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Oxygen reduction reaction (ORR) electrocatalysts derived from biomass have become

one of the research focuses in hetero-catalysis due to their low cost, high performance,

and reproducibility properties. Related researches are of great significance for the

development of next-generation fuel cells and metal-air batteries. Herein, the preparation

methods of various biomass-derived catalysts and their performance in alkaline, neutral,

and acidic media are summarized. This review clarifies the research progress of biomass

carbon-based electrocatalysts for ORR in acidic, alkaline and neutral media, and

discusses the future development trends. This minireview can give us an important

enlightenment to practical application in the future.
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INTRODUCTION

The development of green energy has been urgent due to the increasingly international attention
toward energy shortages and environmental pollutions. Among these energy storage devices,
fuel cells have been considered as a promising alternative with clean, stable, and sustainable
properties in order tomeet the growing global energy demands (Dai et al., 2015). Therefore, rational
design of low-cost oxygen reduction electrocatalysts is critical for the storage and electrochemical
performance of renewable energy sources (Liu et al., 2015). As an ideal component of primary
energy equipment, fuel cells using hydrogen or hydrocarbon fuels can directly convert chemical fuel
into electricity through electrochemical processes and operate at ambient temperature (Winter and
Brodd, 2004). Even though the amount of Pt is capable of achieving the desired catalytic effect by
using Pt alloys (Stamenkovic et al., 2007; Jiang et al., 2009) ormaking core-shell nanostructures with
supportingmaterials (Li et al., 2018), the high cost, insufficient durability, and unrefined technology
still restrict the practical large-scale commercialization (Guo et al., 2013; Kaur et al., 2019).

Accordingly, to address these above issues, numerous non-Pt materials have been studied as
cathode catalysts alternative to Pt-based catalysts for ORR (Banham et al., 2015; Shao et al., 2016).
Cuurently, biomass-derived materials, such as active carbon (Deng et al., 2010), enzyme (Qiao
et al., 2010), microorganism (Majidi et al., 2019; Papiya et al., 2019), transition metal porphyrins
(Zheng et al., 2016), NiIn2S4/CNFs (Fu et al., 2019), and phthalocyanines (Kaare et al., 2016;
Bhowmick et al., 2019) have potential capability to replace Pt. Therefore, the method of producing
ORR catalyst from biomass has attracted extensive attention of researchers in many aspects (Liu
et al., 2016; Sawant et al., 2016; Zhao et al., 2017). In this minireview, the catalytic mechanism
for oxygen reduction reaction in different media is given, including a four-electron pathway and
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FIGURE 1 | Overview of various biomass precursors in different media.

a two-electron pathway. Thereafter, various biomass-derived
carbons and composites for ORR in alkline, neutral, and
acidic media are summarized (Figure 1). The aforementioned
biomass-derived carbons and composites exhibit outstanding
electrochemical performance, which make them promising
candidates for alternating Pt-based electrocatalysts.Moreover, we
discuss the furture research direction and challenges of biomass-
derived carbon electrocatalyst for ORR in different media.

CATALYTIC MECHANISM FOR OXYGEN
REDUCTION REACTION

Generally, the oxygen reduction reaction in an aqueous
electrolyte can proceed via two types: a four-electron pathway
and a two-electron pathway. The former method could directly
reduce oxygen to water, which is preferable than the two-electron
route using hydrogen peroxide as a reaction intermediate. The
choice of overall pathway depends on the type of catalyst. So
far, many literatures have reported the use of biomass and its
derivatives as ORR catalysts in neutral or alkaline medium, the
reaction mechanism can be described as follows:

Four-electron pathway:

O2 + 2H2O+ 4e− → 4OH− E = 0.401 V

Two-electron pathway:

O2 +H2O+ 2e− → HO−

2 + OH− E = −0.065 V

HO−

2 +H2O+ 2e− → 3OH− E = 0.867 V

2HO−

2 → 2OH−
+O2

The accumulation of OH− at the catalytic sites can
lead to a considerable decline in the kinetic performance
(Popat et al., 2012).

In an acidic medium, the mechanism can be described
as follows:

Four-electron pathway:

O2 + 4H+
+ 4e− → 2H2O E = 1.229 V

Two-electron pathway:

O2 + 2H+
+ 2e− → H2O2 E = 0.695 V

H2O2 + 2H+
+ 2e− → 2H2O E = 1.770 V

2H2O2 → 2H2O+O2

IN ALKALINE MEDIUM

Catalysts with excellent ORR performance in an alkaline medium
will play an important role in metal-air batteries. Currently,
biomass-derived carbon electrocatalysts for ORR have been
reported to be the most effective in alkaline medium. As
illustrated in Figure S1A, natural cattail fibers are used to
prepare porous nitrogen-doped carbon through direct chemical
activation and heteroatom doping (Liu et al., 2019). The
obtained graphene-like sheets from biomass pyrolysis are
assembled into three-dimensional carbon frameworks, which
exhibit a significant synergistic effect on the improvement of
catalytic properties. Fu et al. successfully prepared NiIn2S4
nanosheets supported on carbon nanofibers (Figure S1B). It
was found that the performance of prepared catalyst is better
than that of single metal Ni or In sulfides (Fu et al., 2019).
Corn stover was also reported as a biomass precursor for
the preparation of nitrogen, cobalt co-doped electrocatalyst
(NCAC-Co) for ORR and aluminum-air batteries (Liu et al.,
2018). The resulting porous biocarbon electrocatalyst not only
exhibits the 4-electron oxygen reduction mechanism, but also
displays excellent durability and stability. The author clearly
demonstrated that the NCAC-Co has good prospects and is
expected to become an economical and large-scale catalyst
substitute for metal-air batteries. As illustrated in Figure S1C,
the NCAC-Co electrocatalyst was prepared by two major steps
of KOH activation and heteroatom doping. In addition to the
examples metioned above, other promising biomass precursors
are dandelion seeds (Tang et al., 2019), shaddock peel (Lu
et al., 2019), chitosan (Zhao et al., 2017), mulberry leaves (He
et al., 2019), gelatin (Yang et al., 2019), and chitin (Wang et al.,
2019) etc.

IN NEUTRAL MEDIUM

As the research on microbial fuel cells becomes more and more
in-depth, the development of new high-performance biomass
carbon materials has become increasingly crucial. Compared
with the alkaline medium, biomass catalysts have fewer
applications in neutral media because the ORR performances
were slightly negative. However, biomass-derived electrocatalysts
have a higher stability in a neutral medium. For instance, the
sewage sludge-derived biochar was successfully prepared and
employed as an excellent ORR electrocatalyst. As shown in
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TABLE 1 | Typical examples of electrocatalysts derived from biomass.

Electrolyte Biomass precursor Optimal preparation temperature Specific surface area Onset Potential of Catalyst/Pt/C

0.1M KOH Chitosan (Zhao et al., 2017) 800◦C 543 m2 g−1
−0.08/−0.055V (vs. Ag/AgCl)

0.1M KOH Corn Stovers (Liu et al., 2018) 900◦C 1877.3 m2 g−1 /

0.1M KOH Dandelion Seed (Tang et al., 2019) 900◦C 1324.1 m2 g−1 0.83/0.85 V (vs. RHE)

0.1M KOH Chrysanthemum Flowers (Xu et al., 2017) 800◦C 810 m2 g−1 1.0/1.0 V (vs. RHE)

0.1M KOH Malachium Aquaticum (Huang et al., 2016) 900◦C 851.41 m2 g−1
−0.053/−0.043V (vs. Ag/AgCl)

0.1M KOH Microalgae (Wu et al., 2019) 1,000◦C / 1.0/1.0 V (vs. RHE)

0.1M KOH Lotus Root (Rajendiran et al., 2019) 700◦C 884 m2 g−1 0.84/0.92 V (vs. RHE)

0.1M KOH Shaddock Peel (Lu et al., 2019) 900◦C 548 m2 g−1 /

0.1M KOH Coconut Shells (Borghei et al., 2017) 1,000◦C 1260 m2 g−1
−0.02/0.05 V (vs. Ag/AgCl)

0.1M KOH NiIn2S4/CNFs (Fu et al., 2019) / 196.3 m2 g−1 1.46/1.50 V (vs. RHE)

0.1M KOH Cattail Fibers (Liu et al., 2019) 900◦C 1773 m2 g−1 0.92/0.45 V (vs. RHE)

0.1M KOH Mulberry Leaves (He et al., 2019) 800◦C 1689 m2 g−1 0.86/0.88 V (vs. RHE)

0.5M KOH Waste Leather (Alonso-Lemus et al., 2016) / 2100 m2 g−1 0.905/1.050V (vs. RHE)

0.1M KOH NCAC-Co (Liu et al., 2018) 800◦C 1877.3 m2 g−1 0.795/0.760V (vs. RHE)

Phosphate Buffer Corncob (Li et al., 2018) 650◦C 655.89 m2 g−1
−0.13/−0.05 V (vs. Ag/AgCl)

Phosphate Buffer Sewage Sludge (Yuan et al., 2013) 900◦C 44 m2 g−1 0.11/0.09 V (vs. RHE)

Phosphate Buffer Egg (Lu et al., 2017) 900◦C 703.47 m2 g−1 0.257/0.157V (vs. Ag/AgCl)

Phosphate Buffer Bacteria (Ma et al., 2017) 800◦C 1926.7 m2 g−1 1.01/1.01 V (vs. RHE)

0.1M KOH Bagasse (Yuan et al., 2016) 1,000◦C 1284 m2 g−1 1285/0.06 V (vs. Hg/HgO)

0.5M H2SO4 0.43/0.65 V (vs. Ag/AgCl)

0.1M KOH Enoki Mushroom (Guo et al., 2015) 900◦C 305.3 m2 g−1 0.94/0.98 V

0.5M H2SO4 0.81/0.93 V (vs. RHE)

0.1M KOH Sewage Sludge (Yuan and Dai, 2016) 800◦C 265.05 m2 g−1 0.05/−0.08 V

0.5M H2SO4 0.57/0.65 V (vs. Ag/AgCl)

0.1M KOH Corn Starch (Wang et al., 2012) 500◦C 1568.85 m2 g−1
−0.03/0.02 V

0.5M H2SO4 0.62/0.66 V (vs. RHE)

0.1M KOH Starch (Yao et al., 2016) 180◦C 976.6 m2 g−1 0.955/0.932 V

0.5M H2SO4 0.840/0.930V (vs. RHE)

Figure S2A, the structural change of as-obtained carbonized
materials was clearly observed, which was detected by Raman
spectroscopy (Yuan et al., 2013). In addition, Lu et al. developed a
low-cost method to prepare egg-based heteroatom-doped carbon
catalysts. The ORR catalytic activity of prepared electrocatalyst
in a neutral medium is comparable to that of a commercially
available Pt/C catalyst (Figure S2B, Lu et al., 2017). In the neutral
medium, not only the above-mentioned biomass precursors are
successfully used, the corn cob-derived catalysts synthesized by
a simple pyrolysis method (Li et al., 2018) and mesoporous Fe-
NC electrocatalysts prepared by activation of bacteria growing
on Fe minerals (Ma et al., 2017) also delivered superior
electrochemical performance.

IN ACIDIC MEDIUM

Owing to its low cost and abundant sources, biomass carbon
materials can be used as excellent cathode catalysts to replace
noble-metal electrocatalysts. One typical material is nitrogen-
doped nanoporous carbon flakes extracted from low-cost bagasse
(Yuan et al., 2016). Moreover, the enoki mushroom derived
carbon electrocatalyst also possesses outstanding ORR activity

and durability. The significant difference in ORR activity of the
two carbon materials is shown in Figure S3A. Extraction of N-
doped carbon nanomaterial from Nenoki mushroom biomass
in a certain temperature is shown in Figure S3B (Guo et al.,
2015). In addition to the above examples in an acid medium,
sludge-based multi-doped electrocatalysts (Yuan and Dai, 2016)
and corn starch derived nitrogen-doped carbon electrocatalysts
(Wang et al., 2012) are also utilized for ORR in acidic medium.

As we discussed above, the biomass-derived materials not
only have outstanding contributions in terms of catalytic
performance, but also promote environmental improvement.
Therefore, we establish a link between the electrolytes, biomass
precursors, optimal preparation temperature, specific surface
area, and onset potential of various ORR electrocatalysts, which
are listed in Table 1.

CONCLUSIONS AND OUTLOOK

In recent years, there have been great progresses to develop
biomass-derived carbon ORR electrocatalysts for meeting the
requirements of high performance. Some materials, especially
materials derived from biomass materials, have comparable or
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superior ORR properties and better stability than commercial
Pt/C. Thus, biomass-derived carbons have attracted particular
interest as a potential substitute for commercial Pt/C due to
their good activity, low-cost, and reproducibility (Gasteiger and
Markovic, 2009). In addition to the biomass electrocatalysts
mentioned in this minireview, there will be numerous high-
performance biomass-derived electrocatalysts for practical
application in the future.

Although biomass-derived carbon materials have the widest
sources and the lowest price, the controllability toward
distribution of active sites is very general, which depends on the
composition and structure of the biomass itself. How to achieve
large-scale production is also an urgent problem preventing
industrialization. Up to now, most biomass-derived carbon
materials are only suitable for catalyzing oxygen reduction
reactions under alkaline conditions, and their performance is
unsatisfying in neutral and acidic media, which seriously affects
the large-scale application of fuel cells.
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