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Background: Promising development in immune checkpoint blockade (ICB) therapy has
shown remarkable results in the treatment of gastric cancer (GC). However, the objective
response rate in GC remains unsatisfactory. Noninvasive imaging to predict responses to
ICB therapy via tumor microenvironment (TME) assessment is needed. Accordingly, this
study aimed to evaluate the role of 68Ga-FAPI-04 PET/CT in the assessment of the
immunosuppressive TME in GC and to cross-correlate imaging findings with responses to
ICB therapy.

Methods: The correlation between fibroblast-activation-protein (FAP) expression and
immunosuppressive cell infiltration was analyzed using The Cancer Genome Atlas (TCGA),
Gene Expression Omnibus (GEO) database, and GC tissue microarrays. To characterize
the TME, TMEscores were calculated based on RNA-seq data from four GC patients. A
total of 21 patients with GC underwent 68Ga-FAPI-04 PET/CT before ICB treatment, and
two of them were imaged after ICB therapy.

Results: FAP expression was found to be closely correlated with poor prognosis and
infiltration of immunosuppressive cells, including myeloid-derived suppressor cells
(MDSCs), exhausted T cells, and regulatory T cells (Tregs) in GC. We also found a
strong relationship (R2 = 0.9678, p = 0.0162) between 68Ga-FAPI-04 uptake and
TMEscore. Further analyses indicated that high 68Ga-FAPI-04 uptake was correlated
with reduced therapeutic benefits from ICB therapy.

Conclusions: 68Ga-FAPI-04 PET/CT may be used to noninvasively image the cancer-
associated fibroblasts immunosuppressive TME in vivo and also potentially serve as a
predictive biomarker of survival and antitumor immune response among patients who
received ICB therapies.

Keywords: gastric cancer, PD-1, immune checkpoint blockade, tumor microenvironment, biomarker, cancer-
associated fibroblasts
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INTRODUCTION

Metastatic gastric cancer (mGC) is ranked fifth in incidence and
third in cancer-related mortality among malignancies worldwide
(1). Despite the remarkable result development in immune
checkpoint blockade (ICB) therapy has shown in certain
cancers, the objective response rate (ORR) in mGC remains
unsatisfactory (2). In the KEYNOTE-012 and KEYNOTE-059
clinical trials, pembrolizumab showed an ORR of 22% in PD-L1-
positive mGC patients (3) and 11.6% in mGC patients
irrespective of PD-L1 expression status with at least two lines
of previous chemotherapy (4). Therefore, auxiliary markers to
predict the response and prognosis of mGC patients with
immunotherapy are urgently needed.

The tumor microenvironment (TME) plays an important role in
the progression and therapeutic response of malignancies (5, 6). For
example, clinical outcomes of patients with gastric and lung cancer
vary with the changes in the numbers of CD8+ T cells, CD4+
T cells, macrophages, and cancer-associated fibroblasts (CAFs)
infiltrating the TME (7–9). Our group originally designed a tool
we named “TMEscore” to evaluate the comprehensive TME. The
TMEscore was inferred to be a potent biomarker predicting the
response to ICB and prognosis of GC patients, and patients with
higher TMEscores had significantly better prognoses than those
with lower TMEscores (9). However, the assessment of TMEscore
requires repeated surgical biopsy/resection for RNA-seq, which is
often not feasible or safe for mGC.

Over the last few years, noninvasive imaging techniques, such
as PET imaging, have been proven to be sensitive tools to
quantitatively monitor cell dynamics in the TME, for example,
Rashidian et al. used PET to analyze the dynamics and
distribution of CD8+T and CD11b+ cells in mouse models to
predict the effect of immunotherapy (10–12). As a crucial
member of the TME, CAFs contribute to tumorigenesis by
producing growth factors, modeling the extracellular matrix,
facilitating angiogenesis, and inhibiting antitumor immune
responses (13). The presence of CAFs in the TME is usually a
sign of unfavorable response to ICB therapy for the patients. As
fibroblast activation protein (FAP) is highly specific to a large
subset of CAFs, tracers targeting FAP that could potentially
quantify CAFs could therefore provide a more comprehensive
picture of the TME (12). In contrast to 18F-FDG, targeting FAP
with the novel tracer, 68Ga-FAPI-04, has been shown to be
suitable for marking CAFs and tumor imaging in preclinical
GC models. Additionally, 68Ga-FAPI-04 is superior to standard
PET imaging methods for the detection of primary intracranial
tumors or metastatic tumors (14–17).

Increased FAP expression in GC has been associated with
increased malignancy, poor prognosis, and tumor metastasis (18–
20). In addition, FAP has been found to promote
immunosuppression via myeloid-derived suppressor cell (MDSC)
recruitment (21), Tregs, and tumor-associated macrophage (TAM)
generation (22). Anti-FAP therapy, including nanoparticle-based
photoimmunotherapy (23) and bispecific T-cell engagers (24), can
significantly enhance T-cell infiltration and T-cell activation. Given
the urgent need for noninvasive biomarkers of response to ICB and
the central role of FAP + CAFs in this context, we performed PET
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with 68Ga-FAPI-04 to characterize the immunosuppressive TME in
patients with mGC. In this study, we demonstrated that 68Ga-FAPI-
04 PET/CT could be used to assess the immunosuppressive TME
andmonitor the responses to anti-PD-1 treatment inmGC patients.
METHODS

Patients
We enrolled 21 patients with GC who received ICB therapy (FAPI
cohort) from January 2020 through March 2021 at Nanfang
Hospital. Contemporaneous 68Ga-FAPI-04 and 18F-FDG PET/
CT were performed for all patients before immunotherapy, and
two of them were also imaged after 2 months of immunotherapy,
and the remaining patients underwent enhanced CT for efficacy
evaluation. In addition, an RNA-seq-based TMEscore of four
patients was conducted as described in previous studies (25).
Tumor responses were evaluated according to RECIST 1.1
criteria. Seven patients were identified as having progressive
disease (PD), and fourteen exhibited stable disease (SD) or
partial remission after 2 months of immunotherapy. The data
were analyzed retrospectively with approval from the Ethics
Committee of the Nanfang Hospital. All data were gathered
from patients with informed consent.

Other Patient Cohorts Applied in
This Study
Transcriptomic and corresponding clinical data of GC patients
treated with immune checkpoint inhibitors in the NanoString
cohort were used in this study. Gene expression data and clinical
information from treatment-naive patients with stomach
adenocarcinoma were downloaded from The Cancer Genome
Atlas (namely TCGA-STAD cohort) (https://portal.gdc.cancer.
gov/) and Asian Cancer Research Group (ACRG)/GSE62254
(GEO; https://www.ncbi.nlm.nih.gov/geo/). TMEscores of the
two cohorts were conducted as previously described (25). The
IMvigor210 dataset of urothelial cancer patients treated with an
anti-PD-L1 agent (Atezolizumab) is available under the Creative
Commons 3.0 license and can be downloaded from http://
research-pub.gene.com/IMvigor210CoreBiologies.

Estimation of TME Status
We quantify the TME status in GC patients using IOBR R
package (26) (https://github.com/IOBR/IOBR), which offers
multiple methodologies and signature construction tools, like
(i) CIBERSORT (27), (ii) xCell (28), (iii) EPIC (29),
(iv) MCPcounter (30), (v) pan-fibroblast TGF-b response signature
(Pan-F-TBRs) (7), (vi) TMEscore (9), (vii) quanTIseq (31), etc.

Radiopharmaceutical Synthesis and
Quality Control
18F-FDG was automatically synthesized by the tracer synthesis
module (Tracerlab FxFN, GE Healthcare, USA). DOTA-FAPI-04
was acquired from Nanchang Tanzhen Biological Co., Ltd.
(Nanchang, China). Both chemical purities of 18F-FDG and
68Ga-FAPI-04 were greater than 95%. The radiosynthesis
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process of 68Ga-FAPI-04 has been described in detail in
previously published articles (32–36). Quality control of the
radiosynthesis was by radio-high-performance liquid
chromatography (HPLC).

PET/CT Imaging
All imaging was performed using a PET/CT scanner
(uEXPLORER, United Imaging Healthcare, Shanghai, China).
After low-dose CT (120 kVp, 80 mA) for attenuation correction,
PET was accomplished through a 5-min single bed in 3-
dimensional mode. All corrections are used for the
reconstructed images and the anatomical location of the lesion.
Using the list mode OSEM-PSF-TOF to reconstruct all data,
patients were required to fast for at least 5 h, and their peripheral
blood glucose levels were ensured to be normal for 18F-FDG
PET/CT evaluation. The dose was evaluated depending on the
patient’s weight (5.5 MBq/kg (150 mCi/kg) for 18F-FDG;1.8–2.2
MBq/kg (50–60 mCi/kg) for 68Ga-FAPI-04), and the PET scans
were performed 1 h after injection. SUVmean and SUVmax were
used to quantify the tumor tracer uptake. From 15 min before to
30 min after tracer application, 500-ml normal saline blended
with 20 mg furosemide was infused. The patients were asked to
self-report any unpleasant side effect 30 min after finishing
the examination.

Histology and Immunohistochemistry
In the FAPI cohort, the primary tumor lesions collected via
gastroscopical biopsy were embedded with paraffin and
sectioned at approximately 4 µm after being fixed in 4%
paraformaldehyde. The slides and GC tissue microarrays (n = 31)
were stained with rabbit anti-FAP (Abcam, ab53066; Cambridge,
MA, USA), anti-CD11b (Abcam, ab133357), anti-CD33 (Abcam,
ab269456), anti-CD163(Abcam, ab182422), and anti-PD-1
(Abcam, ab243644) primary antibodies overnight at 4°C and
incubated with anti-rabbit secondary antibody for 1 h at room
temperature. Finally, images were taken using a positive
fluorescence microscope (Nikon Eclipse ci-L). We analyzed the
intensity of FAP-positive cells in immunohistochemistry (IHC)-
stained results using ImageJ software and calculated CD11b-,
CD33-, CD163-, and PD-1-positive cells in five randomly selected
high-power fields per section. The median value of FAP expression
was defined as the cutoff value.

Statistical Analysis
The expression of FAP was normalized using 10 housekeeping
genes (ACTB, ABCF1, B2M, G6PD, GAPDH, GUSB, PGK1,
RPLPO, TFRC, and TUBB). For data with normal distribution,
the statistical significance of the two groups was calculated by
unpaired Student’s t-tests. For data not displaying normal
distribution, the statistical significance of the two groups was
estimated using Wilcoxon rank-sum test. Correlation coefficients
were computed using Pearson’s correlation analyses. The
Survminer package (https://github.com/kassambara/survminer)
was used to determine the cutoff values of each separate data
based on the relevance between patient overall survival (OS) and
FAP gene expression level. The pROC package (37) was applied
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to plot and visualize receiver operating characteristic (ROC)
curves, evaluate the area under the curve (AUC), and measure
the predictive value of OS of FAP, PD-1, PD-L1, TIM3, and
PDCD1LG2 in the Nanostring cohort.

The survival information of the TCGA-STAD, ACRG, and
IMvigor210 cohorts was collected to further analyze the
relationship between the expression of FAP and overall
survival rate. Kaplan-Meier curves were generated to compare
the subgroups in all dataset, and the statistical significance of
differences was presented using the logrank (Mantel-Cox) test. A
univariate Cox proportional hazards regression model was used
to estimate the hazard ratios for the univariate analyses.

All heat maps were developed with the pheatmap function
(https://github.com/raivokolde/pheatmap). All statistical
analyses were accomplished using R (https://www.r-project.
org/) or SPSS software (version 25.0), and the p-values were
two sided. Data were generated with two-sided p-value and
regarded statistically significant at p < 0.05.
RESULTS

High Expression of FAP Indicates
Poor Prognosis
Forty-eight patients with mGC in the Nanostring cohort (25)
were categorized into responders (complete response/partial
response) and nonresponders (SD/PD) according to their
immunotherapy response. We then analyzed FAP mRNA
levels in each group. FAP expression was significantly higher
in GC patients who did not benefit from theICB therapy (p =
0.0069; Figure 1A). We next evaluated the prognostic value of
FAP for immune-checkpoint therapy with ROC analysis in the
NanoString cohort and observed a predictive advantage of FAP
(AUC = 0.733) compared with PD-1, PD-L1, TIM3, and
PDCD1LG2 (AUC = 0.586, 0.709, 0.662, and 0.682,
respectively), which are widely accepted biomarkers for
immunotherapeutic benefits (38–41) (Figure 1B). The analyses
of the Nanostring cohort demonstrated that the mRNA
expression of FAP could be a predictive biomarker for
immunotherapeutic benefits, and after immune checkpoint
therapy for GC, there were possible beneficial effects for
patients with lower FAP mRNA levels.

We further confirmed the prognostic value of FAP for GC clinical
outcomes by survival analysis. The values of FAP expressions are
divided into three groups on average: high expression (top 1/3),
middle expression (middle 1/3), and low expression (bottom 1/3). In
the ACRG cohort, improved FAP expression demonstrated a
decreased overall survival (HR, 2.06; 95% CI, 1.43–2.97; p < 0.001;
Figure 1C). Similarly, in the TCGA-STAD cohort, high FAP
expression showed a trend of poor overall survival (HR, 1.49; 95%
CI, 0.98–2.25, p = 0.0623; Figure 1D). Moreover, a worse survival
trend was observed in patients with higher FAP expression in the
IMvigor210 cohort (HR,1.27; 95% CI, 0.97–1.68; Figure 1E), in
which the patients exposed to urothelial cancer received anti-PD-L1
therapy. These results further confirmed that FAP expression could
be a predictive biomarker for the clinical outcome of tumor patients.
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FAP Expression Is Closely
Correlated With Infiltration of
Immunosuppressive Cells in GC
In the TME, FAP expression ismainly restricted to activatedfibroblasts,
particularly CAFs (42–45). However, the relationship between FAP
and the immune microenvironment requires further investigation.

We analyzed the features of FAP-associated immune infiltration
in theTMEintheTCGA-STADandACRGcohorts.ThemRNAlevels
of FAP revealed a positive correlation with the cluster of CAFs in the
TME,whichwascalculatedusinggene signatures as inprevious studies
(7, 28–30) (Figures 2A, B). We further explored the relationship
between FAP and suppressive immune characteristics using
immunosuppressive signature (7, 26–31). The results displayed that
FAP expression was positively relevant to the abundance of
immunosuppressive cells such as MDSCs (both p < 0.0001),
exhausted T cells (p < 0.01 and p < 0.0001, respectively), as well as
upregulation of immune checkpoints (both p< 0.0001) in bothACRG
(Figure 2C) and TCGA-STAD (Figure 2D) cohorts. Moreover, FAP
was positively correlated with the abundance of Tregs in the ACRG
cohort (p < 0.01, Figure 2C) and infiltration of macrophages M2 in
the TCGA-STAD GC cohort (p < 0.0001, Figure 2D).

In a previous study (9), we established the TMEscore, a
methodology for the quantification of TME status, particularly
Frontiers in Oncology | www.frontiersin.org 4
for GC. The TMEscore has been demonstrated as a robust
prognostic biomarker responsive to immune checkpoint
inhibitors in GC (9). We investigated the association between
FAP and TMEscore in the NanoString GC cohort. The data
showed that patients with lower FAP expression had significantly
higher TMEscore indicating active immune response and lower
TMEscore indicating suppressive immune TME, compared with
those with higher FAP expression (both p < 0.0001, Figure 2E).

We further verified the relationship between FAP expression and
tumor-infiltrating immune cells by IHC staining of GC tissue
microarrays (n = 31). IHC staining of GC microarrays showed that
the expression of FAP was considerably pertinent to infiltration of
immunosuppressive cells, such as macrophage M2 (CD163+) and
MDSCs (CD11b+/CD33+) (Figures 3A, B). In addition, the IHC
intensity score of FAPwas also higher in patients with upregulation of
PD-1 expression inGCmicroarrays (Figures 3A,B). Overall, our data
suggest that FAP is closely correlated with the immunosuppressive
TME status in GC.

68Ga-FAPI-04 PET/CT Imaging Characterizes
the Immunosuppressive TME in GC
The TME context of immunotherapy-naïve patients reflects
therapy response (46). For example, changes in the number of
A B

C D E

FIGURE 1 | High expression of FAP indicates poor tumor prognosis. (A) FAP mRNA expression negatively correlates with response for ICB treatment in GC
patients from Nanostring cohort (N = 48). (B) ROC curves measure the predictive value of FAP, PD-1, PD-L1, TIM3, and PDCD1LG2 in the Nanostring cohort
(N = 48). The areas under the ROC curves are 0.733, 0.586, 0.709, 0.662, and 0.682 for the FAP, PD-1, PD-L1, TIM3, and PDCD1LG2, respectively. (C–E) FAP
expression is negatively correlated with clinical outcome in a variety of tumors. In Kaplan-Meier analysis of the TCGA-STAD cohort (C), ACRG cohort (D), and
IMvigor210 cohort (E), higher FAP expression indicates shorter overall survival.
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Tregs (47), macrophage M2 (47), and CAF infiltration correlate
with antitumor immune responses in GC (48). In previous
studies, Ga-68 labeled fibroblast-activated protein inhibitor
(68Ga-FAPI-04) with advantageous tumor-to-background
contrast held great promise as a PET tracer due to the highly
sensitive performance compared with 18F-FDG when detecting
various types of cancer (36, 49, 50). To increase the translational
value, we attempted to characterize the tumor environment
using the noninvasive 68Ga-FAPI-04 PET/CT technique.

Here, we collected 21 patients (FAPI cohort) with mGC who
undertook 18F-FDG and 68Ga-FAPI-04 PET/CT scans before
immunotherapy. IHC staining of tumor specimens via
gastroscopical biopsy was used to validate the infiltration of
immunosuppressive cells in tumors and showed that the uptake of
68Ga-FAPI-04 positively correlated with FAP expression (Figure 4A).
In addition, increased 68Ga-FAPI-04 uptake revealed higher levels of
infiltration ofMDSCs (CD11b+/CD33+), macrophageM2 (CD163+),
and extensive PD-1 immunoreactivity in tumors (Figure 4A).

Hence, we speculated whether there were any correlations
between the uptake of 68Ga-FAPI-04 and the TMEscore. By
analyzing the data of tumor specimens from four patients in the
FAPI cohort, TMEscore was found to be negatively correlated with
the corresponding uptake of 68Ga-FAPI-04 before treatment (R2 =
0.9678, p = 0.0162; Figure 4B). Therefore, from this cellular point
Frontiers in Oncology | www.frontiersin.org 5
of view, 68Ga-FAPI-04 PET/CT appears to be reliable as a means
of assessing immunosuppressive TME in GC.

FAPI Uptake Predicts Immunotherapy
Response in GC
To further confirm the value of 68Ga-FAPI-04 in predicting
immunotherapeutic outcomes, the relationship between 68Ga-
FAPI-04 uptake and immunotherapeutic efficacy was explored in
the FAPI cohort. Two patients in our FAPI cohort undertook both
18F-FDGand 68Ga-FAPI-04 PET/CT imaging before and 2months
after receiving CapeOX plus anti-PD-1 therapy. Pretreatment 18F-
FDG PET/CT showed a thickened gastric wall in both patients A
andB (Figure5A, patientA, pretreatmentSUVmax=5.6; patientB,
pretreatment SUVmax = 3.4), and a medium amount of ascites in
patient A (Figure 5A). In the pretreatment 68Ga-FAPI-04 PET/CT
imaging, the thickened gastric wall displayed a notably high image
contrast (Figure 5A), and 68Ga-FAPI-04 uptake of the primary
lesion in patient B was higher than that in patient A (Figure 5A,
patient A, pretreatment SUVmax = 11.5; patient B, pretreatment
SUVmax = 16.2).

After 2-month treatment, tumor entities with weak pretreatment
68Ga-FAPI-04 uptake (patient A) were sensitive to ICB, and 68Ga-
FAPI-04 PET/CT demonstrated local tumor control with a decline
in tumor volume and uptake of peritoneal metastasis and ascites
A B

C

D E

FIGURE 2 | FAP expression is closely correlated with immunosuppressive signatures. (A, B) Heatmap of CAF-relevant signatures (7, 28–30) in the high or low FAP group from
the ACRG cohort (A) and TCGA-STAD cohort (B). (C, D) Immune suppressive signature score (7, 26–31) of two clusters distinguished according to FAP expression in the ACRG
cohort (C) and TCGA-STAD cohort (D). (E) TME signature score between high and low FAP groups in the Nanostring cohort. **p < 0.01; ***p < 0.001; ****p < 0.0001.
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A

B

FIGURE 3 | Association between the expression of FAP and immunosuppressive TME. (A) Representative images of IHC staining of FAP, macrophage M2 (CD163+),
MDSC (CD11b+/CD33+) infiltration, and PD-1 expression in GC tissue microarrays. Scale bar = 100 µm. (B) Quantitative results of IHC for CD163, CD11b, CD33, and
PD-1 in groups with low intensity and high intensity of FAP in GC tissue microarrays. *p < 0.05; **p < 0.01; ***p < 0.001.
A

B

FIGURE 4 | FAPI imaging characterizes the immunosuppressive TME in GC. (A) Representative 68Ga-FAPI-04 PET/CT images of patients with gastric cancer and
IHC staining images for tumor specimens from gastroscopical biopsy of FAP, MDSC (CD11b+/CD33+), and macrophage M2 (CD163+) infiltration. Scale bar = 100
µm. The primary lesions are marked by red arrows, and the metastatic lesions are marked by white arrows. (B) Correlation analysis of TMEscore and the
corresponding mean 68Ga-FAPI-04 uptake ratios in primary gastric cancer or liver metastases.
Frontiers in Oncology | www.frontiersin.org January 2022 | Volume 11 | Article 8022576
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formation, and the tumor marker (CEA, CA242, CA125, and
CA199) levels also decreased remarkably (Figure 5B). In contrast,
for the tumor lesion with high pretreatment 68Ga-FAPI-04 uptake
(patient B), the posttreatment 68Ga-FAPI-04 scan demonstrated
newly developed peritoneal metastases (Figure 5A, white arrows),
compared with the first scan performed 2 months earlier.
Furthermore, tumor marker levels also greatly increased after
treatment (Figure 5B).

We further investigated the association between 68Ga-FAPI-04
uptake and immunotherapy response in the FAPI cohort and
found that immunotherapy-insensitive patients (PD) showed
significantly higher pretreatment uptake of 68Ga-FAPI-04
compared with immunotherapy-sensitive patients (non-PD)
(p = 0.0149, Figure 5C). By contrast, through comparison of
pretreatment 18F-FDG SUVmax, a significant difference was
absent between patients with distinct responses to ICB (p =
0.1554, Figure 5C). Altogether, our data strongly indicate that
68Ga-FAPI-04 PET/CT could serve as a predicting marker to
Frontiers in Oncology | www.frontiersin.org 7
clarify the efficacy of immunotherapy in GC. More specifically,
patients with lower pretherapeutic 68Ga-FAPI-04 uptake have a
better response to anti-PD-1 treatment. Thus, 68Ga-FAPI-04 PET/
CT prior to therapy may represent a new noninvasive potential
predictive candidate for anti-PD-1 treatment efficacy in GC.
DISCUSSION

To date, efficient imaging biomarkers to characterize the
immunosuppressive TME of GC that can monitor the responses
to anti-PD-1 treatment are lacking. In this study, we demonstrate
the potential of 68Ga-FAPI-04 PET/CT in the noninvasive
assessment of immunosuppressive TME in GC. Our findings
indicate that high expression of FAP predicts poor prognosis in
GC patients who undergo ICB therapy. Based on TCGA, GEO
database analysis, and IHC staining of GC microarrays, we found
that FAP expression is closely positively correlated with
A

CB

FIGURE 5 | FAPI uptake predicts the immunotherapy response in GC. (A) (Patient A) Images of a 71-year-old female with gastric adenocarcinoma, that was
sensitive to immunotherapy show low uptake of 68Ga-FAPI-04. The efficacy was confirmed by the reduced levels of ascites and the decreased uptake of 68Ga-FAPI-
04 (red arrows, primary lesions; white arrows, metastatic lesions). (Patient B) Images of a 36-year-old female with gastric adenocarcinoma that was not sensitive to
immunotherapy show high uptake of 68Ga-FAPI-04. The new metastatic lesions appear after immunotherapy (white arrows). Pretreatment and posttreatment images
obtained at 18F-FDG and 68Ga-FAPI-04 PET/CT of GC patient. (Left: anterior maximum intensity projection image, axial unenhanced CT image, axial fused 18F-FDG
image. Right: axial fused 68Ga-FAPI-04 PET/CT image, anterior maximum intensity projection image). (B) The curve of serum tumor markers of GC patients. Patient
A who was sensitive to immunotherapy showed the decrease of serum tumor markers after treatment while patient B who was not sensitive to immunotherapy
displayed increase of serum tumor marker. (C) SUVmax of 68Ga-FAPI-04 and 18F-FDG in gastric adenocarcinomas with different prognoses. Significant differences in
SUVmax of 68Ga-FAPI-04 were detected between the PD and non-PD group (*p < 0.05, ns, no significant).
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immunosuppressive cell infiltration. Interestingly, 68Ga-FAPI-04
PET/CT was found to be negatively correlated with TMEscore,
suggesting a role for 68Ga-FAPI-04 PET/CT in the identification
and stratification of patients in accordance with their individual
immunosuppressive status.

The development of ICBs is a milestone in the field of
immunology. ICB is known to trigger antitumor immunity by
interfering with coinhibitory pathways and facilitating the
elimination of cancer cells by the immune system. Despite the
clinical success of ICB therapies, only certain patients benefit from
ICBs due to the complex variation of TME. The TME can be
categorized into three main types according to the infiltration of
immune cells: immune inflammation, immune exclusion, and
immune desert. Each type has a special mechanism to prevent
the immune response from eradicating tumor cells (51). It is
clearly understood that CAFs play an important role in the
formation of an immunosuppressive TME. A sustained network
is not only woven between cancerous and immune cells but also
among stromal cells, such as CAFs and other types of immune
cells. CAFs, for example, helped recruit monocytes to differentiate
into M2-like macrophages, which could affect PD-1 pathways to
perform immunosuppressive functions (52). As a marker of CAFs,
FAP-positive CAFs contribute to immunosuppression by
secreting CXCL12 in a pancreatic cancer model (53), enhancing
recruitment of MDSCs via STAT3-CCL2 signaling (21) and
promoting the generation of Tregs and TAMs (22). In line with
our findings, FAP expression in mGC was found to be positively
associated with infiltration of Tregs, macrophageM2, andMDSCs.

Assessment of the TME allows for the prediction of patients
who can benefit from ICB therapies. Emerging evidence support
the view that TME plays an important role in ICB therapies (9).
Perhaps the most prevailing strategy to evaluate TME involves
IHC detection for markers like CD8 and PD-L1, although this
approach is admittedly limited (54). Biomarkers, for example, that
can predict responsiveness to ICB in mGC patients include
Epstein-Barr virus (EBV) infection and PD-L1 high expression,
while single stain IHC could not cover all the patients who may
benefit from ICB therapies. In previous research, TME infiltration
of 1524 GC patients was broadly gauged and divided into three
TME types with unique genomic and clinicopathologic features:
the high TMEscore defined by immune activation and response to
virus and IFN-g was constructed, while the low TMEscore was
characterized by stimulation of transforming growth factor b,
epithelial–mesenchymal transition, and angiogenesis pathways
(9). Nevertheless, the assessment of TMEscore requires surgical
biopsy/resection for RNA-seq; however, it is difficult to realize
continued progress in TME monitoring. Booming techniques
brought far less invasive and more robust assessment of the
TME, especially with advances in molecular imaging.

As a noninvasive and real-time monitoring method, molecular
imaging tracks the entire process of immunological responses and
evaluates TME to predict ICB outcomes. As the field develops,
discreet selection of biomarkers is vital. Nucleoside analogs such as
18F-AraG, 18F-FLT, and 18F-AraC have been developed for
immune cell imaging (55–57). Since the uptake of these tracers
is determined by substantial nucleoside transporters and DNA
Frontiers in Oncology | www.frontiersin.org 8
salvage pathway enzymes, uptake in certain types of cancers with
similar features may perplex the result of immune cells imaging.
Furthermore, molecular imaging of the TME is arduous to apply
in the clinic, considering the imaging effect and tracer safety.
Imaging tracers directly show that the metabolism condition of
certain cells may be more predictive.

Our data in vivo identified FAP as an encouraging biomarker for
imaging activated CAFs, with 68Ga-FAPI-04 PET/CT appearing to
be a feasible strategy for clinic use (58). Moreover, 68Ga-FAPI-04
PET/CT showed superior diagnostic efficacy to 18F-FDG PET/CT in
various types of cancers, including GC (36). For the first time, we
used 68Ga-FAPI-04 PET/CT as a noninvasive biomarker to predict
outcomes of ICB therapy; patients with higher FAPI uptake might
fail to undergo ICB therapy. In conclusion, we were able to
noninvasively estimate the immunosuppressive TME using 68Ga-
FAPI-04 PET/CT. Furthermore, 68Ga-FAPI-04 PET/CT not only
helps us to quantify the CAFs in TMEs but also potentially serves as
a predictive biomarker of survival and antitumor immune response
among patients who received ICB therapies. Additional studies in
patients with mGC are needed to verify the prediction efficiency
observed in this study.
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