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Use of stereotypical mutational motifs to define
resolution limits for the ultra-deep resequencing of
mitochondrial DNA
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Massively parallel resequencing of mitochondrial DNA (mtDNA) has led to significant advances in the study of

heteroplasmic mtDNA variants in health and disease, but confident resolution of very low-level variants (o2% heteroplasmy)

remains challenging due to the difficulty in distinguishing signal from noise at this depth. However, it is likely that such

variants are precisely those of greatest interest in the study of somatic (acquired) mtDNA mutations. Previous approaches to

this issue have included the use of controls such as phage DNA and mtDNA clones, both of which may not accurately

recapitulate natural mtDNA. We have therefore explored a novel approach, taking advantage of mtDNA with a known

stereotyped mutational motif (nAT4C, from patient with MNGIE, mitochondrial neurogastrointestinal encephalomyopathy)

and comparing mutational pattern distribution with healthy mtDNA by ligation-mediated deep resequencing (Applied

Biosystems SOLiD). We empirically derived mtDNA-mutant heteroplasmy detection limits, demonstrating that the presence

of stereotypical mutational motif could be statistically validated for heteroplasmy thresholds Z0.22% (P¼0.034).

We therefore provide empirical evidence from biological samples that very low-level mtDNA mutants can be meaningfully

resolved by massively parallel resequencing, confirming the utility of the approach for studying somatic mtDNA mutation in

health and disease. Our approach could also usefully be employed in other settings to derive platform-specific deep

resequencing resolution limits.
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INTRODUCTION

Massively parallel (‘next generation’) resequencing is potentially a
powerful tool with which to study heteroplasmic mitochondrial DNA
(mtDNA) mutations because of the possibility of the high breadth
and depth of coverage. Studying very low-level variants (below B2%
heteroplasmy level) is likely to yield the most useful insights into
somatic (acquired) mtDNA mutation, but is challenging due to the
difficulty in differentiating true variants from background noise at
this resolution. Recent studies using amplicon-based resequencing
(Roche 454 GS-FLX pyro-sequencing, Branford, CT, USA) have
indicated (using mtDNA clones) that mtDNA mutations at B0.2%
heteroplasmy level or greater can be successfully resolved, but only
after very stringent data cleaning, including the exclusion of homo-
polymeric tracts that are known hot spots for technical artefact on
this platform. This approach is therefore not well suited for analysing
low-level mutation across whole mtDNA genomes.1,2 In contrast,
methods using fragment resequencing (Illumina GA platform,
San Diego, CA, USA) have tended to use more conservative limits
of resolution (for example of 41.5% heteroplasmy level), which
potentially excludes much of the variants of interest.3,4

To further explore this issue, we adopted a novel strategy of ultra-
deep resequencing by ligation (Applied Biosystems SOLiD, Foster
City, CA, USA) of mtDNA with a known stereotyped mutational
pattern and comparing with normal mtDNA. MNGIE (mitochondrial
neurogastrointestinal encephalomyopathy) is caused by mutations in

the gene TYMP, encoding the enzyme thymidine phosphorylase. This
nuclear defect results in secondary mtDNA mutations due to purine/
pyrimidine pool imbalance. mtDNA point mutations in MNGIE have
a very characteristic ‘signature motif ’ (nAT4C).5 We therefore
explored the lower heteroplasmy limit to which this stereotypical
mutational pattern could be resolved.

MATERIALS AND METHODS
Total DNA was prepared from skeletal muscle from two patients; one

with a confirmed diagnosis of MNGIE (TYMP mutation, 22q13.32-qter)

and the other from an age-matched healthy subject. Sequencing was

performed using the AB SOLiD platform with a 50-bp paired-end

fragment library. mtDNA was enriched from total DNA extract by using

three overlapping long-range PCR (LR-PCR) fragments, designed to

avoid the amplification of nuclear mitochondrial pseudogenes. LR-PCR

amplicons were cleaned by column purification and pooled in equimolar

amounts per sample.

The raw data were aligned to the revised Cambridge reference sequence

(rCRS, NC_012920) using BWA6 and processed using SAMtools.7 Variant

prediction was performed using VarScan.8 A bidirectional variant read

proportional difference of twofold was permitted between each sequencing

strand (single strand biased variants were automatically removed). Putative

variants identified were initially categorised by scanning heteroplasmy

threshold intervals of 0.1%. VarScan parameters were as follows: minimum

coverage, 1500; minimum supporting allele, 10; phred score, 30; variant

frequency threshold, 0.1%.
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RESULTS

Mean sequencing read depth across the mtDNA genome was 16 873
and 17 852 for control and MNGIE, respectively. Overall, 495% of the
whole mtDNA genome in both samples had read depth of 45000.

The expected stereotyped mutational pattern (nAT4C) was seen
extensively within the MNGIE mtDNA at all heteroplasmy detection
thresholds examined, including the very lowest (0.1%) (Figure 1a).
In MNGIE mtDNA, the total number of mutations detected with this
stereotyped pattern increased as the variant detection threshold was
lowered; however, the proportion of total variants corresponding to
the stereotypical pattern progressively increased with increasing
detection threshold.

We hypothesised that, at the very lower detection levels, noise
(PCR-generated, base-calling and so on) should appear broadly
similar across any mtDNA sample both quantitatively (number of
‘variant’ calls) and qualitatively (variant pattern). Therefore, to
determine the validity of the ‘variants’ we detected at the very lowest
thresholds (0.1–0.5%), an ANOVA was performed to compare the

distribution of stereotyped variants between MNGIE and control
mtDNA. In such a manner we determined that, at detection thresh-
olds of Z0.22%, the excess of nAT4C variants in MNGIE mtDNA is
statistically significant (P¼ 0.034 for Z0.22%, Figure 1b), whereas at
lower detection levels it is not, suggesting that the stereotypical signal
becomes swamped by background noise below 0.22%. The number
and distribution of mutations present above this threshold, according
to nAT4C motif (where n¼ 1–4), is shown (Figure 1c).

Considering the relative proportions of total and stereotypical
variants (Figure 1a), we see that at very low heteroplasmy levels
(B0.1–0.2%), the number of non-stereotypical mutations in control
and MNGIE mtDNA is very similar, suggesting that any excess of
mutations in MNGIE correspond almost entirely to the nAT4C
stereotypical pattern. At heteroplasmy thresholds of Z0.3% we see
that in MNGIE mtDNA 450% of all variants correspond to the
stereotypical pattern. If we therefore take a very conservative
assumption that all non-stereotypical mutations seen at this level
are background noise rather than signal, we can conclude that, as a

Figure 1 Resolution of low-level heteroplasmic mtDNA variants. (a) Cumulative frequency count of detected variants according to variant frequency

(heteroplasmy) threshold. Variants are classified according to whether they match the stereotypical motif (nAT4C) or not (nAT4C proportion, as a

percentage of all variants detected, is recorded above each threshold). (b) Statistical comparison (ANOVA) of mutational spectra (nAT4C motif) between

MNGIE and control samples according to variant frequency (heteroplasmy) threshold (dotted line corresponds to P-value of 0.05). A significant difference in

mutational spectrum could be detected at variant detection thresholds of Z0.22%. (c) Cumulative variants present at Z0.22% heteroplasmy according to

‘n’ value of nAT4C motif.
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minimum, at heteroplasmy thresholds of Z0.3% the majority of
variants seen will have been generated biologically, rather than as
technical artefacts of the sequencing.

DISCUSSION

The use of a unique biological model based on a specific mutation
motif has confirmed that very low-level mtDNA variants (in the o1%
heteroplasmy range) can be meaningfully resolved by massively
parallel resequencing. We have empirically demonstrated that hetero-
plasmy detection thresholds in the range Z0.22–0.3% are appropriate
for studies that aim to examine differences in mutational burden
between tissues or diseases. These thresholds are strikingly similar to
that previously reported (Z0.2%) for short amplicon resequencing2

(Roche 454 GS-FLX), but has the distinct advantages of full mtDNA
genome coverage (including inclusion of homopolymeric tracts) in
the bioinformatic analysis. Furthermore, this approach does not rely
on the derivation of heteroplasmy thresholds from cloned or phage
DNA, which might be inherently cleaner on deep resequencing. AB
SOLiD uses ligation-mediated chemistry and calls bases in pairs; this
approach may have theoretical advantages in terms of base-calling
fidelity. Our approach could usefully be employed on other platforms
to derive platform-specific resolution limits. This study supports the
use of massively parallel resequencing to confidently study somatic
mtDNA mutations in health and disease.
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