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Abstract

The survey of plant and animal populations is central to undertaking field ecology.

However, detection is imperfect, so the absence of a species cannot be determined

with certainty. Methods developed to account for imperfect detectability during

surveys do not yet account for stochastic variation in detectability over time or

space. When each survey entails a fixed cost that is not spent searching (e.g., time

required to travel to the site), stochastic detection rates result in a trade-off between

the number of surveys and the length of each survey when surveying a single site.

We present a model that addresses this trade-off and use it to determine the

number of surveys that: 1) maximizes the expected probability of detection over the

entire survey period; and 2) is most likely to achieve a minimally-acceptable

probability of detection. We illustrate the applicability of our approach using three

practical examples (minimum survey effort protocols, number of frog surveys per

season, and number of quadrats per site to detect a plant species) and test our

model’s predictions using data from experimental plant surveys. We find that when

maximizing the expected probability of detection, the optimal survey design is most

sensitive to the coefficient of variation in the rate of detection and the ratio of the

search budget to the travel cost. When maximizing the likelihood of achieving a

particular probability of detection, the optimal survey design is most sensitive to the

required probability of detection, the expected number of detections if the budget

were spent only on searching, and the expected number of detections that are

missed due to travel costs. We find that accounting for stochasticity in detection

rates is likely to be particularly important for designing surveys when detection rates

are low. Our model provides a framework to do this.

OPEN ACCESS

Citation: Moore AL, McCarthy MA, Parris KM,
Moore JL (2014) The Optimal Number of Surveys
when Detectability Varies. PLoS ONE 9(12):
e115345. doi:10.1371/journal.pone.0115345

Editor: Daniel E. Duplisea, Institut Maurice-
Lamontagne, Canada

Received: August 20, 2014

Accepted: November 21, 2014

Published: December 19, 2014

Copyright: � 2014 Moore et al. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and repro-
duction in any medium, provided the original author
and source are credited.

Data Availability: The authors confirm that all data
underlying the findings are fully available without
restriction. All relevant data are within the paper
and its Supporting Information files.

Funding: The authors gratefully acknowledge
funding support from the Australian Research
Council (ARC) Centre of Excellence for
Environmental Decisions and an ARC Future
Fellowship to MAM (FT100100923). This study
was also supported by the GUYASIM project
(31032, programme operationnel FEDER 2007–
2013), with financial support provided by European
structural funds and has benefited from an
‘‘Investissement d9Avenir’’ grant managed by
Agence Nationale de la Recherche (CEBA, ref.
ANR-10-LABX-0025). The funders had no role in
study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

PLOS ONE | DOI:10.1371/journal.pone.0115345 December 19, 2014 1 / 22

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0115345&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Introduction

The probability of detecting a species has important implications for ecological

surveys of plants and animals. In an individual survey, detection is often

imperfect, that is, the species may be present but remain undetected [1–3].

Consequently, the absence of a species cannot be determined with certainty [4, 5].

This needs to be accounted for in order to, for example, derive unbiased estimates

of abundance [6, 7]. Imperfect detectability has important consequences in

ecology, including for re-visitation studies [8], demographic studies [9],

environmental impact assessments [10], species occupancy studies [11, 12] and

species distribution models [13].

Detectability is also a key parameter when designing surveys [10, 14–17],

managing cryptic species [18, 19], designing monitoring programs [20, 21] and

managing invasive species [22–25]. Several methods have been developed to

estimate and account for imperfect detection during ecological surveys

[10, 26, 27]. However, to the best of our knowledge, these methods do not account

for stochastic variation in detectability, despite such variation being well

documented and potentially important [28].

The rate of detection between individual surveys can vary for a range of reasons,

including changes in the activity or visibility of the species through time [29, 30],

changes in the survey conditions, or variation between observers [31, 32].

Although some of this variability can be predicted in advance (e.g. by considering

flowering season), or close to the survey day (e.g. by considering weather

conditions), much of it cannot. For example, although we may know the

flowering season for a particular plant species, how many plants are flowering on a

particular day (and hence the detectability of the species on that day) is not able to

be predicted in advance. Even though we do not know the exact detectability on a

given day, we can estimate the mean detectability throughout the flowering season

and variability about this mean. In the following, when we refer to variability in

detection rate, we refer to this kind of stochastic variation in the detection rate.

Consider surveying a single site to determine whether or not a particular species

is present. Assuming a particular time budget, observers will aim to spend as

much of that time as possible at the survey site. Therefore, if there is no variation

in detectability between visits, observers should only visit each site once to

minimize fixed costs of travel. However, stochastic variation in detectability

between visits results in a trade-off when surveying a single site. The chance of

encountering favorable survey conditions during at least one survey increases with

the number of surveys at a site. However, extra surveys require extra fixed costs of

initiating the surveys (e.g., extra travel time) and shorter individual surveys for the

same total time budget. Here we present a model with stochastic detectability that

addresses trade-offs between the number of surveys and the length of each survey

and examine how this stochasticity impacts on the efficiency of surveys. We

analyze the model to determine the number of surveys that is most likely to: 1.

maximize the expected probability of detection or 2. achieve a minimally-

acceptable probability of detection for given characteristics of the survey.
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Methods

We developed a model of detection at a single site that accounts for stochastic

variation in the detection rate between visits. We assumed that detection occurs as

a Poisson process and considered both when the detection rate between visits is

uncorrelated and correlated through time as two separate cases. We describe the

model assuming that we are trying to optimize the number of visits to a single site

but note that the derivation is identical when considering the number of sites

rather than the number of visits. We used the proposed model to evaluate how

stochastic detection rates affect minimum effort requirements for surveying

protocols. We also applied the model to two case studies in which we determined

the optimal number of visits to a site and the optimal number of quadrats to

survey in a region. In the second case study, we had additional data that allowed

us to compare the predicted optimal number of quadrats to an empirically-

derived estimate to determine the ability of the model to find the optima. Details

of these various steps are described below.

Fieldwork associated with the cascade treefrog data was approved by the

Australian National University animal experimentation ethics committee, and

conducted under the following permits: QDPI permits no. 788, 860 and 919,

QNPWS permit no. 2001, QDNR permits no. 1188 and 1301, QDEH permits

no. HO/000139/95/SAA and E5/000003/98/SAA, NSW NPWS scientific investi-

gation license no. B1474 and SF NSW permits no. 5267 and 5269.

The Model

Consider surveying a single site to detect the presence or absence of a particular

species. If the species is detected during survey i at rate li, then the probability of

failing to detect the species in survey i when searching for time ti is exp(2li ti) if

encounters occur randomly (as a Poisson process). Assuming that detection rate,

li, is independent among surveys (correlations among surveys is considered in S1

Appendix), then the probability of failing to detect the species during n surveys is:

Q~Pn
i~1 exp({liti)~exp({

Xn

i~1
liti)~exp({A), ð1Þ

where A5
Pn

i~1 liti is the expected number of detections for the entire survey

period (since li is the mean number of detections per time unit, liti is the

expected number of detections in survey i). As previously discussed, the rates of

detection li might vary from survey period to survey period. If we knew which

survey period had the highest rate of detection, the probability of failing to detect

the species, Q, would be minimized by concentrating effort in the time period for

which li is largest. However, we consider the case when the detection rates li are

not precisely known prior to surveys and treat them as random variables, with

mean m and standard deviation s.

Consider the case where survey effort is divided equally between visits, so there

are n surveys each of length t. Consequently, the mean of A is mA 5 nmt, and the

variance is sA
25n s2t2. We assume that A5

Pn
i~1 liti has a log-normal
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distribution (which will be approximately true if the individual detection rates li

have lognormal distributions; Wilkinson’s method, e.g. [33] That is, X5ln(A) is

normally distributed with mean m5ln(mA)–ln(1+sA
2/mA

2)/2, and variance

v5ln(1+sA
2/mA

2). Note that while it is useful to define the mean and variance of

A and X in order to derive the objective functions, the final equations are

expressed in terms of m and s, the parameters of the detection rate that are

estimated.

Objective 1: Maximize the expected probability of detection

First, we consider finding the number of surveys that maximizes the expected

probability of detection over the entire survey period, or equivalently minimizes

the expected probability of failed detection E[Q]. If X is a normal random variable

with mean m and variance v, the cumulative density function (cdf) of Q 5

exp(2A) 5 exp (2exp[X]) is given by,

F qð Þ~Pr Qvqð Þ,

~1{
1
2
(1zerf ½{mzln½{ln½q��ffiffiffiffiffi

2v
p �)

ð2Þ

where m and v are the mean and variance of X 5 ln(A) as defined above and erf is

the normal error function. Let f(q) denote the probability density function of q;

f(q)5dF(q)/dq. The expected value of Q is obtained using the standard formula

for expected values (S2 Appendix),

E Q½ �~
ð1

0
qf (q)dq:

The resulting expression is a decreasing function of both n and t (S2 Appendix).

However, a budget constraint on the total available funding means there is a

trade-off between these two aspects of the surveys. Should we increase the number

of surveys n and decrease the length of each, or vice-versa? We assume that there is

a total time budget B to survey the site and that each survey has a fixed time c that

does not contribute to detections (e.g., the time taken to travel to and from the

site) and a variable time t that does contribute to detections. The expected value of

Q then needs to be minimized subject to the constraint B 5 n(c + t). We set t 5 B/

n – c and substitute for t to get an expression for the expected value of Q with only

one control variable, n (S2 Appendix).

For a Poisson process with detection (or arrival) rate m, the mean time until

first detection is 1/m. Since the units of the budget and fixed cost are essentially

arbitrary unless related to the detection rate, it is useful to express them in units of

mean time until first detection. Consequently, we define the scaled budget and

scaled fixed-cost as B95 Bm and c95 cm respectively. We find that the resulting

expression for the expected value of Q depends only on three parameter

combinations: B9, c9 and the coefficient of variation q 5 s/m (see S2 Appendix).

The final equation for the expected value of Q is:
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E Q½ �~
ð1

0
{

e
{

{ln(B0{c0n)z1
2 ln (1zh2

n )z ln ({ ln (q))

� �2

2 ln (1zh2
n )ffiffiffiffiffi

2p
p

ln(q)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln(1z h2

n )

q dq: ð3Þ

Note that we only consider integer numbers of surveys when calculating the

exact optimal solution where equation 3 is minimized.

Analytical approximation for objective 1

While we can use the above expression together with numerical methods to

calculate the optimal number of visits for a given set of parameters, it is useful to

look for an analytical approximation that may give further insight into key

relationships that determine the solution, and that may be more computationally

convenient. Using Laplace’s method to approximate the integral in Equation 2, we

derive the following approximation for the optimal number of surveys that

minimizes Equation 2 (see S2 Appendix):

n �<
1
4

{5h2zh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24B

c
z25h2

r !
: ð4Þ

Objective 2: Satisfy a prescribed detection target

The number of surveys, n, that maximizes the likelihood that the probability of

detection failure is less than Qc (i.e., maximizes the likelihood that the probability

of detection is greater than 1 – Qc) is the solution to the implicit equation (see S2

Appendix)

{ln(Qc)~(B0{nc0)(1z
h2

n
)

{4n2zh2(B
0

c0{5n)

2h2(B0
c0{n) ð5Þ

such that
B0

c0
§n§1.

Analytical approximation for objective 2

When q is small, the number of surveys that maximizes the likelihood that the

probability of detection failure is less than Qc can be approximated by (see S2

Appendix)

n �~
B0

2c0
3{XCzln(B0){

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9z({2zXC)XCzln(B0) 2{2XCzln(B0)ð Þ

p� �
, ð6Þ

where Xc 5 ln(2ln[Qc]) is the complementary log-log function of the acceptable

probability of detection failure.
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Applications

As elucidated in the introduction, detection probability is a key parameter for

many ecological applications. Here we present three simple examples of how the

above model may be applied.

1. Minimum survey effort protocols. The above model identifies the optimal

number of surveys for a given budget but we can also apply the model to

identify the budget required to achieve a minimum level of performance.

While analytical solutions are not available, numerical approaches can be used

to develop minimal effort protocols for both objectives. We illustrate this

approach by calculating how the expected probability of detection varies with

budget B (assuming that the optimal number of surveys is chosen for that

budget). Similarly, we determine how Pr(Q,Qc) varies with the budget, again

assuming that the optimal number of surveys is chosen. These relationships

can then be used to identify the budget required to achieve a sufficient level of

performance.

2. How many surveys? We applied the analyses to surveys of the cascade treefrog

(Litoria pearsoniana), using data from searches of 29 stream sites where this

species was observed [34]. Each site was a transect 100 m in length along a

stream, and was surveyed between 2 and 9 times (mean 3.25 times) between

January 1995 and February 1999. The time spent at each site was

approximately 1 person hour, with either 2 or 3 people searching the stream

and surrounding vegetation for frogs (see Parris 2001 for details of the

surveys). Parameter estimates for the model were obtained using Bayesian

methods in WinBUGS (OpenBUGS version 3.0.3,[35]). Details of the models

and methods used can be found in S3 Appendix.

The parameter estimates were used to predict the average rate of detection and

coefficient of variation for sites with 1 detected individual and for sites with 3

detected individuals. These were then used to determine the optimal number of

surveys for a range of budgets for the total time, assuming that each site has a

fixed time cost of c51 hour, and survey season was T53 months (90 nights).

These values are consistent with the fixed time costs of travelling to and from each

site and the length of the survey seasons reported in Parris (2001).

3. Testing the model with data: how many quadrats? The model will always

determine the optimal number of surveys if the assumptions are met. The key

assumptions are that variation in the summed detection rate (Equation 1)

follows a lognormal distribution, and that the mean and standard deviation of

that distribution are known. However, both assumptions will be violated in

practice; the distribution will not be perfectly lognormal, and the parameters

can at best be predicted with error.

We evaluated how well the model predicted the optimal number of surveys for

real searches, by using a series of two experiments. In so doing we present another

possible application of the model in which we determine the optimal number of

sites to survey to detect the presence of a species in a region, or at a smaller scale,

Optimal Surveys with Variable Detectability
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the optimal number of quadrats to survey per site. We used an initial search

experiment to predict the detection rate of two plant species in a second

experiment, with the detection rates predicted to vary among quadrats and

searchers. For each of the two species, the predicted mean and standard deviation

of the detection rate was used to predict the optimal number of quadrats to survey

for each. These predicted optima were compared to the number that would have

actually maximized detection of the two species during the second experiment.

Details of the experimental plant survey are described by [36], with an overview

provided below. While the first experiment used five different species [36], only

two of these (Atriplex semibaccata, Lomandra longifolia) were used in the second

experiment, so we report results only for these species.

In the first experiment, nine square (15615 m) quadrats in an exotic grassland

in Royal Park, Melbourne, were planted in 2010 with five species. Thirty, ten, four

or two individuals were randomly assigned to each quadrat, and were randomly

located within each quadrat. This variation in the density of species among

quadrats caused the rate of detection of species to vary among quadrats [36]. Each

of 14 observers, who had between 2 and 30 years of plant survey experience,

searched the quadrats for 15 minutes and recorded the time to detection of the

first and second individual encountered of each species. Average height of the

exotic grasses within each quadrat was estimated from 100 point quadrats that

were arranged on a square grid at 1.5 m intervals. A failure time model was fitted

to the time to detection data from 2010 to estimate the rate of detection of each

species within each quadrat by each observer (630 combinations, being 5 species,

14 observers and 9 quadrats). Details of the model can be found in S4 Appendix.

This model and the 2010 data were used to predict detection rates of Atriplex

semibaccata and Lomandra longifolia for each observer and quadrat in 2011, and

the average and standard deviation of the detection rates were calculated. From

these predictions of detection rate, we predicted the number of quadrats that

would maximize the probability of detecting each species in at least one quadrat in

2011 when the search budget was 5, 10 or 15 minutes, and when the time to travel

between quadrats was 0.25, 0.5 or 1 minute. This generated nine different values

for the optimal number of quadrats, ranging from 1 to 11 quadrats (S4

Appendix).

We also predicted the number of quadrats that optimized the satisficing

objective, i.e., that maximized Pr(Q,Qc). We chose Qc5exp(23.0)50.05 as the

critical probability, which yielded values of between 1 and 16 for the predicted

optimal number of quadrats assuming a search budget of 5, 10 or 15 minutes and

fixed travel time of 0.25, 0.5 or 1 minute (S4 Appendix).

Search data were collected in 2011 in the same way as in 2010, with the quadrats

located in a different section of Royal Park, with the exotic grass being longer on

average in the 2011 quadrats. The L. longifolia plants used in 2011 were similar in

size to those used in 2010, but the A. semibaccata plants were noticeably smaller.

The different sizes of individuals were not accounted for in the optimization. The

only other difference in search protocol in 2011 was that times to detection of all

encountered individuals in each quadrat were recorded, and detected individuals
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were tagged to avoid double counting. All tags were removed before the next

observer searched the quadrat.

The number of quadrats that were predicted to be optimal for the 2011

experiment was compared to the empirically-derived optima. The empirically-

derived optimal number of quadrats was determined by assuming that quadrat

observers would be selected randomly (with replacement) from the different

combinations of observers and quadrats. Therefore, the probability of failing to

detect a species in a search of length t minutes in a single quadrat was ‘‘observed’’

to be y/v, where v is the total number of combinations of observers and quadrats

and y is the number of those for which the time to first detection was less than t.

Thus, the probability of failing to detect the species when searching n quadrats

each for time t was (y/v)n. Note, t is constrained to be t5B/n 2 c so for each

combination of B and c, we found the value of n that minimized the probability of

failed detection (y/v)n (y varies with n, B and c). The values for this observed

minimum were compared to the predicted minimum determined from our

optimal solution that was based on the mean and standard deviation of the

detection rate estimated using data from the first experiment (Equation 3).

To test the predictions under the satisficing objective, we note that aiming to

achieve a probability of failed detection less than Qc is equivalent to achieving an

expected number of detections of 2ln(Qc) summed over all quadrats searched

(Equation 1). Thus, we determined, the proportion of times that the total

expected number of detections for the n quadrats would have exceeded 2ln(Qc)

(from multiple different random samples of n surveys in 2011 and for given values

of B and c). The detection rate for each quadrat and observer in 2011 was

calculated as the number of detected individuals divided by the time spent

searching the quadrat by the observer. The expected number of detections was

calculated as the sum of the detection rate in the sample of n quadrats multiplied

by the time available to search each quadrat (B/n – c). We then found the value of

n that maximized the proportion of times that the expected number of detections

exceeded 2ln(0.05)53.0 from 1 million random samples of quadrat searches

from the 2011 dataset.

Note that achieving an expected number of detections of 2ln(Qc) is only

equivalent to achieving a probability of failed detection less than Qc if we assume

that detections follow a Poisson process both in the predicted and empirically-

derived values (Equation 1). However, the proposed method still tests the other

two key model assumptions: that variation in the summed detection rate follows a

lognormal distribution, and that the mean and standard deviation of that

distribution are known. In contrast, to derive an empirical estimate of the

expected probability of failed detection we did not need to assume a model for

detections, hence, for the first objective function the assumption that detections

follow a Poisson process was also tested.
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Results

Our analysis reveals three variables influence the optimal monitoring design, but

their relative influence depends on the choice of objective. The ratio of the budget

to the fixed cost per survey was important for both objectives that we examined.

When the objective was to maximize the expected probability of detection,

variability in the detection rate among surveys, expressed as the coefficient of

variation, was important. When considering the second objective, which was to

meet a prescribed probability of detection, the coefficient of variation in detection

rate was relatively unimportant, while the scaled budget (expected number of

detections if the budget were spent entirely on searching and not travelling)

became important. These results, and those of the case studies, are described in

detail below, with key results summarized in Table 1.

General Results

Objective 1: Maximize the expected probability of detection

As variability in detection increases (q increases), a larger number of surveys per

site, each search being of shorter duration, is optimal (Fig. 1a). The optimal

number of surveys is also an increasing function of the ratio of budget to fixed

cost (Fig. 1a). While the ratio of the budget to fixed cost is influential, the actual

values of these two parameters are less so; over more than ten-fold changes in the

budget, the optimal number of surveys changes by at most two surveys when the

ratio B/c is held constant (S1 Fig.). Further, only the ratio of these two variables

enters into the approximate solution (Equation 3).

While the ratio of the budget to fixed cost is most influential, when the ratio is

held constant the exact optimal number of surveys does change with the scaled

budget (S1a Fig.); as the scaled budget increases it is optimal to perform more

surveys. Consequently, for rare or cryptic species with low detection rates

(resulting in a small scaled budget), it is optimal to have fewer, longer surveys

than for common species (high mean detection rate, large scaled budget).

Overall, the approximation provided similar results to the full optimization

(compare Fig. 1b with 1a). The largest differences between the approximate and

exact solution occur when the budget to fixed-cost ratio is large and the

coefficient of variation is small (S2 Fig.). However, this had minimal effect on the

expected performance because in this region of the parameter space the expected

probability of failed detection is very small (S3 Fig.). Consequently, the difference

in the value of the objective function is negligible (S3 Fig.). Thus, although the

approximation recommends a different number of surveys for some parameter

values, the expected performance is nevertheless consistently close to optimal.

Objective 2: Satisfy a prescribed detection target

When the management aim is to maximize the chance of achieving a minimally-

acceptable probability of detection, the optimal solution is largely insensitive to

changes in the coefficient of variation q (S4 Fig.). As for the previous objective

function, the optimal number of surveys increases with the scaled budget B9
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(Fig. 2a), and decreases with the scaled fixed-cost c9. When maximizing the

expected probability of detection, we found that the ratio of budget to fixed-cost

that was important, rather than their individual values. However, for the

satisficing objective function, the scaled budget is important in its own right;

varying the scaled budget while keeping the ratio B9/c9 (5B/c) constant has a

greater effect on the solution than when maximizing the expected probability of

detection (see discussion of approximate solution below).

For this objective function, we have an additional parameter: the prescribed

acceptable probability of failed detection Qc. For a fixed budget and travel cost, a

lower prescribed acceptable probability of failed-detection Qc results in it being

optimal to perform fewer, longer surveys (Fig.s 2a).

The approximation derived assuming small q (Equation 5) performs well even

when q is reasonably large because the optimal solution is largely insensitive to

changes in the coefficient of variation q (S4 & S5 Figs.; for q51.5 compare Fig. 2a

with 2b). The approximate solution (Equation 6) highlights the substantial

Table 1. Summary of key results.

Objective 1: Maximize the expected probability of
detection Objective 2: Satisfy a prescribed detection target

Key variables Budget to fixed cost ratio, B/c Scaled budget, B9

Coefficient of variation, q5s/m Scaled fixed cost, c9

Target probability of failed detection, Qc

Main results When the detection rate is highly variable it is
optimal to have more, shorter surveys than
when it is relatively constant.

The solution is relatively insensitive to changes in the
coefficient of variation, q.

A tougher management objective (lower Qc) results in
fewer, longer surveys.

For rare or cryptic species it is optimal to have
fewer, longer surveys than for common species.

The analytic approximation derived for each
objective function performed well.

Minimum survey effort When detection rate varies, more effort is
required to ensure management objectives
are met.

Treefrog surveys
(B510 hours, Qc50.95)

When the expected abundance is1, 3 surveys
are optimal.

When the expected abundance is1, 2 surveys are
optimal.

When the expected abundance is3, 4 surveys
are optimal.

When the expected abundance is3, 4 surveys are
optimal.

Correlation between time-steps only affected
the solution when the correlation coefficient was
quite large.

Plant surveys Atriplex
semibaccata m50.55,
s50.60 Lomandra longifolia
m50.56, s50.64

The predicted optimal number of quadrats ranged
between 1 (for both species when budget B55 and
fixed cost c51) and 11 quadrats (for L. longifolia
when B515 and c50.25).

The predicted optimal number of quadrats ranged
between 1 quadrat (for both species when B55) and
16 quadrats (for both species when B515 and
c50.25)

(Qc50.95) The predicted number of quadrats was very close
to the empirically-derived optima.

The predicted and observed optimal numbers of
quadrats did not correspond as closely but were still
strongly correlated.

doi:10.1371/journal.pone.0115345.t001
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influence that the scaled budget B9, scaled fixed-cost c9 and the management

aspiration Qc have in determining the optimal number of surveys. The scaled

fixed-cost c9 appears as a scaling factor in the approximate optimal solution, such

that if the fixed cost is doubled, the optimal number of surveys will be halved.

Consequently, we show results as a function of the scaled budget B9 and the

Fig. 1. Optimal number of surveys (contours) when maximizing the expected probability of detection
as a function of the budget to fixed-cost ratio B/c (5B9/c9) and the coefficient of variation q. The figures
compare the exact solution with c950.5 (a) and approximate solution (b). For the approximate solution,
dashed-line A corresponds to Litoria pearsoniana (q52.45), dashed-line B corresponds Atriplex semibaccata
(q50.91) and dashed-line C corresponds Lomandra longifolia (q50.87). Note that exact solution depends on
the value of B, not just the ratio B/c, hence lines indicating the optimal number of surveys for the case studies
are not shown on (a).

doi:10.1371/journal.pone.0115345.g001
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management aspiration Qc, assuming c950.5 for consistency with results for the

first objective function.

The approximate solution shows that the optimal number of surveys is also an

increasing function of detection rate (higher detection rate implies higher scaled

budget) for a given budget and fixed cost. Hence, as for the previous objective

function, for rare or cryptic species it is optimal to have fewer, longer surveys than

for common species.

Fig. 2. Optimal number of surveys (contours) when maximizing the probability of achieving a
prescribed detection rate as a function of the scaled budget B9 and the prescribed detection rate Qc
for the exact solution, with q51.5 and c950.5, (a) and the approximate solution, with c950.5 (b).

doi:10.1371/journal.pone.0115345.g002
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Applications

1. Minimum survey-effort protocols. As the variance in the detection rate

increases, a greater amount of effort is required to ensure a specified minimum

expected probability of detection (Fig. 3a). When the management aim is to

maximize the chance that the probability of detection is sufficiently large,

rather than consider the effort required to ensure a minimum expected

probability of detection, we consider the effort required to ensure that the

probability the management goal is achieved, i.e., Pr(Q,Qc) is greater than

some minimum level Pc (Fig. 3b). For example, suppose we want to ensure

that we detect the species with probability 0.9. If l is constant between visits,

this can be achieved in a single visit of at least 3(1/l) time units (Fig. 3b). If l

is variable over time, with a coefficient of variation q51.5 and scaled fixed-

cost c950.5, then with a budget of 3(1/l) time units there is less than 50%

chance that the realized detection probability is greater than 0.9 (Fig. 3b). To

increase the likelihood that a detection probability of 0.9 is achieved to 90%,

the budget needs to be increased to 8.5 (1/l) time units or 12.5 (1/l) time

units to increase the likelihood to 98% (Fig. 3b).

Fig. 3. Expected probability of detection (a) as a function of the scaled budget B9, with c950.5, when
detection rate is assumed to be variable (solid line, q51.5) compared to when it is assumed to be
constant (dashed line). Likelihood that the failed-detection probability Q is less than the prescribed value Qc
(b) as a function of the scaled budget B9, with q51.5 and c950.5, when detection rate is assumed to be
variable (solid lines) compared to when it is assumed to be constant (dashed line).

doi:10.1371/journal.pone.0115345.g003
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2. How many surveys? For the case study of Litoria pearsoniana the mean

detection rate was estimated to be 0.67 detections per hour when the

abundance per site was 1 individual, and 2.2 detections per hour when the

abundance was 3. The coefficient of variation was 2.5 for both abundance

levels. The temporal correlation in detection rate from night to night was

estimated to be 0.3, with a wide 95% credible interval of [0.00, 0.97].

With a budget of 10 hours and an objective to maximize the expected value, it is

optimal to perform 3 surveys throughout the season if there is expected to be a

single individual (Fig. 4a), or 4 slightly shorter surveys if the expected abundance

is 3 (Fig. 4b). The resulting expected probabilities of detection are 0.83 and 0.97

respectively. The correlation between time-steps does not affect the solution

unless it is quite large, r.,0.85 for low abundance and r.,0.75 for the higher

abundance (S6 Fig.).

The approximation (Equation 3) prescribes 5 surveys for both abundance levels

since it is independent of the detection rate (and consequently abundance). This

gives expected detection probabilities 0.015 and 0.0012 probability units less than

optimum for the lower and higher abundance levels, respectively.

If the objective is to maximize the chance of achieving a detection probability of

at least 0.95, it is optimal to perform 2 or 4 surveys throughout the season

depending on the expected abundance level (1 or 3 individuals respectively;

Fig. 4c & 4d). With such a small budget (10 hours), the correlation between time-

steps again does not affect the solution unless the correlation coefficient is high,

r.,0.9 (1 individual) and r.,0.85 (3 individuals; S6 Fig.). For both abundance

levels and a budget of 10 hours, the approximation (Equation 5) proposes the

same number of surveys as calculated using numerical methods.

3. Testing the model with data: how many quadrats? We tested the predictions

of our model using data from a search experiment in 2011. The mean

detection rate and standard deviation were estimated to be m50.55 (s.d. of

posterior 50.18) and s50.60 for Atriplex semibaccata, and m50.56 (s.d. of

posterior 50.17) and s50.64 for Lomandra longifolia based on detection

experiments conducted in 2010. Using these estimates, the optimal number of

quadrats to maximize the probability of detecting each species at the site

ranged between 1 (for both species when B55 and c51) and 11 quadrats (for

L. longifolia when B515 and c50.25) (Fig. 5a, b, see also S4 Appendix:

Table 1).

The predicted number of quadrats that maximizes the probability of obtaining

at least one detection was very close to the empirically-derived optima (Fig. 5a, b).

The relationship is approximately 1:1 for both species (slope of linear regression is

1.09 (s.e.50.18) and 1.04 (s.e.50.12) for Atriplex and Lomandra respectively). For

both Atriplex and Lomandra, the predicted and observed optimal number of

quadrats are strongly correlated (r50.93 and 0.95 respectively for the Pearson

product-moment correlation coefficients). This close correspondence occurred

despite the detection rates in 2011 differing from those estimated from the 2010

data. For Lomandra, the mean detection rate in 2011 was slightly higher than that
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predicted from the 2010 data (observed rate of 0.61 compared with the prediction

of 0.56), while for Atriplex, the mean detection rate estimated from data in 2010

was substantially smaller than that observed in 2011 (observed rate of 0.32

compared with the prediction of 0.55). However, for both species, the predicted

coefficient of variation in the detection rate was sufficiently close to that observed

that the predicted optimal number of quadrats was similar (observed 0.82 for both

species, compared with predicted value of 1.09 and 1.14 for Atriplex and

Lomandra respectively).

The optimal number of quadrats predicted to maximize the chance of achieving

a detection probability greater than 0.95 ranged between 1 quadrat (for both

species when B55) and 16 quadrats (for both species when B515 and c50.25)

(Fig. 5c, d). The predicted and observed optimal numbers of quadrats do not

correspond quite as closely for this objective (Fig. 5c, d), particularly in the case of

Atriplex (slope of linear regression is 0.57 (s.e.50.07) and 1.164 (s.e.50.03) for

Atriplex and Lomandra respectively). The greater difference between predictions

and observations for Atriplex arises because of the overprediction of the detection

rate in 2011 from the 2010 data. Much closer correspondence between the

predictions and observations would have been achieved if the mean detection rate

Fig. 4. Optimal number of surveys for Litoria pearsoniana when the objective is to maximize the expected probability of detection (a & b), and
maximize the probability of satisfying a prescribed detection rate of 95% (c & d). Abundance51 (m50.67) in (a) & (d), and abundance 53 (m52.2) in
(b) & (d). The shaded area is the region such that the expected probability of failed detection is no more than 0.01 probability units away from the optimum.
The correlation coefficient r50.3, fixed cost c51 hour and survey season length T590 days.

doi:10.1371/journal.pone.0115345.g004
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of Atriplex in 2011 had been predicted more accurately. Nevertheless, for both

Atriplex and Lomandra, the predicted and observed optimal number of quadrats

are strongly correlated (r50.95 and 0.99, respectively). This analysis helps to

validate our model for the optimal number of surveys for maximizing the

expected probability of detection, and for satisfying a required rate of detection.

Discussion

The results show that taking account of stochasticity in detection rate is important

for designing effective surveys. Further, the chosen objective of the survey

influences both the optimal number of visits and the key parameters that

determine the optimal solution. For both management objectives and for a range

of parameter values, surveying multiple times was more efficient than a single

survey (S7 Fig.). However, the value of the objective functions are generally quite

Fig. 5. Predicted versus observed optimal number of quadrats to search when: the objective is to
maximize the expected probability of detection for Atriplex semibaccata (a) and Lomandra longifolia
(b); the objective is to satisfy a required probability of detection for Atriplex semibaccata (c), and
Lomandra longifolia (d). Multiple values are indicated by the bolder points; three values at the point (1,1) for
Atriplex (c), and two values at point (1,2) for Lomandra (d). Search budget B is 5,10 and 15 minutes; travel
time between quadrats c is 0.25, 0.5 and 1 minute. The diagonal line represents perfect correspondence.

doi:10.1371/journal.pone.0115345.g005
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robust to the exact number of surveys chosen, in particular when the total budget

available is large relative to the mean time until first detection and when the

coefficient of variation of the detection rate is small (see Application 2). This

suggests that it is important to take stochastic variation into account, but that

performance will likely be robust to uncertainty in parameter estimates.

When the objective is to maximize the probability of achieving a prescribed

detection probability, the optimal number of surveys is largely independent of the

variance in the detection rate, but instead depends on the required detection

probability. This is consistent with previous studies that also consider satisficing

objective functions (e.g. [37]). Note that although the survey design may not

depend on the variance in the detection rate, the value of the objective function

(i.e. the probability of achieving the desired detection level) does. Thus, the

variance is still important for (a) setting achievable management targets, and (b)

setting minimum survey effort levels.

For each objective function we derived an approximate explicit solution for the

optimal number of surveys. These explicit solutions are much easier for managers

to implement than calculating the solutions numerically, and may be useful for

incorporating stochastic detection rates into more complex optimal survey design

problems. Note that although the approximate solution when optimizing the

expected probability of detection did not approximate the optimal number of

surveys for some parameter values, it consistently performed well in terms of the

value of the objective function achieved and is consequently still a useful

approximation.

Which objective function is most appropriate will depend on management

aims. Increasing the expected probability of detection will reduce the number of

sites where false absences occur, which might be desirable when many sites are

monitored [16, 38]. However, if only a few sites or a single site is monitored, it

may be more appropriate to maximize the chance that the detection probability is

greater than some specified threshold. For example, when assessing the

conservation status of a site prior to development, establishing a species is not

present should be demonstrated such that the probability of failed detection is

sufficiently low [5, 10, 39].

Determining the minimum effort required to ensure a desired probability of

detection is a useful and common application of estimated detection probabilities.

Previous studies assume a constant probability of detection; either assuming a

constant probability of detection per visit and calculating the minimum number

of visits required (e.g. [4, 5]), or determining the minimum required length of a

single visit assuming a constant detection rate [10]. Unsurprisingly, when the

detection rateis stochastic, more effort is required to ensure management

objectives are met. The model presented provides a way to calculate the extra

effort required.

Detectability depends on the abundance of the species at the site being surveyed

[36]. However, if we are surveying a new site it is unlikely that we will know the

abundance in advance. Our results highlight that the expected performance of the

objective function is less sensitive to the number of surveys for species with higher
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detection rates. Therefore, when abundance is unknown it is preferable to design

the survey assuming low abundance (i.e. lower detection rate). Similarly, if two

species have the same coefficient of variation and it is desirable to survey both

species simultaneously, then planning should be based around the rarest or most

cryptic species. This holds true for both objective functions.

We tested our modeling approach using an experimental search for plants.

Although not extensive, the test gave very encouraging results. For the two species

tested, the predicted optimal number of quadrats to search was close to the

observed optima. The correspondence was particularly good considering that the

empirically-derived estimate would contain some error due to the randomness in

the experimental times to detection.

We have applied our model to the case where detection rate varies over time

and between locations. This model could be applied to other situations where the

detection rate varies in a manner that cannot be predicted a priori. For example,

the ability of observers to detect species is often quite variable, even when

accounting for experience. Consequently, if conducting surveys to determine that

a species is absent (e.g., absence of pest species for quarantine and trade purposes),

is it better to send a single observer to each site or several observers for a shorter

amount of time? Given stochastic variation among observers, our approach could

determine this optimal number of observers.

In this study we restrict our attention to the case when the mean of the

detection rate is assumed to be constant throughout the identified ‘‘good’’

monitoring period. It is also possible that there will be additional structure, for

example the mean detection rate may be known to vary cyclicly over the breeding

season, reaching a peak at some particular date. This is the subject of ongoing

analyses, but we believe the simple case considered here is still applicable to a wide

range of scenarios, and is useful when such structure is unknown.

Previous studies that assess optimal survey designs generally assume that the

detection probability of a species is constant over time (e.g. [5, 10, 28]). However,

in practice this is unlikely to be the case. Here we have shown that survey designs

can be made more efficient if variability in detectability is taken into account. We

found that accounting for stochastic variation in detection rates is likely to be

particularly important when detection rates are low. Further, the effort required to

guarantee a particular probability of detection is likely to be underestimated if

stochastic detectability is not accounted for in survey designs. Our results have far

reaching ramifications due to the the range of disciplines that rely on plant and

animal surveys to inform, monitor and evaluate study outcomes. The model and

analyses presented is an important theoretical step in optimal survey design as well

as being directly applicable to a range of management applications, including

environmental impact assessments, species occupancy studies and designing

monitoring programs.
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Supporting Information

S1 Fig. Effect of scaled budget on the optimal number of surveys for objective 1.

For a constant budget to fixed-cost ratio of 10: (a) Scaled budget B9 versus the

optimal number of surveys n, (b) the corresponding optimal expected probability

of detection failure. Black and blue lines correspond to a coefficient of variation

equal to 0.5 and 3 respectively. The solid-line corresponds to the exact solution

and dashed-line to the approximate solution (Note, in figure (b) the black

dashed-line is obscured by the solid black-line).

doi:10.1371/journal.pone.0115345.s001 (PDF)

S2 Fig. Difference between exact and approximate solution for objective 1.

Difference in optimal number of surveys for the approximate and exact solution

(approximate minus exact solution), c950.5.

doi:10.1371/journal.pone.0115345.s002 (PDF)

S3 Fig. Value of objective function for objective 1. (a) Expected probability of

failed-detection E[Q] for exact solution, (b) difference in expected probability of

failed-detection E[Q] for exact and approximate solutions. c950.5.

doi:10.1371/journal.pone.0115345.s003 (PDF)

S4 Fig. Effect of coefficient of variation on the optimal solution for objective 2. (a)

Optimal number of surveys using exact solution, (b) optimal number of surveys

using approximate solution, (c) value of objective function using exact solution,

(d) difference in objective function when using exact and approximate solutions.

c950.5, Qc50.05.

doi:10.1371/journal.pone.0115345.s004 (PDF)

S5 Fig. Difference between exact and approximate solution for objective 2.

Difference between exact and approximate solution as a function of the scaled

budget and (a) coefficient of variation (Qc50.05), and (b) detection target

(q51.5). c950.5.

doi:10.1371/journal.pone.0115345.s005 (PDF)

S6 Fig. Correlation coefficient r and the optimal number of surveys for Litoria

pearsoniana. Effect of correlation coefficient r on the optimal number of surveys

for Litoria pearsonia when the objective is to (a)&(b) maximise the expected

probability of detection and (c)&(d) maximise the probability of satisfying a

prescribed detection target of 95%. (a)&(c): abundance 51 (m50.67); (b)&(d)

abundance 53 (m52.2). Fixed cost c51 hour and survey season length T590

days.

doi:10.1371/journal.pone.0115345.s006 (PDF)

S7 Fig. Difference between the optimal solution and a single visit. Difference in

the value of the objective function between the optimal solution (solid-line) and a

single visit (dashed-line) when the objective is to (a) maximise the expected

probability of detection and (b) maximise the probability of satisfying a

prescribed detection target of 95%, for 3 different values of the coefficient of

variation (purple: q50.5, orange: q51, blue: q53). B/c515 for both graphs.
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S1 Appendix. Accounting for temporal correlation.

doi:10.1371/journal.pone.0115345.s008 (PDF)

S2 Appendix. Additional model details.

doi:10.1371/journal.pone.0115345.s009 (PDF)

S3 Appendix. Additional model details for application 2: how many surveys?

doi:10.1371/journal.pone.0115345.s010 (PDF)

S4 Appendix. Additional model details and results for application 3: how many

quadrats?

doi:10.1371/journal.pone.0115345.s011 (PDF)

S1 Dataset. OpenBugs code and data for application 2 (cascade treefrog surveys).

doi:10.1371/journal.pone.0115345.s012 (RTF)

S2 Dataset. OpenBugs code and 2010 data for application 3 (plant surveys).

doi:10.1371/journal.pone.0115345.s013 (RTF)

S3 Dataset. 2011 data for application 3 (plant surveys).

doi:10.1371/journal.pone.0115345.s014 (TXT)
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