDS
i )γ li ,  (2)

• where  PDS
i   is the (constant) double- stall probability density in region    (Equation 1),  ̄b  is the 

birth rate (per Mbp and per unit time) extracted from experimental data (see Materials and 
methods), and γ is a positive real parameter that controls the strength of the bias.  N   is a normal-
ization factor added to match the empirical birth rate  ̄b . Newborn origins are placed in the 
middle of the inter- origin region   .

• Death (i.e., loss of origins) is unbiased and occurs at random origins with rate  ̄d  (estimated from 
experimental data, see Materials and methods), regardless of their efficiency or their neighbor’s 
efficiency.

The justification for the assumption that newborn origins are placed at midpoints in the model 
ultimately comes from data (Figure 1—figure supplement 2) where a strong bias in this direction is 
found. Relaxing this assumptions has consequences on the distance distribution and leads to poorer- 
performing models. We interpret this bias as the result of a faster (hence undetectable in our data) 
evolutionary process that counter- selects origins far from midpoints.

Firing rates in the model evolve by reshuffling of the empirical firing rate distribution, with a time 
scale that is set empirically (see Materials and methods and Figure 1—figure supplements 3 and 
4). On shorter time scales, firing rate changes are likely more gradual, making firing rate evolution 
similar to a diffusion process. However, such changes are not quantifiable in our data set, which would 
leave the model with many extra parameters (a firing rate diffusion constant and bounds to set the 
empirical distributions) that are very difficult to estimate. Additionally, the firing rate distributions of 
the conserved (thus older) origins and of newborn (younger) ones are quite similar (Figure 1—figure 
supplement 3), and this condition is not generally met under a simple diffusive process.

Figure 2 shows the simulation results of the model with best- fitting parameter values (see Materials 
and methods and Figure 2 for other parameter values). Figure 2A and B show that the double- stall- 
aversion model reproduces the two main ‘structural’ features of yeast genome, namely the inter- origin 
distance distribution and the origin efficiency distribution. Additionally, Figure 2C and D show that 
the same model reproduces the observed correlations between the inter- origin distance and origin 
birth- death events, as well as the correlation between birth- death events and nature of the neighbor 
origins observed in the data (conserved, newly gained, or lost).

The double-stall hypothesis alone fails to capture correlations of origin 
turnover with efficiency
In spite of the good performance of the double- stall- aversion model in explaining the empirical 
marginal distributions, we find that it fails to reproduce the observed correlations between the effi-
ciency of an origin and the recent history of the nearest ones. Figure 2E shows very faint variations in 
efficiency of origins that are nearest neighbors to origins of different evolutionary fate. In particular, 
the observed huge divergence in efficiency between lost origins and their neighbors is absent in the 
model simulations. Note that Figure 2 and Figure 4 show that in the double- stall- aversion model 
origins nearest to a loss event are slightly more efficient than average. This trend is due to the fact 
that after an origin is lost, its neighbors are subject to lower interference and automatically become 
more efficient. However, Figure 4 shows that this null trend is too weak to explain the experimental 
data. These considerations indicate that a model without a direct mechanism linking the efficiency of 
an origin to the birth- death events of its neighbors cannot reproduce the data.

Double-stall aversion and interference between proximate origins 
explain the correlated evolution of origin presence and efficiency
Based on the above considerations, we defined a joint model that takes into account both the evolu-
tionary pressure given by the double- stall probability and the direct effect of origin efficiency on 
birth- death events.

https://doi.org/10.7554/eLife.63542
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Figure 2. The double- stall- aversion model reproduces origin turnover and distributions but fails to capture correlations between origin turnover and 
origin strength. The plots show the simulations of the best- fitting double- stall- aversion model compared with empirical data. (A) Inter- origin distance 
distribution in simulated species (blue bars) compared to the empirical distribution for the 10 Lachancea species (red diamonds). (B) Origin efficiency 
distribution in simulated (blue bars) vs. empirical species (red diamonds). (C) Box plot of the distance from the nearest origin split by evolutionary events, 

Figure 2 continued on next page
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Specifically, this model is defined as follows:

• The birth process is the same as in the double- stall- aversion model described above: the 
birth rate is biased by the double- stall probability in each inter- origin region Equation 1, and 
newborn origin are placed in the middle of the region.

• Death of an origin is biased by its efficiency: less efficient origins are more easily lost. Specifi-
cally, the death rate (per unit time) for the ith origin is

 di = Nd̄ exp(−β effi),  (3)

• where effi is the efficiency of the ith origin, Equation 4,  ̄d  is the mean death rate extracted from 
experimental data (see Materials and methods). The positive parameter β tunes the interaction 
strength: the larger β, the steeper the dependence of di on effi. The normalizing factor  N   is 
chosen so as to match the empirical total death rate.

We note that the bias parameters β and γ are not inferred based on branch data, but on distribu-
tions of extant species (see Materials and methods).

Figure 3 gathers plots of the structural features (distribution of inter- origin distances and efficien-
cies, Figure 3A–B) and the evolutionary correlations involving efficiency, evolutionary fate, distance 
to nearest neighbor, and fate of nearest neighbor (Figure 3C–F). Overall, the joint model reproduces 
all the observations considered here regarding the layout of origins and their evolutionary dynamics, 
indicating that the experimental data can be rationalized by a fitness function that includes both the 
detrimental effects of nonreplicated regions and the evolutionary cost of maintaining inefficient repli-
cation origins.

In particular, the coupling between the efficiency of an origin and the death rate of its neigh-
bors, through the probability of passive replication, reproduces the empirical correlations shown in 
Figure 1. Figure 4 summarizes this crucial point of comparison between the joint efficiency/double- 
stall- aversion model and the pure double- stall- aversion case. The three plots compare efficiency distri-
butions of lost, conserved, and newly gained origins (red for the data, blue for the models) with those 
of their neighbors (gray). Comparison of these plots shows that only the joint model reproduces the 
differences in efficiency of lost origins and their neighbors.

In order to show that the stall- aversion and interference model has better quantitative agreement 
with the data, we also performed a simplified likelihood ratio analysis. The full likelihood of the model 
is complex, but we have defined ‘partial’ likelihoods for the joint and the double- stall- aversion model 
just taking into account the marginal probabilities shown as box plots in Figure 4, Figure 4—figure 
supplement 1 (see Materials and methods). Figure 1 shows that the joint model performs better for 
all the four chosen features. In our view, the qualitative difference shown in Figure 4 may be taken 
as a stronger argument in favor of the combined model in the sense that, beyond any quantitative 
agreement relying on parameters, the additional ingredient of a coupling between origin birth- death 
dynamics and origin rates is needed to explain the data.

The joint efficiency/double-stall-aversion model correctly predicts 
origin family divergence
Having established that the joint model is required to reproduce observations on single lineages, we 
turned to its predictions on observations that require knowledge of the whole phylogenetic tree, such 
as origin evolutionary families, defined as sets of orthologous origins Agier et al., 2018.

that is, for conserved (dark blue), newly gained (blue), and lost origins (black) for simulated species. (D) Fraction of origins that are nearest to conserved, 
newly gained, and lost for simulated species compared to the expected result for uncorrelated events. (E) Box plot of efficiency of lost, conserved, and 
newly gained origins (respectively in black, dark blue, and blue) and their neighbors (gray) in simulated species. The six distributions show very little 
variation. (F) The efficiency of all conserved and newly gained origins compared to the ones flanking a lost origin. Braces indicate subsampling. Box 
plots show the median (bar), 25–75 (box), and 10–90 (whiskers) percentiles. Simulation parameters (see Materials and methods):  γ = 2.4  overall birth and 
death rate  ̄b = 13.6Mbp−1t−1

 ,  ̄d = 0.61t−1  and firing rate resampling rate  R = 0.92t−1 , where  t  is measured by protein- sequence divergence. Panels 
(A) and (B) were generated using data from approximately 320,000 simulated origins, while panels (C–F) were built using data from about 60,000 birth 
and death events and 240,000 conservation events.

Figure 2 continued

https://doi.org/10.7554/eLife.63542
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Figure 3. A model where both fork stalling and interference affect fitness explain the correlations between origins of evolutionary events. Result of 
the joint model best- fitting simulation compared with empirical data. (A) Inter- origin distance distribution in simulated species (blue bars) vs. empirical 
distribution for the 10 Lachancea species (red diamonds). (B) Origin efficiency distribution in simulated (blue bars) vs. empirical species (red diamonds). 
The agreement between simulation and experimental data shows that this joint evolutionary model reproduces the typical structural features of a yeast 

Figure 3 continued on next page
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We thus set up a simulation of the model on a cladogenetic structure, fixed by the observed struc-
ture of the Lachancea clade phylogenetic tree (see Materials and methods for the simulations details). 
The outputs of each run in such simulations are nine different simulated genomes whose lineages 
are interconnected in the same way as the empirical species, and each branch follows the empirical 
divergence. We stress that these simulations just include intersecting lineages whose branched struc-
ture corresponds precisely to the lineages of the empirical tree. The phylogenetic structure does 
not emerge from the simulation as our model does not describe speciation. The model for the tree 
can simulate nine species, all the species except for Lachancea kluyveri, as this species was used as 
outgroup for the computation of the length of the tree branches Agier et al., 2018. We have repeated 
all the analyses on these simulations and verified that all the previous results hold (Figure 5—figure 
supplement 1). We then turned to other independent predictions of the joint model, which could be 
compared to measurements in Agier et al., 2018.

Figure 5A reports the dynamics of origin families. As reported in Agier et al., 2018, origins that 
belong to larger evolutionary families tend to have a higher efficiency compared to origins in smaller 
families, which is possibly due to the fact that, on average, high- efficiency origins tend to survive 
longer. Note, however, that there is no deterministic relation between family size and origin age 
because the relationship between these two is determined by the structure of the phylogenetic tree. 
Indeed, two families of the same size may have roots in different points of the tree, and thus the 
origins belonging to them may have very different ages. Thus, the prediction of the relation between 
origin efficiency and origin family size is not trivial. Figure 5A shows the results for the origin efficiency 
for families of varying size, comparing the experimental data and 100 different runs of the simulation.

As a second step, we have considered the model prediction for the divergence of the shared origins 
in two species descending from a common ancestor. Specifically, we asked whether the number of 
origin death events occurring in two branches of the tree could justify the number of common origins 
in the two species. Indeed, whenever in a pair of species the number of shared origins is lower than 
the number of origins belonging to their common ancestor, this discrepancy must be due to the evolu-
tionary loss events. These events are predicted by our model to be correlated in diverging species 
due to the common ancestry and the coupling of loss events to origin efficiency and distance. This 
correlation should lower the number of shared origins losses compared to a null expectation where 
loss events are not correlated. Figure 5B shows that the model correctly predicts the divergence in 
the number of shared origins lost during evolution without any parameter adjustment. We also veri-
fied that, as expected, a null evolutionary model is not able to reproduce this feature. The null model 
fixes in each branch of the simulated tree the same number of birth and death events that are present 
in the corresponding branch of Lachancea tree, but these events occur uniformly along the genome. 
The difference between the null model and the evolutionary model predictions shown in Figure 5B is 
a consequence of correlated origins losses due to the common genome structure, in terms of origins 
positions and efficiencies, that each pair of species inherit from their common ancestor.

We note that birth and death rate are inferred as global parameters, ignoring correlations. Despite 
this, Figure 5B shows that the model reproduces the higher correlation in birth and death events in 
closer- related branches than in distant branches as a consequence of the common positions and firing 
rates of the origins in the ancestor.

genome. (C) Box plot of the distance from the nearest origin split by evolutionary events, that is, for conserved (dark blue), newly gained (blue), and lost 
origins (black) for simulated species. (D) Fraction of origins that are nearest to conserved, newly gained, and lost for simulated species compared to the 
expected result for uncorrelated events. (E) Box plot of efficiency of lost, conserved, and newly gained origins (respectively in black, dark blue, and blue) 
and their neighbors (gray) in simulated species. (F) The efficiency of all conserved and newly gained origins compared to the ones flanking a lost origin. 
Braces indicate subsampling. Box plots show the median (bar), 25–75 (box), and 10–90 (whiskers) percentiles. Panels (D–F) show that the model correctly 
reproduces the correlation between origin birth- death events over evolution and efficiency of the nearest origin. Simulation parameters (see Materials 
and methods):  γ = 2.2 ,  β = 1.9 , overall birth and death rate  ̄b = 13.6Mbp−1t−1

 ,  ̄d = 0.61t−1 , and rate of origin firing rate reshuffling  R = 0.92t−1 , 
where  t  is measured by protein- sequence divergence. Panels (A) and (B) show data from approximately 600,000 simulated origins, while panels (C–F) 
data from about 100,000 birth and death events and 500,000 conservation events.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Linear chromosomes do not alter significantly the model outcomes.

Figure 3 continued

https://doi.org/10.7554/eLife.63542
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Figure 4. Comparison of model predictions for the correlations of origin birth- death events. The plots in the red 
upper box compare efficiency distributions of the best- fitting simulation of the two different models (bottom and 
central panels) with experimental data (top panel). Comparison of the box plot of efficiency of lost, conserved, 
and newly gained origins (red for the data, blue for the models) shows better agreement of the joint efficiency/
double- stall- aversion model (bottom panel) with the experimental data. Hence, the joint model reproduces well 
the correlation between evolutionary birth- death events of origins and efficiency of the nearest origin, while the 
double- stall- aversion model fails. Box plots show the median (bar), 25–75 (box), and 10–90 (whiskers) percentiles. 
Simulation parameters for the joint model (see Materials and methods):  γ = 2.2 ,  β = 1.9 , and for the double- stall- 
aversion one:  γ = 2.4 . General parameters: overall birth and death rate  ̄b = 13.6Mbp−1t−1

 ,  ̄d = 0.61t−1  and rate 
of origin firing rate reshuffling  R = 0.92t−1 , where  t  is measured by protein- sequence divergence. In the green 
lower box, we compare the predictive power of the two models for each of the tested feature of the experimental 
data. The box highlights that both the double- stall aversion model and the joint efficiency–double- stall model are 
able to reproduce the structural features of the genome. Also, the correlation between events–distance from the 
nearest and event–event of the nearest are correctly predicted by both models. The important difference between 
the two proposed models is found for the correlation between evolutionary events and origin efficiency, which is 
predicted and can be explained solely by the joint model.

Figure 4 continued on next page

https://doi.org/10.7554/eLife.63542
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Discussion
Overall, this study provides a framework to study replication program evolution driven by replication 
origin birth- death events and demonstrates that both fork stalling and efficiency shape the adaptive 
evolution of replication programs. The model framework is predictive and falsifiable, and it can be 
used to formulate predictions on the phylogenetic tree. In future studies, it would be interesting to 
explore the predictions for the evolutionary dynamics under perturbations, such as evolution under 
increased replication stress or conditions where fork stalling becomes more frequent. Additionally, the 
framework can be used to discover specific trends, such as different evolutionary dynamics of specific 
genomic regions (subtelomeres Yue, 2017, regions containing repeats, etc. Arbona et  al., 2018; 

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. The efficiency mechanism is necessary to reproduce the correlation between firing rates 
and evolutionary events.

Figure supplement 2. Analytical predictions for the inter- origins distance distribution falsify the scenario whereby 
interference alone drives replication program evolution.

Figure 4 continued

Figure 5. The efficiency/double- stall- aversion model predicts origin divergence. The plots compare predictions of the evolutionary model on the 
extent of origin divergence (simulations of the Lachancea phylogenetic tree) with empirical data. (A) Box plot of origins efficiency distributions split 
by family size. The plot compares origin families (sets of orthologous origins) in the nine Lachancea species (white line and red shaded areas) and 
simulated species (blue boxes, for 100 simulation runs). Medians are shown as white line for data, black bar for simulation, 25–75 percentiles as shaded 
area for data, box for simulation, and 10–90 percentiles as coarse shaded area for data, whiskers for simulation. (B) Origin divergence measured by the 
number of origins in the common ancestor that were lost in a pair of species, plotted as a function of total origin loss events. The plot compares model 
simulations (blue circles, 100 simulation runs), the experimental data (red squares), and a null model that shuffles the empirical birth- death events in 
each branch (green triangles, 1000 simulation runs). Error bars are standard deviations on y- axis values. Simulation parameters (for the evolutionary 
model, see Materials and methods):  γ = 2.2 ,  β = 1.9 , overall birth and death rate  ̄b = 13.6Mbp−1t−1

 ,  ̄d = 0.61t−1 , and rate of origin firing rate 
reshuffling  R = 0.92t−1 , where  t  is measured by protein- sequence divergence.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. The joint efficiency/double- stall- aversion model simulated on a cladogenetic structure reproduces all the results found for a 
single lineage.

Figure supplement 2. Simulations and empirical data show a similar variability in number of death and birth events across branches of the tree.

https://doi.org/10.7554/eLife.63542
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Boos and Ferreira, 2019), role of genome spatial organization Marchal et al., 2019, and correlated 
firing of nearby origins.

A general question concerns the predictive value of the model proposed here on out- of- sample 
data. Figure 5 shows that fit- independent predictions apply across the tree. Importantly, the model 
is based on simple global parameters and not fine- tuned on local features of the tree. To underline 
this point, we verified that a model fit using only the subtree between LADA a LAWA yielded similar 
parameters. Clearly, we cannot exclude that the values of the birth and death rate, and also the bias 
parameters γ and β, could be Lachancea- specific, while we speculate that the conclusions on the rele-
vant evolutionary mechanisms might apply more generally.

The previous approach by Newman et  al., 2013 described the evolution of origin distance as 
an optimization process that minimizes double fork- stall events, without attempting to characterize 
explicitly the evolutionary dynamics. Such approaches are limited compared to the framework 
presented here because they can predict only the origin distance distribution, and they do not allow 
any prediction regarding origin and replication program evolution along lineages and across phyloge-
netic trees. In accordance with the results of Newman et al., we confirm that double- stall events are a 
primary driver of the evolution of replication programs, and we frame this finding into the empirically 
measured birth- death evolutionary dynamics of replication origins. Additionally, we show that next to 
fork- stall events, origin efficiency plays an important role in shaping the evolutionary landscape seen 
by a replication timing profile.

What could be the mechanisms coupling efficiency to origin birth- death? The actual process of 
origin death could be nearly neutral Koonin, 2016 as low- efficiency origins are – by definition – rarely 
used, and unused origins over evolutionary times are more prone to decay in sequence, and conse-
quently in firing rate until they disappear. Equally, a newborn origin close to a very strong one (which 
would make the newborn origin relatively inefficient) could be used rarely. This would make this origin 
relatively less likely to establish over evolutionary times compared to an isolated newborn origin. 
However, rarely used origins could be essential in situations of stress (and in particular they could 
resolve double- stall events). Finally, a fitness cost for maintaining too many origins might set up an 
overall negative selection preventing a global increase in origin number Zhang et al., 2017; Karschau 
et al., 2012; Das et al., 2015.

Materials and methods
Data
The experimental data used in this work come from Agier et al., 2018. In particular, we made use of 
the data regarding the replication origins. For each origin in each of the 10 Lachancea species, this 
data set includes the chromosome coordinate and firing rate, and the inferred birth and death events 
occurred in the branches of the phylogenetic tree shown in Figure 1—figure supplement 1. Focusing 
on the terminal branches of the tree and on the extant replication origins, this study defines three 
categories of origins: (i) ‘conserved’ origins (which survived from the last ancestor), (ii) ‘newly gained’ 
origins gained in the last branch of the phylogenetic tree, and (iii) ‘lost’ origins, which were present in 
the last ancestor species and are not present in the terminal branch. Properties of the lost origins (e.g., 
position and firing rate) are inferred from the projection of the corresponding ones on the closest 
species, keeping into account synteny. Since the synteny map is less precise in distant species, the 
information on the origins events is only available for the six sister species in the tree, which belong to 
the three closest species pairs, highlighted with the red shaded area in Figure 1—figure supplement 
1.

Computation of the efficiency
Origin efficiency was defined as the probability of actively firing during S phase (or, equivalently, the 
probability of not being passively replicated by forks coming from nearby origins). In practice, we 
computed it by the following formula:

 effi = (1 − Pi,i−1)(1 − Pi,i+1) ,  (4)

where  Pi,i+1  and  Pi,i−1  are the probabilities for the ith origin of passive replication respectively from 
the (i+1)th and (i- 1)th origins. Note that this efficiency formula Equation 4 is an approximation that 

https://doi.org/10.7554/eLife.63542
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only takes into account the possibility to be passively replicated by neighbor origins, neglecting 
the influence of other nearby origins. Following Agier et al., 2018, for computing the efficiency we 
assumed that the origin firing process has constant rate Zhang et al., 2017, and we thus obtain the 
following closed expressions for the probabilities of passive replication:

 
Pi,i+1 = λ

′
i+1

λ
′
i+1+λ′

i
exp

[
−λ

′
i

|xi+1−xi |
v

]
,
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v

]
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(6)

In the above equations,  v  is the typical velocity of replication forks, xi is the ith origin chromo-
some coordinate, and  λ

′
i   is the ith origin firing rate divided by the mean firing rate of the species the 

origin belong to. The raw firing rates in the data are affected by the different physiology of the nine 
Lachancea species in the experimental growth conditions (which were the same for all the species). In 
order to reduce these differences, we normalized the rates by their average for each given species. 
For this reason, we did not make use of the origin efficiency data already present in Agier et al., 2018.

Computation of the double-stall probability
The probability  PDS

i   that two converging forks stall is easily computed in the limit where the stall prob-
ability per basepair is small and the number of basepairs is large. Under these assumptions, stalling is 
a Poisson process with rate (per basepair) π.  PDS

i   can be written in terms of the probability  PS(x)  that 
a single fork stalls after replicating  x  nucleotides:

 
PDS

i =
ˆ li

0
dx
ˆ li−x

0
dy PS(x)PS(y) ,

  
(7)

where li is the length (number of basepairs) of the ith inter- origin region. Imagine two converging 
replication forks starting from origins    and  i + 1 : the two integration variables  x  and  y  represent the 
number of basepairs that each fork replicates before stalling. By using the Poisson process result 

 PS(x) = π exp(−πx)  and performing the integration, one obtains the result in Equation 1.

Evolutionary model
We defined origin birth- death models incorporating different evolutionary biases. In these models, 
the genome is described as a one- dimensional circle with discrete origin location xi, where the length 
of the genome is equal to the average genome length in Lachancea clade ( 10.7Mbp ). We made use 
of a circular genome in order to avoid border effects. In the model, the set of origins change over 
evolution by three basic (stochastic) processes, birth of an origin in a certain genome region, origin 
death, and change of origins firing rate. We have verified that choosing linear chromosome does not 
alter significantly our findings, although it affects the distances between origins close to chromosome 
ends (Figure 3—figure supplement 1).

Overall origin birth/death rates were estimated from the data as follows. To estimate the overall 
birth rate  ̄b , we considered, for all the terminal branches of the phylogenetic tree, the number of birth 
events  Nb , the genome length of the corresponding species  L , and the length of the tree branch  T  , 
and divided  Nb  by  LT  . Then we averaged over all terminal branches. To estimate the overall death rate 
 ̄d , we followed a similar approach, taking the number of death events  Nd  in the terminal branches, the 
length of the branch  T  , and the number of origins in the corresponding species  nori , then computing 

 NdT−1n−1
ori   for all the terminal branches and averaging these values. The final results for overall birth and 

death rates from the origin birth- death events across the Lachancea clade are  ̄b = 13.5627Mbp−1t−1
  

and  ̄d = 0.612287t−1 .
We verified that the assumption of constant rates was consistent with the empirical variability of the 

numbers of birth and death events per unit time along different branches of the tree by comparing 
simulations with data. Figure  5—figure supplement 2 shows that simulations and empirical data 
present similar spreading.

The process by which origin firing rates change over evolution was described as stochastic, with 
every origin having a fixed probability per unit time of changing its firing rate, given by  R = 0.92t−1 , 

https://doi.org/10.7554/eLife.63542
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a value fixed from experimental data (see Appendix 1 and Figure 1—figure supplement 4). When 
a firing rate changes, it is resampled from the distribution of all the empirical normalized firing rates 
computed using the data in Agier et al., 2018 (see Appendix 1 and Figure 1—figure supplement 3 
for more details).

Simulations
Code availability
The code used to run the simulations, together with instructions to run it, was shared as a repository 
on Mendeley data (Droghetti, 2020).

Algorithm
The prediction of the different evolutionary models was derived numerically, making use of custom 
simulations written in C++, which implement the origin birth- death dynamics as a Gillespie algo-
rithm (Gillespie, 1976). Every model variant was required to reproduce the experimental overall rates, 

 ̄b = 13.5627Mbp−1t−1
  for origin birth,  ̄d = 0.612287t−1  for origin death, and  R = 0.92t−1  for firing rate 

change. We simulated the three processes defining the model as follows. (i) the birth process has a 
common definition for the stall- aversion and joint model. The algorithm first tests each subsequent 
inter- origin region, calculates the birth probability from Equation 2, and stores the results. Subse-
quently, it computes the normalization factor  N   in order to match the empirical birth rate per nucle-
otide b̄ . Finally, it samples all the inter- origin regions drawing birth events from the computed birth 
probability (Equation 2). New origins are placed the midpoints of the tested intervals. (ii) The death 
process is different for the stall- aversion model (unbiased) and the joint model (related to the origin 
efficiency). In the joint model, the algorithm first calculates the death rate for each origin using Equa-
tion 3 and stores the results. Subsequently, it computes the normalization factor  N   in order to match 
the empirical mean death rate  ̄d . Finally, it samples all origin drawing death events from the computed 
death probability. For the unbiased process (stall- aversion model), the dynamics is identical, but all the 
origins have the same death rate  ̄d  so that the algorithm can skip the calculation of  N  . (iii) The process 
updating origin firing rates over evolutionary times is common to all model variants. The probability of 
update per origin per unit time is  R . Origins are sampled for each time step and assigned a new rate 
uniformly extracted from the empirical distribution of all normalized firing rates with probability  Rdt .

During the simulation, the genome configuration (chromosome position, firing rate, efficiency 
for each origin) is known at each time step, which matches the empirical time (tree branch length, 
measured by protein- sequence divergence). For simulating single lineages, we started with a collec-
tion of 50 origins, with positions and firing rate uniformly drawn from all the possible ones. Rapidly, 
the inter- origin distances distribution, the efficiency one, and the number of origins reach a steady 
state (for the number of origins, set by the balance of birth and death rate, and characterized by 
approximately 225 origins). Configurations, including birth- death events, were printed at regular time 
intervals after steady state is reached. The time interval between prints is chosen to be equal to the 
average length of the Lachancea phylogenetic tree terminal branches in order to compare single- 
lineage simulations with empirical data. For simulations on a phylogenetic tree, after one species 
reaches the steady state, it is used as a root. To reproduce the empirical branching structure of the 
tree, we run the simulation, one for each branch of the phylogenetic tree, each time starting from 
the species at the previous branching point, for a period that matches the length of the branch. If 
the simulated branch is terminal, then the configuration corresponds to one of the empirical species, 
otherwise it corresponds to a ‘branching- point species’ and it can be used as a starting point for other 
simulations. Each simulation run gives nine different simulated species with the same cladogenetic 
structure as the empirical species (Figure 1—figure supplement 1).

Fitting procedure
The biased birth- death processes in the simulations rely on some parameters to tune the strength of 
the bias, which are the only parameters to fix by a fit, since all the other parameter values are fixed 
empirically. In the joint model, there are two free parameters, γ and β, that tune respectively the 
strength of the bias on the origin birth and on the origin death process. For a discrete set of parameter 
pairs spanning realistic intervals, we run hundred different simulations, each starting with a random-
ized genome. Considering the simulated species for all the pairs of parameter values, we quantify 

https://doi.org/10.7554/eLife.63542
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the discrepancy with experimental data by evaluating the L1 distance of the normalized histogram of 
efficiency and inter- origin distances. This quantity is a number between 0 and 2, 0 if the histograms 
perfectly overlap and 2 if they have completely different supports. For each pair of parameters, the 
analysis gives two values of discrepancy. We choose the value of γ (the parameter that tunes the bias 
on the birth rate based on double- stall aversion) by taking the smaller discrepancy from the inter- 
origin distances distribution. For the value of β (which tunes the interference bias on the death rate 
in joint model), we chose the one that gave us the smaller area on the efficiency distribution. For the 
double- stall- aversion model, the fitting procedure is identical and only requires to fix γ.

Simplified likelihood analysis
We performed a (simplified) likelihood ratio analysis in order to test the better quantitative perfor-
mance of the combined model. The full likelihood of the models analyzed here is complex, but we 
have defined ‘partial’ likelihoods for the joint and the double- stall- aversion model only taking into 
account the marginal probabilities shown in Figure 4—figure supplement 1. Hence, the test eval-
uates for both models the goodness of the predicted correlation between the efficiency and firing 
rate of the lost origins and the ones of their neighbors. The likelihood ratio test quantifies how much 
the prediction of a certain model is better than a reference (‘null’) model. We chose the double- stall- 
aversion model as reference (equivalent to setting  β = 0  in the joint model). Specifically, one evaluates

 
Lr = 2 log

(
Ljoint(γ,β)

LDS(γ,β=0)

)
= 2

(
ljoint(γ,β) − lDS(γ,β = 0)

)
,
  (8)

where  LX  are the likelihoods of the two models and  lX  are the log- likelihoods. Assuming that  Lr  
is χ-squared distributed (this is generally the case for large samples), we could compute a p- value 
associated to this test.

Null birth-death model
We defined a null birth- death model where origin birth- death events in sister species are uncorrelated 
in order to analyze the divergence of shared origins and compare it with the prediction of the evolu-
tionary model. This model implements birth and death events uniformly, regardless of origin position 
and firing rate, fixing the number of events for each branch of the simulated phylogenetic tree. These 
values are taken from the inference reported in Agier et al., 2018 (shown in Figure 3A of that study 
and in Figure 1—figure supplement 1). The simulation of this model starts with 220 origins (the 
number of origins inferred for to LA2, the species at the root of the tree). Subsequently, following the 
structure of the Lachancea phylogenetic tree, the simulation proceeds as follows: (i) at each branching 
point, the genome is copied into two daughters; (ii) for each daughter, the prescribed number of 
random death and birth events (in this order) is generated on random origins; and (iii) the simulation 
stops when it reaches the leaves of the Lachancea tree.
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Appendix 1
Estimating parameters for the evolution of origin firing rates
This section motivates the model implementation of the evolutionary dynamics of firing rates. In 
order to quantify the change of origin firing rates over evolutionary times, we studied how the 
correlation between firing rates of conserved origins behaves as species diverge (Figure 1—figure 
supplement 3A). To quantify the divergence, for each pair of species in the Lachancea clade we 
calculated the Spearman correlation coefficient between the sets of firing rates belonging to 
corresponding origins in the two species considered (normalized by the species mean firing rate). 
We found that the more the species are distant, the less these two sets are correlated, which 
means that origin initiation rates diverge during evolution and origins lose memory of their initial 
firing rate. The model describes the evolution of firing rates as follows. Every origin changes its 
firing rate by extracting a new value from the distribution of empirical normalized ones, regardless 
of their previous firing rate. This process is characterized by a resampling rate  R , common to all 
the origins, which defines the probability per unit time that an origin resamples its firing rate. The 
slope of the correlation coefficient in empirical data defines the speed at which the origin firing 
rates evolve. Hence, it is possible to fit this specific slope and extract the value of  R .

In order to do that, we simulated the evolutionary process with unbiased origin death and 
update of the firing rate. This simulation can be performed without the birth process because 
the only origins that one needs to consider in computing the Spearman coefficient between 
two species are the conserved ones. Each simulation started from 225 origins, with firing rates 
randomly sampled from the empirical set of firing rates, evolving the genomes changing the firing 
rates with the resampling process described above and removing the origins according to the 
death rate estimated from the data. By performing several simulations with different values of the 
extracting rate  R , it is possible to fit its best value. For each  R  tested, we ran 1000 simulations for 
an evolutionary time corresponding to 1.6.

After computing the Spearman correlations between snapshots at different evolutionary 
times, we performed an exponential fit in order to see which value of the  R  parameter gave the 
best agreement with the experimental data, finding the best- fit value  R = 0.92 . Figure 1—figure 
supplement 4 shows the trend achieved by the simulation using  R = 0.92 , and it shows a very 
good agreement between experimental data and simulations.

Note that in Agier et al., 2018 a similar analysis was carried out in order to verify if the 
reprogramming of the origins firing rate has an impact on the differentiation of replication timing. 
The authors analyzed the origin firing time differences between conserved replication origins in all 
pairs of species and found that this difference does not correlate with the phylogenetic distance 
between species. This finding is apparently in contrast with our results, which suggest that origin 
reprogramming increases with distance between species. We believe that this discrepancy is due 
to the higher sensitivity of the Spearman correlation and of the use of species- average normalized 
firing rates in this study.

The empirical data falsify the scenario where interference alone drives 
origin evolution
This section presents a theoretical analysis of the scenario where solely origin interference sets the 
evolutionary pressure on replication timing profiles. This analysis shows that a description that only 
takes into account the evolutionary pressure that acts on origin efficiency is not able to reproduce 
the origins spatial arrangement, a crucial feature in empirical yeast data. To carry out this analysis, 
we take a ‘maximum entropy’ approach (see Banavar JR, Maritan A, Volkov I. Applications 
of the principle of maximum entropy: from physics to ecology. J Phys Condens Matter. 
2010;22(6):063101. doi:10.1088/0953- 8984/22/6/063101) and infer an effective ‘force potential’ 
acting on inter- origin distance by looking at its (assumed equilibrium) distribution. Specifically, the 
effective potential acting on the origin efficiency starting from the empirical efficiency distribution 
can be analytically computed from the following formula:

 Heff(eff) = − log(P(eff))  (S1)

where  eff   is the efficiency,  eff ∈ [0, 1] , and  P(eff)  the efficiency probability density function.
The above potential, once given the relation between efficiency and distance between origins 

(Equation 4), defines another potential  Hd(d)  that act on the inter- origin distances. By taking the 

https://doi.org/10.7554/eLife.63542
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exponential of  Hd(d)  one obtains the expected probability distribution predicted for the distances 
at equilibrium.

In order to find  Hd(d) , one must invert Equation 4 and find  d(eff) . To accomplish this task, we 
have approximated the three- body interaction that gives the efficiency with a two- body interaction. 
This assumption implies that each origin feels the interference of only one of his two neighbors 
and is effective as long as three- origin interactions can be decomposed in two- origin components. 
Under this assumption, Equation 4 becomes

 
di,i+1 = − v

λ log
[
λi+λi+1

λi
(ei − 1)

]
.
  (S2)

Note that origin efficiency (Equation 4) also depends on the firing rates of the origin and its 
neighbor, hence, strictly speaking, one has that

 Hd(di,i+1) = Hd(di,i+1,λi,λi+1) .  (S3)

To eliminate the firing rate dependence, we computed an effective potential  H′
d  on the distance, 

which averages the effect of the different firing rates. To this end, we used the mean value theorem 
for integrals as follows:

 
H′

d(d) =
ˆ

dλidλi+1P(λi)P(λi+1)Hd(di,i+1,λi,λi+1) = Hd(di,i+1, < λ >, < λ >) .
  

(S4)

In other words, we substituted all the firing rates with the average one  < λ >= 1  since the rates 
are normalized on the species average. With this simplification, going from  Heff(eff)  to  H′

d(d)  is 
straightforward and gives

 d(e) = − v
<λ> log[2(eff − 1)] ,  (S5)

and

 H′
d(d) = Heff(d(eff)) .  (S6)

From the potential  H′
d , we can compute the prediction for the equilibrium probability 

distribution of inter- origin distances

 P(d) = N exp(−H′
d(d)) ,  (S7)

where  N   is a normalization factor. In order to use this calculation on the data, we inferred the 
expected potential from the efficiency distribution, assuming that the interaction only depends on 
efficiency, and we then obtained the model prediction for the expected inter- origin distribution 
based on the efficiency profile. Comparison of this prediction with the empirical inter- origin 
distance distribution provides a test of the model. This procedure does not require to adjust any 
model parameter. Figure 4—figure supplement 2 shows the result of this analysis. The predicted 
distribution does not match the empirical one. This means that any evolutionary model that 
assumes a bias based only on the efficiency (in other words, one that takes into account only the 
evolutionary pressure given by origin interference) cannot reproduce (at steady state) the correct 
spatial organization of replication origins.

https://doi.org/10.7554/eLife.63542
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