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A B S T R A C T   

Background: Early screening of prostate cancer (PCa) is pivotal but challenging in the clinical 
scenario due to the phenomena of false positivity or false negativity of some serological evalu-
ations, e.g. PSA testing. Decline of serum Zn2+ levels in PCa patients reportedly plays a crucial 
role in early screening of PCa. Accordingly, we combined 4 indices comprising the serum levels of 
total PSA (tPSA), free PSA (fPSA), Zn2+ and demographic information (especially age) in order to 
ameliorate the efficacies of PCa screening with support vector machine (SVM) algorithms. 
Methods: A total of 858 male patients with prostate disorders and 345 healthy male controls were 
enrolled. Patients’ data included 4 variables and serum Zn2+ was quantified via a self-invented 
Zn2+ responsive AIE-based fluorescent probe as previously published. tPSA and fPSA were 
routinely determined by a chemiluminescent method. Mathematical simulations were conducted 
to establish a SVM model for the combined diagnostics with the four variables. Moreover, ROC 
and its characteristic AUC were also employed to evaluate the classification efficacy of the model. 
Sigmoid function was utilized to estimate corresponding probabilities of classifying the clinical 
subjects as per 5 grades, which were incorporated into our established prostate index (PI) 
stratification system. 
Results: In SVM model, the mean AUC of the ROC with the quartet of variables was approximately 
84% for PCa diagnosis, whereas the mean AUC of the ROCs with tPSA, fPSA, [Zn2+] or age alone 
was 64%, 62%, 55% and 59%, respectively. We further established an integrated prostate index 
(PI) stratification system with 5 grades and a software package to support clinicians in predicting 
PCa, with the accuracy of our risk stratification system being 83.3%, 91.6% and 83.3% in pre-
dicting normal, benign and PCa cases in corresponding groups. Follow-up findings especially MRI 
results and PI-RADS scores supported the reliability of this stratification platform as well. 
Conclusion: Findings from our present study demonstrated that index combination via SVM al-
gorithms may well facilitate clinicians in early differential screening of PCa. Meanwhile, our 
established PI stratification system based on SVM model and Sigmoid function provided sub-
stantial accuracy in preclinical risk prediction of developing prostate cancer.  
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1. Introduction 

Prostate cancer (PCa) is the most prevalent cancer in the male population worldwide, which has prevailed the prevalence of lung 
cancer as of 2020, with an increasing trend of development in youth and middle ages [1,2]. Accordingly, given the high morbidity and 
mortality of PCa, early screening and accurate intervention are essential, especially primary differentiation between PCa and other 
benign prostate disorders (BPD), e.g. benign prostate hyperplasia (BPH), acute and chronic prostatitis, benign prostatic nodules, and 
prostate calcification, etc. Notwithstanding, differentiation between PCa and BPD has always been pivotal but challenging, mainly due 
to the false positivity and negativity in prostate-specific antigen (PSA) determination in certain clinical scenarios, as exemplified by a 
gray zone of serum PSA concentrations from 4 to 10 ng/mL, which is the most ambiguous in diagnostics [3]. There were also reports on 
benign cases with serum PSA levels over 10 ng/mL and malignant cases with PSA below 4 ng/mL [4]. Hitherto, basic researchers and 
clinicians have been devising strategies, comprising determination of serum free PSA (fPSA), fPSA/tPSA rate, p2PSA and prostate 
health index (PHI), radiological evaluations with computed tomography (CT), ultrasonography (US), magnetic resonance imaging 
(MRI), prostate-specific membrane antigen (PSMA) positron emission tomography (PET), prostate puncture biopsy, etc. Despite their 
contribution to the differential diagnosis of PCa, most of these regimens were not cost-effective, thus restricting their early clinical and 
preclinical screening potentials. Meanwhile, the normal prostate has abundant zinc ion (Zn2+) in contrast to decreased Zn2+ levels in 
PCa patients, with serum Zn2+ level also as an essential biomarker for PCa diagnosis [4–8]. In addition, the patients’ age information 
(age) is a well-known influential factor in cancer incidence. Therefore, combined determination of several indices might be justifiable. 

Machine learning (ML) is an interdisciplinary simulation and implementation of the learning activities of human beings, via 
integration of many realms e.g. probability theory, statistics, approximation theory, convex analysis, algorithm complexity theory, etc. 
Compared with conventional computation, ML created certain models from historical data training via certain algorithms to predict 
future events providing novel data is rendered. To date, diversities of ML algorithms comprising support vector machine (SVM), 
decision tree (DT), random forest (RF) and multilayer perceptron (MLP) etc. have been increasingly employed in the fields of natural 
sciences, especially clinical medicine. Notably, the SVM algorithm developed by Cortes and Vapnik in the 1990s is still applied in the 
classification and prediction of many disorders, such as PCa and cancer types of the stomach, breast, lungs, kidneys, etc. [9–12]. 
Furthermore, SVM with Gaussian kernel is very effective in multiple classification and problem prediction owing to its good gener-
alization, superiority for small-sized data and high efficiency for multi-dimensionality data, etc. [13,14]. 

We combined the four features, i.e. levels of total PSA (tPSA), free PSA (fPSA), Zn2+ and patients’ age (age) in order to ameliorate 
the efficacies of differential screening (classification) and further risk stratifications (prediction) of PCa with the assistance of several 
ML algorithms especially SVM. Receiver operating curve (ROC) and its characteristic area under the curve (AUC) were also employed 
to evaluate the diagnostic efficacies of corresponding ML models. Furthermore, risk stratifications and established prostate index (PI) 
stratification were performed via SVM model and Sigmoid function to predict the probabilities of PCa development. 

2. Patients and methods 

2.1. Patients 

The study was approved by the independent ethics committee of Ruijin Hospital, School of Medicine, Shanghai Jiao Tong Uni-
versity, China. Between July 2021 and November 2022, 858 patients with clinically diagnosed prostate disorders including PCa (n =
150) and benign prostate disorders (n = 708) were recruited, the majority undergoing prostate biopsy at our hospital. The eligibility 
criteria were: 1. no prostate surgery history; 2. Confirmed diagnosis of prostate abnormalities. In parallel, we enrolled 345 healthy 

Fig. 1. Linear relationship and goodness-of-fit test of gradient Zn2+ concentrations with corresponding emitted fluorescence intensities, where RFU 
denotes relative fluorescence unit (A.U.) and [Zn2+] denotes Zn2+ concentrations (μM). 
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individuals with regular physical examinations as the control group. 

2.2. Measurements of serum Zn2+ and PSA 

All the patients underwent determination of serum levels of tPSA and fPSA with routine chemiluminescent kit (Abcam) in our 
hospital. It is worth mentioning that we invented a Zn2+-responsive fluorescent quantification approach to the serum Zn2+ deter-
mination in the enrolled patients [15]. Briefly, our self-synthesized fluorescent probe HL (HL: 3,4,5-tribenzyl-Benzoic acid 
(2-hydroxy-benzylidene)-hydrazide) was dissolved and dispersed in the solvent (DMF/H2O = 2/3, v/v). The detection system revealed 
serum Zn2+ concentrations in the patients exhibited a positive correlation with their corresponding fluorescence intensities, as 
illustrated by a close linear relationship in the standard curve (Fig. 1), facilitating the fluorescence quantification of serum Zn2+

concentrations. 

2.3. Introduction to analytical tool SVM 

Assuming that two types of training samples are linearly separable: 

{x1, y1}, {x2, y2},…,
{

xQ, yQ
}
, xi ∈Rn, yi ∈{− 1, 1}, 1≤ i ≤ Q (1) 

If samples cannot be linearly separable, a nonlinear mapping can be adopted to map the nonlinearly separable classification to a 
higher-dimensional space to achieve linear separability with high probability. 

As illustrated in Fig. 2, as per the SVM method, we selected the hyperplane with the largest margin 2d among all possible clas-
sification hyperplanes, thus attaining the optimal generalization. 

In order for π1 and π2 to form a class divider, then the points xi satisfying wxi + b > 1 are all on the one side of π1, The points xj 
satisfying wxj + b < − 1 are all on the other side of π2. The following constraints must be satisfied: 

{
wT xi + b ≥ 1

wT xi + b ≤ − 1 , 1≤ i ≤ Q (2) 

The distance between plane π1 and π2 is the goal we want to maximize, so that we not only realize the classification, but also 
maximize the classification margin. The total margin between the hyperplane π1 and π2 is: 

2d= 2
|wT x∗ − wT x0|

‖w‖
= 2

|wT x∗ + b|
‖w‖

=
2

‖w‖
(3) 

Therefore, attainment of the optimal classification hyperplane can be translated into the following quadratic convex programming 
problem: 

⎧
⎪⎨

⎪⎩

min
w,b

1
2
‖w‖2

subject to yi
(
wT xi + b

)
≥ 1, 1 ≤ i ≤ Q

(4)  

With solution of the above quadratic convex optimization problem, the optimal classification hyperplane can be achieved. 

2.4. SVM simulation with python 

The Scikit-Learn library in Python, with its wide application to ML and other fields, can better calculate the SVM classification 

Fig. 2. Schema of the rationale for support vector machine model.  
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surface and facilitate SVM algorithm. For the utilization of Scikit-Learn library in SVM, the data set should be divided into the training 
set and the test set, and the fit ( ) method ought to be applied to the training set to solve the optimization problem in 2.4 to obtain the 
parameters of the classification hyperplane, and the predict ( ) method for the test set should be used to predict the probability. The 
accuracy of the classification and prediction of the test set is established by the following formula: 

Accuracy=
# correctly predicted data

# total testing data
× 100% (5) 

Additionally, cross-validation methods were built into the Scikit-Learn library. As exemplified by 5-fold cross-validation (Fig. 3), 
this method can divide the sample data into five datasets, with one as the test data set in each validation and the other four as the 
training data set. Five head-to-head experiments were performed to preclude the computational imbalance of the classification surface 
due to the random division of the data set. 

2.5. SVM model and sigmoid function in risk prediction 

Since SVM model is a two-class classifier, only the algorithm of two-class classification can be achieved. Accordingly, to solve the 
three-classification problem, combinations of the obtained three categories (normal, benign and malignant) were adopted, involving 
three scenarios, i.e. “normal & benign”, “normal & malignant”, and “benign & malignant”. Consequently, the three two-category 
sample data were utilized for the SVM model training and data classification. 

The three-category SVM model was employed to conduct multiple cross-validations, with experimental data obtained. With 
attainment of the prespecified accuracy rate of experimental data, the classification surface with the highest accuracy rate was 
designated as the classification surface, with the accuracy rate no less than 80%. During the experiment, by five-fold cross-validation, 
the average accuracy rate was over 84.4%, with the variance of 0.059. The classification result with the highest accuracy rate was 
designated as the classification surface for the prostate index (PI) evaluation as follows. 

π1 : -0.05098266 ∗ Age-0.99452169 ∗ tPSA-0.8271752 ∗ fPSA + 0.00320679 ∗
[
Zn2+]

π2 : -0.16478435 ∗ Age-0.22402318 ∗ tPSA-0.7961012 ∗ fPSA + 0.18290099 ∗
[
Zn2+]

π3 : -0.05360206 ∗ Age+ 0.05138339 ∗ tPSA-0.05095499 ∗ fPSA + 0.16451015 ∗
[
Zn2+]

Herein, π1: distinguishing “normal” from “benign & malignant”; π2: distinguishing “benign” from “normal & malignant”; π3: dis-
tinguishing “malignant” from “normal & benign”. 

The detailed applications of the classification surface: x* is set as a new sample, and x* is input into the three SVMs (support vector 
machine models) with training completion. If there is x∗ ∈ class i for the ith SVM, then x∗ ∈ class i is discriminated. 

The distance to the classification surface was then calculated for each case, yielding an estimate of the probability of prostate cancer 
(PCa) development. For the input data, the distance from the point to the classification surface was calculated, and thereafter the 
distance underwent transformation via the Sigmoid function to yield a value between 0 and 1, or rather, prostate index (PI) of the 
estimated probability of PCa, which informs physicians as to preclinical the prostate state of the clinic visitors. In particular, the closer 
the points are to the classification surface, the higher the uncertainty. 

2.6. Softwares and tools 

Continuous variables were analyzed via one-way ANOVA with SAS (version 9.0). Model was established, performed and evaluated 
with the software Python (version 3.9.13 https://www.python.org/, with packages pandas 1.4.4 https://pandas.pydata.org/ and 
Scikit-Learn 1.0.2 https://scikit-learn.org/stable/), providing a measurement of the classification and prediction efficacy of our SVM 
model. 

Fig. 3. Schema of the rationale for 5-fold cross-validation.  
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3. Results 

3.1. Data distribution 

858 patients with prostate disorders were enrolled, including cases of benign prostate hyperplasia (n = 668), prostatitis (n = 38), 
prostatic calcification (n = 2) and PCa (n = 150), with 345 healthy individuals as the normal control group. Table 1 illustrate the data 
distribution of age, serum Zn2+ concentration ([Zn2+]), tPSA and fPSA levels in normal, benign and PCa group. 

3.2. Efficacy evaluation of classification with SVM algorithm 

Fig. 4 exhibits the ROC curves and their corresponding AUC values of classification efficacies of single index as age (Fig. 4a), PSA 
(Fig. 4b), fPSA (Fig. 4c) and [Zn2+] (Fig. 4d) as well as their combination (Fig. 4e), respectively, with the assistance of SVM algorithms. 
As is depicted, the mean AUC value of the ROC curve with age alone is approximately 0.59 ± 0.02, whereas the mean AUC with 
individual index as tPSA, fPSA and [Zn2+] was approximately 0.64 ± 0.13, 0.62 ± 0.11, and 0.55 ± 0.08, respectively. Notably, the 
mean AUC value of the ROC of index quartet was approximately 0.84 ± 0.05, which was much greater than the respective values of one 
index. Despite the unsatisfactory efficacy with the index [Zn2+] alone in PCa screening, our combination strategy with SVM algorithms 
remedied the screening inefficacy. 

3.3. Risk prediction with sigmoid function 

Given the predicative performances and advantages of ML algorithms especially SVM, we further utilized Sigmoid function to 
stratify the probabilities of PCa development. Fig. 5(a–f) depicts the classification effect of the classification surface (hyperplane) on 
the test set, where the points represent the samples, and the area boundaries of different colors represent the classification surface. 
Since the model adopted 4 features as input values, the two-dimensional map was established by selecting two out of these four 
features as the axis, focusing on the malignant area. As shown in Table 2, to test the accuracy and veracity of our predictive model, we 
input all our cases in the model and checked their predictive and real values. Indeed, the classifier can better classify the test data with 
the prediction accuracy being 0.833 (normal group), 0.916 (benign group) and 0.833 (PCa group), respectively. 

3.4. SVM model sensitivity evaluation 

In order to verify the sensitivity of the model, a minor disturbance ε is given to the input value x of the model, and the variation of 
the output value y of the model will be evoked. In case of minor variation of model output value, the stability of the model is considered 
potent, and vice versa. We assumed a patient in a critical margin of PCa for this experiment, i.e., ‘age’ = 55 (y. o.), ‘tPSA’ = 5 (μmol/L), 
‘fPSA’ = 4 (μg/mL), ‘Zn’ (i.e. [Zn2+]) = 5 (μg/mL). Three out of four variables were fixed, with the output value of the probability of 
developing into PCa available. The relationship between the PCa probability and the value of the input variables (age, tPSA, fPSA and 
[Zn2+]) is depicted (Fig. 6 a - d). 

In our model, in case of the parameter modification as in age and tPSA, the probability of PCa development varies greatly, indi-
cating that variables as age and tPSA are the pivotal contributors to the probability of PCa development. Despite the modification of 
variables fPSA and [Zn2+], modest effect on the probability of PCa development was detected, implying the auxiliary roles of two 
parameters. The model output values did not exhibit marked fluctuation in response to modification of the input values, indicating the 
stability of our SVM model. 

3.5. Establishment of prostate index (PI) for risk stratification 

To evaluate by stratification of the prostate states of participants, we input the predicted probability of PCa development in each 
individual to establish a prostate index (PI) system (Fig. 7) via SVM model and Sigmoid function (Table 3). 

Our PI scoring system can stratify the predicted probability of PCa development into 5 grades via SVM model. Consequently, the 
participant stratification was profiled as follows: grade one (PI score = 1), 304 normal participants and 56 benign prostatic patients; 
grade two (PI score = 2), 31 normal participants and 262 benign prostatic patients; grade three (PI = 3), 10 normal participant, 306 
benign prostatic patients and 58 PCa patients. As for grades four (PI score = 4) and five (PI score = 5), only patients with either benign 
prostate diseases or PCa were involved. Patients with grades three to five should be recommended for radiological evaluations. The PI 
system and its component structures were integrated into a software program in both English and Chinese versions, which has been 

Table 1 
Data distribution (mean ± SD) of patient information.  

Group Sample size Age (y. o.) [Zn2+] (μmol/L) tPSA (μg/mL) fPSA (μg/mL) 

Normal 345 40.919 ± 12.800 4.513 ± 2.248 1.257 ± 1.168 0.379 ± 0.276 
Benign 708 68.058 ± 10.701 8.339 ± 7.303 9.242 ± 6.887 1.790 ± 2.031 
PCa 150 71.873 ± 8.626 3.267 ± 4.229 18.489 ± 28.609 2.660 ± 3.636 
Total 1203 60.751 ± 16.830 6.609 ± 6.281 8.105 ± 12.569 1.494 ± 2.160  
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applied clinically in several tertiary hospitals in Shanghai, China. 

4. Discussion 

As per many researchers in early differential screening of prostate cancer, diminished concentrations of free zinc ion (Zn2+), 
whether in serum, in plasma, in urine, or in prostate tissue, are all considered as the marker of potential PCa development. A research 
group in Massachusetts General Hospital screened PCa via determination of endogenous zinc in samples of expressed prostatic 
secretion (EPS) [16]. In addition, Wakwe and colleagues conducted a descriptive cross-sectional study on the impact of low plasma 
zinc level on higher severity of Pca [17]. The association between low zinc level in prostate tissues and biochemical recurrence in PCa 
has been well documented [18]. These strategies are supportive of our measuring sensor for free zinc with self-invented fluorescent 
quantification regimen. Zhao group in China and Kuwahara group in Japan collaborated in the clinical applications of serum [Zn2+] 
measurement in PCa with the conclusions that [Zn2+] determination can well improve PCa detection efficiency in patients with PSA 
levels in the gray zone (i.e. 4-10 ng/mL) [19]. What is intriguing and worth mentioning is that their diagnostic efficacy with serum zinc 

Fig. 4. ROC curves and their characteristic AUC values of sole-index diagnosis (a with sole index of Age, b with tPSA, c with fPSA, d with [Zn2+]) 
and combined diagnosis (e 4 indices combined) with SVM algorithms. 

M. Wu et al.                                                                                                                                                                                                            



Heliyon 10 (2024) e24292

7

alone was marvelously higher than our objectively and strictly collected data and their AUC value with serum zinc alone was as high as 
0.7. In our results, however, serum [Zn2+] alone was merely eligible for an adjuvant (mean AUC of 0.55) in screening PCa. None-
theless, our combined diagnostic efficacy with four features can augment the mean AUC value to approximately 0.84, which is superior 
to the other diagnostic regimens irrespective of indexes alone or in combination. 

Notwithstanding, utilization of the reduced [Zn2+] alone could not suffice early screening of PCa. Accordingly, combined 

Fig. 5. Classification effect of the hyperplane (classification surface an of [Zn2+]-tPSA; classification surface b of [Zn2+]-fPSA; classification surface 
c of [Zn2+]-age; classification surface d of tPSA-age; classification surface e of fPSA-age; classification surface e of fPSA-tPSA) on the test set, where 
the points denote the corresponding samples; the area boundaries of different colors denote the corresponding classification surfaces; the blue, 
white, red regions denote the “normal”, “benign”, “malignant” prediction results, respectively. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 

Table 2 
Accuracy evaluation of the prediction performances with SVM model.  

Group Training Cases Testing Cases Accuracy 

Normal 276 69 0.833 
Benign 566 142 0.916 
PCa 118 29 0.833  
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diagnostic strategies flourish nowadays. Of note, Temiz and co-workers employed zinc to PSA ratio as a marker in prostate biopsy 
outcome prediction, despite the suboptimal mean AUC value of 0.67 [20]. Encouragingly, binary combination of [Zn2+] with tPSA or 
fPSA in our SVM model yielded the mean AUC value of 0.78 and 0.75, respectively. 

Machine learning (ML) has evoked revolution of modern research paradigms in many fields, especially in biomedicine. The 
classification and prediction of ML algorithms are already applied in PCa worldwide. Satoshi Nitta and colleagues verified that ML 
methods could predict more efficiently than some advanced PSA-based serologic screenings for PCa like PSA density and PSA velocity 
(21). Nevertheless, such approaches are limited due to the monofactorial application in scenarios with multifactors and there is a 
paucity of application of ML in quartet of [Zn2+], tPSA, fPSA and Age, which justified our further comparisons of four different ML 
algorithms (including Decision Tree, Random Forest, SVM and Multilayer Perceptron) (Supplementary information). On SVM 
complexity, the more classical one is Lloyd N. Trefethen, David Bau III, Numerical Linear Algebra, SIAM, 1997. P81 Equation (11.22), 
which is an O (n3) algorithm in the training process and for the testing process is O(n). 

With respect to the data distribution, the maximum (23.131 μM) of serum [Zn2+] in PCa group was paradoxically higher than in 
normal or benign group (Table 1), but the minimum (0.146 μM) and the average value (3.267 μM) of [Zn2+] in PCa cases were much 
lower than in normal or benign group (Table 2). Given the circumstances of serum [Zn2+] elevation in PCa patients, such as high-zinc 
diets, complication or comorbidity of other disorders like chronic gastritis, atherosclerosis, hypertension, etc., the discrepancy may be 
attributable to the presence of complications or comorbidities and the exclusion of such factors would substantially affect the AUC 
values. Hence, we excluded 37 PCa patients with complications or comorbidities from analysis. The consequent ROC profiles and its 
corresponding AUC values were significantly ameliorated. The combined classification efficacies of 4 indices via SVM algorithms 
yielded a mean AUC value of 0.94 (Fig. 8 d), which was superior to that with inclusion of complication or comorbidity (0.84) (Fig. 8 a - 
d). Despite the superiority of the results in this context, the robustness and stability of the model required more verifications due to the 
decline of PCa sample size. Thenafter, the initial model (the AUC of which was 0.84) was recommended in practice. 

Despite the absence of specificity of serum PSA-related biomarkers (i.e. tPSA and fPSA) and [Zn2+] in determination, the relatively 
high sensitivity of serological indices is a superiority in PCa screening, which is further supplemented by the mathematical advantages 
of the prediction functionality of SVM and other ML algorithms. We focused on risk stratifications during the screening procedure of 
PCa, with reference of the establishment of the renowned prostate imaging reporting and data system (PI-RADS) of MRI and the 
prostate health index (PHI) scoring system, etc. Either of the scoring platforms were not concerned with any ML/AI algorithm and 
cannot provide recommendation in radiology. In contrast, our SVM-based prostate index (PI) stratification system is capable of risk 
prediction of PCa and further corresponding recommendations for radiological evaluations. To our knowledge, our risk stratification 

Fig. 6. The relationship between PCa probability and values of input variables is represented, where the input variable is age (yrs, a), tPSA (μg/mL, 
b), fPSA (μg/mL, c) and [Zn2+] (μmol/L d), respectively. 
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system is superior to other predictors available in literature, with the accuracy of 83.3%, 91.6% and 83.3% in predicting the normal, 
benign and PCa cases, respectively. 

In order to investigate and further verify the advantages of our established PI stratification system and its syncretism with MRI, we 
conducted a retrospective analysis of the clinical data of five patients with different PI scores, including 4 indices, PI scores, predicative 
probabilities of PCa development, clinically evidenced prostate states and follow-up profiles (Table 4). Patient C, in particular, had a PI 
score of 3 and the predicative PCa probability of approximately 45.6%. According to our PI system, patient C should have been 
recommended for further radiological evaluations especially MRI. Meanwhile, the patient was diagnosed as having prostate adeno-
carcinoma by post-operative pathology, which further underlined the values of our PI system. In addition, our PI system was supported 
by retrospective data analysis. The PI-RADS scores of patients D and E were 3 and 5, respectively in MRI reports. Both patients were 
confirmed with having prostate adenocarcinoma by post-surgery pathology. As per our PI system, patient D was given a PI score of 4 
and predicative PCa probability of 67.2%, and patient E had a PI score of 5 and predicative PCa probability of 86.3%, respectively, 
which was in line with the follow-up findings but with higher accuracy. The followed up MR images and corresponding PI-RADS scores 
supported our PI scoring system as well (Fig. 9 a1 – a3, b1 – b3, c1 – c3). 

With the requirement of personalized regimen for diagnostics and therapeutics, the PI stratification system for PCa risk prediction 

Fig. 7. The program platform “Prostate Index stratification system” with input parameters: age, free prostate-specific antigen, total prostate-specific 
antigen, and serum zinc ion concentration. 

Table 3 
Prostate index (PI) establishment via risk stratification results.  

PI Normal Group Benign Group PCa Group Prostate State Probability of PCa (%) 

1 304 56 0 null or very low PCa probability <15% 
2 31 262 0 low PCa probability, high probability of benign prostate diseases 15%–35% 
3 10 306 58 probability of being benign vs. malignant prostate diseases, radiology suggested 35%–65% 
4 0 77 74 Relatively high PCa probability, radiology recommended 65%–85% 
5 0 7 15 Very high PCa probability, radiology needed >85%  
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was established with the use of SVM model and Sigmoid function. Meanwhile, further radiological evaluation modes such as MRI and 
68Ga-PSMA nuclear imaging might be recommended in the case of PI score higher than a certain threshold. 

5. Conclusion 

We established an SVM classification model with the combination of four parameters ([Zn2+], tPSA, fPSA and age) via SVM 

Fig. 8. ROC curves and their characteristic AUC values of Age combined with tPSA (a) or [Zn2+] (b) or tPSA & fPSA (c) diagnosis and 4 indices- 
combined diagnosis (d) with SVM algorithms. 

Table 4 
Prostate index (PI) evaluations and follow-up profiles of certain patients.  

Patient 
NO. 

Age 
(y.o.) 

tPSA 
(μg/ 
mL) 

fPSA 
(μg/ 
mL) 

Serum 
[Zn2+] 
(μmol/L) 

PI 
Score 

The State of Prostate Probability of 
PCa (%) 

Follow-up profiling (esp. with MRI) 

A 46 0.393 0.216 2.909 1 Prostate is nearly healthy, 
null or very low PCa 
probability 

4.3% N/A (no nodule identified in 
ultrasonography) 

B 63 2.364 0.688 1.879 2 low PCa probability, high 
probability of benign 
prostate diseases 

31.7% N/A (only prostate hyperplasia but no 
nodule identified in ultrasonography) 

C 66 6.349 0.843 1.243 3 Near probability of benign 
vs. malignant prostate 
diseases, radiology 
suggested 

45.6% N/A (diagnosed prostate adenocarcinoma in 
post-surgery pathology) 

D 85 16.291 3.532 4.1706 4 Relatively high PCa 
probability, radiology 
recommended 

67.2% PI RADS score = 3 (nodules were seen in the 
left peripheral zone of prostate in MRI and 
prostate adenocarcinoma were diagnosed in 
post-surgery pathology) 

E 83 23.637 5.365 1.044 5 Very high PCa 
probability, radiology 
needed 

86.3% PI RADS score = 5 (nodules were seen in the 
transitional & right peripheral zone of 
prostate in MRI and prostate 
adenocarcinoma were diagnosed in post- 
surgery pathology)  
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algorithms in early differential screening of PCa. Our PI stratification system based on SVM model and Sigmoid function presents 
optimal accuracy in preclinical prediction of prostate state in individuals. The combination of zinc ion concentration ([Zn2+]) and 
integration of support vector machine (SVM) algorithm meliorate prostate cancer (PCa) differential screening efficacy of our model, 
performing better than most of other screening regimens. Our research provided a successful attempt that combination of several 
features integrated with SVM algorithm can help a lot in both classification (differential screening) and prediction (risk stratification) 
of prostate cancer. SVM and other ML (machine learning)/DL (deep learning) algorithms can be applied and integrated in more clinical 
scenarios, including not only differential screening/diagnosis or prognosis prediction of diseases. 
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Fig. 9. MRI follow-up profiles of three patients. This figure illustrates the T2-WI (a1), DWI (a2), and ADC imaging (a3) of a patient whose PI score 
= 3 and PI-RADS = 4, the T2-WI (b1), DWI (b2), and ADC imaging (b3) of a patient whose PI score = 4 and PI-RADS = 5 and the T2-WI (c1), DWI 
(c2), and ADC imaging (c3) of a patient whose PI score = 5 and PI-RADS = 4. *T2-WI denotes T2-weighted imaging; DWI denotes diffusion- 
weighted imaging; ADC denotes apparent diffusion coefficient. 
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