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Abstract

Clinical applications of oocytes cryopreservation include preservation of future fertility of

young cancer patients, substitution of embryo freezing to avoid associated legal and ethical

issues, and delaying childbearing years. While the outcome of oocyte cryopreservation has

recently been improved, currently used vitrification method still suffer from increased bio-

safety risk and handling issues while slow freezing techniques yield overall low success.

Understanding better the mechanism of cryopreservation-induced injuries may lead to

development of more reliable and safe methods for oocyte cryopreservation. Using the

mouse model, a microarray study was conducted on oocyte cryopreservation to identify

cryoinjuries to transcriptionally active genome. To this end, metaphase II (MII) oocytes were

subjected to standard slow freezing, and then analyzed at the four-cell stage after embry-

onic genome activation. Non-frozen four-cell embryos served as controls. Differentially

expressed genes were identified and validated using RT-PCR. Embryos produced from the

cryopreserved oocytes displayed 200 upregulated and 105 downregulated genes, associ-

ated with the regulation of mitochondrial function, protein ubiquitination and maintenance,

cellular response to stress and oxidative states, fatty acid and lipid regulation/metabolism,

and cell cycle maintenance. These findings reveal previously unrecognized effects of stan-

dard slow oocyte freezing on embryonic gene expression, which can be used to guide

improvement of oocyte cryopreservation methods.

Introduction

Successful oocyte cryopreservation is of interest to preserve future fertility of cancer patients

undergoing chemo- and radiotherapy, to substitute embryo freezing toward avoiding associ-

ated legal and ethical issues, to prolong childbearing years, and to conserve endangered spe-

cies. While the discovery of cryoprotective properties of glycerol and dimethylsulfoxide

(Me2SO) led to successful cryopreservation of many cell types [1, 2], mammalian oocytes have

been challenging to cryopreserve due to intracellular ice formation (IIF) [3], cell lysis [4],
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chemical toxicity of cryoprotective agents (CPA) [5], osmotic stress [6], disruption of cytoskel-

eton and spindle microtubules [7, 8], premature exocytosis of cortical granules and zona hard-

ening [9, 10], parthenogenetic activation [11–13], and polyploidy [7, 14, 15]. Through

intensive efforts to mitigate these cryoinjuries, increasingly encouraging results have been

reported with human oocytes after both slow-freezing [16–21] and vitrification [22–25]. A vit-

rification approach requiring minimum sample volume (less than 1 μl), low permeating CPA

concentrations (~30%), and extremely fast cooling/warming rates yielded clinically acceptable

results [26–28] and is currently the preferred approach for human oocyte cryopreservation.

However, the minimal sample volume, low CPA concentrations, and direct contact with LN2

required to achieve extremely fast cooling/warming rates make this approach prone to devitri-

fication, handling and reproducibility issues, and biosafety risk for contaminating cryopre-

served samples with different pathogens [29–32]. In contrast, slow-freezing methods are

usually not associated with a biosafety risk; however, clinical success rates obtained with slowly

frozen human oocytes remain lower than those obtained with the vitrification method [19, 21,

25]. Understanding better the mechanism of cryopreservation-induced injuries may help over-

come the shortcomings of the current approaches, and thereby lead to development of more

reliable and safer methods for oocyte cryopreservation.

Although lethal cryoinjuries such as IIF and cell lysis are easily recognizable, sublethal inju-

ries may also occur, such as DNA damage, altered gene expression or altered protein function,

and may not be obvious immediately. In fact, a significant portion of cryopreserved oocytes

usually fail to be successfully fertilized and develop even though they appear morphologically

normal after thawing/warming [33]. Understanding sustained effects on embryonic gene

expression may help to better understand some sublethal cryoinjuries and associated develop-

mental failure. Past studies investigated the effects of oocyte cryopreservation on whole oocyte

transcriptomes [34] [35, 36] or selected genes [37–40] and reported significantly altered

mRNA levels. Since the MII oocytes are transcriptionally silent [41, 42] and major embryonic

genome activation occurs at the two-cell stage and four- to eight-cell stage in the mouse [43,

44] and human [45], respectively, the published studies do not address how oocytes cryopres-

ervation affect gene expression after embryonic genome activation (EGA) as a way of assessing

long-term effects of oocyte cryopreservation.

The objective of this study was to investigate effects of oocyte cryopreservation on the

embryonic transcriptome after EGA. The so-called standard slow freezing method [46–48] is

known to induce more significant injuries compared to the vitrification approach. Therefore,

we reasoned that the standard slow-freezing protocol would allow us to better detect diverse

cryoinjuries including the subtle ones and be the first logical step to establish a basis. Thus,

mouse metaphase II (MII) oocytes were frozen and thawed using the standard slow freezing

method, inseminated, and compared to control embryos at the four-cell stage using microar-

rays (Fig 1). Bioinformatics methods such as Ingenuity Pathway Analysis (IPA), Functional

Annotation, PPI Network Analysis and Hub Gene Identification were used to reveal up- and

downregulated pathways in response to cryopreservation-induced injuries. Results reported

here reveal significant effects of oocyte cryopreservation on embryonic gene expression pat-

tern that may impact embryo developmental potential. These effects provide novel biomarkers

that may guide improvements of oocyte cryopreservation methods.

Materials and methods

Oocyte isolation

All animal care and use protocols were reviewed and approved by the Institutional Animal

Care and Use Committee (IACUC) at Augusta University (Protocol # 2009–0032), and the
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reported experiments were performed according to the IACUC’s guidelines. All animals were

maintained under the standard conditions (i.e., 14 h light/10 h dark cycle, at 18–23˚C, and 40–

60% humidity) with free access to water and food. To harvest a large cohort of metaphase II

(MII) oocytes, five to eight-week old B6D2F1 (C57BL/6NCrl X DBA/2NCrl, Charles River

Laboratories, Wilmington, MA) females were superovulated by intraperitoneally injecting first

a combination of 5 IU equine chorionic gonadotropin (eCG) and 2.5 IU human chorionic

gonadotropin (hCG) (PG 600, Intervet, Millsboro, DE) around at 6:00 p.m. and 48–49 hours

later, 7.5 IU hCG alone (Sigma, St Louis, MO). Approximately 14 hours after hCG injection,

mice were euthanatized using carbon dioxide inhalation followed by cervical dislocation. The

oviducts were excised and oocyte-cumulus masses were released from the ampulla into

HEPES-buffered Hypermedium [49] under a stereomicroscope. To remove cumulus cells, the

oocyte-cumulus masses were treated with 120 IU /ml of bovine testis hyaluronidase (Type

IV-S) in phosphate-buffered saline (PBS, Sigma, St Louis, MO) at ambient temperature for

3–4 min and then washed in HEPES-buffered Hypermedium before mechanically removing

remaining attached cumulus cells using finely pulled sterile glass capillaries. Afterwards, the

cumulus-free oocytes were washed in HEPES-buffered Hypermedium again and then trans-

ferred to bicarbonate-buffered Hypermedium for recovery at 37˚C before experiments.

In vitro fertilization and embryo culture

In vitro fertilization (IVF) and culture of fertilized eggs were carried out as described previ-

ously [13]. Briefly, the cauda epididymides of a 4- to 6-month old mature BDF1 male (Charles

River Laboratories) were aseptically dissected and placed in a large drop (0.4 ml) of preequili-

brated BSA-free Hypermedium. Sperm were then released into the medium by gently punctur-

ing the cauda epididymides with a hypodermic needle and dispersed at 37˚C for 15 min.

Subsequently, to have 1-2x106 sperm/ml, an appropriate volume of the sperm suspension was

added to insemination drops containing 70 μl of Hypermedium with BSA supplementation.

To capacitate sperm, the insemination drops were incubated at 37˚C under a humidified

Fig 1. Schematic representation of the experimental design. MII oocytes were frozen-thawed, inseminated, and cultured to the four-cell stage along with untreated

controls (lasting cryoinjury). Microarray analysis was performed at the four-cell stage.

https://doi.org/10.1371/journal.pone.0231108.g001
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atmosphere of 5% CO2 in air for 1 to 2 hours. Next, oocytes were introduced into the insemi-

nation drops and incubated under the same conditions for 5–6 hours to achieve IVF. After

insemination, the oocytes were washed and cultured in Hypermedium. Cleavage to the two-

cell stage was examined after overnight culture while development to the four-cell stage was

evaluated after 40 hours of culture.

Oocyte cryopreservation

MII oocytes were cryopreserved using the standard slow freezing method [46–48]. Briefly, PBS

containing 10% heat inactivated fetal bovine serum (FBS) (HyClone, Pittsburgh, PA) was used

for preparation of cryopreservation solutions. MII oocytes were first loaded with dimethylsulf-

oxide (Me2SO) by incubating them in 1.5M Me2SO at room temperature (RT) for 10 min, and

then transferred to the final cryopreservation solution containing both 1.5M Me2SO and 0.1M

sucrose for additional 5 min at RT. During this step, oocytes were aspirated into sterile 0.25-cc

straws (TS Scientific, Perkasie, PA) that were introduced into a controlled-rate freezer (KRYO

10 Series III, Planer, Middlesex, UK) at the end of the final CPA loading step. Next, the sam-

ples were cooled to -7˚C at 2˚C/min and held at that temperature for 10 min upon manual

seeding of extracellular ice. At the end of the holding period, the samples were cooled to -35˚C

at a rate of -0.3˚C/min before being plunged into liquid nitrogen for storage.

For thawing, straws were removed from liquid nitrogen, kept on air for 15 sec and then

immersed in a water bath at 37˚C until ice disappeared. Next, the content of each straw was

released into an empty dish, and Me2SO was removed by successively transferring oocytes to

its decreasing concentrations (i.e., 1.0M Me2SO + 0.1M sucrose; 0.5M Me2SO + 0.1M sucrose;

and 0.0M Me2SO + 0.1M sucrose) at RT with 7-min intervals. Upon removal of Me2SO and

sucrose, oocytes were rinsed in Hypermedium before being transferred to a fresh drop of

Hypermedium for recovery at 37˚C. Post-thaw survival of cryopreserved oocytes was assessed

after a 60-min recovery period by morphological criteria [13].

RNA preparation and microarray hybridization

For total RNA isolation, 20 four-cell embryos were lysed for each sample by transferring them

in 0.5 μl of PBS containing 0.01% polyvinyl alcohol (PVA, Sigma) to 19.5 μL PicoPure buffer

(PicoPure™ RNA Isolation Kit, Arcturus, Mountain View, CA). Next, samples were heat

treated at 42˚C for 30 min and then stored at -80˚C until isolation of total RNA from each

sample using PicoPure™ RNA Isolation Kit according to the manufacturer’s protocol, includ-

ing a DNAse treatment (RNase-Free DNase Set, Qiagen, Germantown, MD).

For gene expression profiling, Affymetrix Mouse Genome 430 2.0 array (Affymetrix, Santa

Clara, CA) that covers 34,000 well-substantiated mouse genes were used. Briefly, total RNA iso-

lated from each sample was amplified using RiboAmp Plus RNA Amplification Kit (Arcturus).

The subsequent steps including the second round of amplification and labeling, fragmentation,

hybridization, and scanning of the microarray slides were performed by the Genomics Core

Facility at Temple University according to the manufacturer’s instructions. RNA purity and con-

centration were evaluated by spectrophotometry using NanoDrop ND-1000 (ThermoFisher).

RNA quality was assessed by the Agilent 2200 TapeStation (Agilent Technologies) and assured

of an RNA Integrity Number (RIN)� 7. Total RNA samples were processed using the GeneChip

3’ IVT Reagent Kit (Affymetrix) according to the manufacturer’s protocol. After 16 hours of

hybridization, the arrays were washed and stained using Affymetrix GeneChip Fluidics Station

450 systems. The stained arrays were scanned on an Affymetrix GeneChip Scanner 3000. Data

were obtained in the form of CEL files. The CEL files were imported into R with the Affy package

[50]; normalization and correction were conducted with the GCRMA methodology.
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Real-Time Polymerase Chain Reaction (RT-PCR)

To confirm gene expression profiles obtained from microarray analyses, a quantitative

RT-PCR analysis was performed on selected genes. RNA extraction and cDNA preparation

from control and treated four-cell mouse embryos (20 embryos per sample) were carried out

using the Power SYBR-Green Cells-to-Ct Kit (ThermoFisher Scientific) according to the man-

ufacturer’s protocol. To eliminate DNA contamination, the samples were treated with DNAse

supplied by the Cells-to-Ct Kit. cDNA was then used as a template to compare gene expression

profiles between the groups (Fig 1). Each group had 3 samples and each sample was analyzed

in duplicates. The signals were detected with SsoAdvanced Universal SYBR Green Supermix

(BioRad) using the LightCycler 96 detection system (Roche). The PCR program started with

an initial denaturation step for 3 minutes at 95˚C, followed by 40 cycles of 10 seconds at 95˚C,

30 seconds at 60˚C and a melting curve analysis from 65˚C to 95˚C. The data was analyzed

with the LightCycler 96 SW 1.1 software and normalized against to the housekeeping gene

Peptidylprolyl isomerase A (Ppia) which was amplified in the same run [51]. The primer

sequences are given in Table 1.

Statistics. Experiments were repeated at least three times, and data presented are means

of experimental repeats with error bars representing standard-error of mean (SEM). GraphPad

Prism (GraphPad Software, Inc., San Diego, CA) was used to analyze the viability and cleavage

rates by ANOVA and Tukey’s pairwise comparison test. Arcsine transformation was per-

formed on proportional data before ANOVA. Differences between the groups were considered

significant at p<0.05. P-values or the level of significance are stated in the figure legends. Dif-

ferential expressions of genes were calculated with the limma package [52]. The Benjamini &

Hochberg adjusted p-value was utilized, significance was set at FDR < 0.05.

Functional analysis. Differentially expressed genes were analyzed by several approaches

to assess the possible impact of altered patterns of embryonic gene expression on embryo biol-

ogy. WebGestalt [53] was utilized for an overrepresentation enrichment analyses for the GO

categories of biological processes, molecular functions, and cellular components, and pathways

via Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Reactome. The

p-value (p<0.05) was set as the cut-off. Combined lists of up- and down-modulated genes

were submitted to Qiagen Ingenuity Pathway Analysis1 for analysis of affected canonical

pathways (CPs), diseases and functions (DFs), and upstream regulators (URs). For CP and DF

analyses, IPA takes into account the number of DEGs and the number of molecules in the

knowledge database associated with that CP or DF category, and the total number of DEGs

and the number of molecules in the knowledge database. For UR analysis, IPA takes into

account the number of DEGs regulated by a given UR. The analyses reveal significant associa-

tions of DEGs with CPs, DFs, or URs (p-values) as well as predicted directionality, if any,

reflected in z-scores. The z-score reflects activation (z> 0) or inhibition (z < 0), with z > 1.96

Table 1. Primer pairs used for gene expression analysis by RT-PCR.

Name Forward Primer (5’-3’) Reverse Primer (5’-3’)

Allc TCCTCGCATGTCAATCCAAG TCAGTAACGGCTTCAAACTCC

Cpa1 GTCTACACCCACAAAACGAATC ACGGTAAGTTTCTGAGCAGG

Gsto TTTCCAGATGACCCGTACAAG GAGTCTTCCTTTCTCTTCGACC

Ly6A GGATGGACACTTCTCACACTAC GCAGGTAATTGATGGGCAAG

Oosp1 AGAGTCCTCATTTCTGTGAAGC GGTGATCTTCGCTTGATGTTG

Phlda3 CCGTGGAGTGCGTAGAGAG TCTGGATGGCCTGTTGATTCT

Pign TTTGCTTTGGGATTGCTTATCCA GTATCTGCTCTCAGGCCATCA

Ppia CGCGTCTCCTTCGAGCTGTTTG TGTAAAGTCACCACCCTGGCACAT

https://doi.org/10.1371/journal.pone.0231108.t001
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indicating significant activation or increase, and z < −1.96 indicating significant inhibition or

decrease. URs can be reported as “affected”, “activated”, or “inhibited” even if not expressed or

not altered in expression level.

Construction of Protein-Protein Interaction (PPI) networks. PPI networks for the

identified DEGs were constructed and visualized using Cytoscape version 3.7.1 [54]. STRING

(Search Tool for the Retrieval of Interacting Genes/Proteins) was used to identify interacting

proteins with>0.4 confidence score [55]. Network analyzer, a plug-in of Cytoscape, was used

to calculate the parameters [56]. Common hub genes were identified using Cytoscape’s Cyto-

Hubba application [57]. Top 10 genes were evaluated using 3 local based methods (MNC,

MCC, and Degree) and 3 global based methods (EcCentricity, Stress, and EPC) using

CytoHubba.

The module analysis. The module analysis was performed using Molecular Complex

Detection (MCODE), a plug-in of Cytoscape, to identify the interconnected submodules in the

PPI network for the identified DEGs with degree cutoff = 2, node score cutoff = 0.2, k-

score = 2, and max depth = 100 [58]. Only significant modules with MCODE score�4 and

node�6 were searched. As an alternative approach, Markov Cluster algorithm (MCL), a

Cytoscape plugin by clusterMaker [59], was used to predict protein modules with the following

parameters: Inflation coefficient = 2.5, weak edge weight pruning threshold = 1E-15, number

of iterations = 16, and maximum residual value = 0.001.

Results

Cryosurvival, fertilization, and embryonic development

To study lasting cryoinjuries to active transcriptome, a total of 1,170 MII oocytes were cryo-

preserved by widely used standard slow freezing. After thawing and a recovery period of one

hour at 37˚C, 65.4±2.5% of the cryopreserved oocytes (n = 753) remained viable on average

(Fig 2). Of 753 frozen-thawed and intact oocytes, 493 were fertilized (mean ± SEM: 65.5±
2.1%) as assessed by cleavage to the two-cell stage and 310 of the two-cell embryos developed

to the four-cell stage (mean ± SEM: 58.8±3.5%). A total of 311 untreated MII oocytes served as

controls. The fertilization and four-cell rates (mean ± SEM) for the controls were 90.3±1.6%

(n = 289) and 95.3±1.9% (n = 277), respectively, and significantly higher than those of oocytes

underwent cryopreservation (Fig 2).

Effects of cryopreservation on active transcriptome

All microarray analyses were carried out at the 4-cell stage. The transcriptome data was then

used to identify differentially expressed genes (DEGs) as described earlier. Oocytes cryopre-

served at the MII stage and analyzed after development to the four-cell stage (lasting cryoin-

jury to active transcriptome) displayed a total of 335 differentially expressed genes, which

mapped to 305 genes in the IPA database (200 up-regulated, and 105 down-regulated) (S1

Table).

Functional analysis of the DEGs. Pathway analysis. IPA CP analysis yielded 16 signifi-

cantly affected pathways (S2 Table). Both Corticotropin Releasing Hormone Signaling and

TGF-β Signaling pathways were predicted to have significantly activated z-scores, 2.236 and

2.0, respectively. The three CPs with the lowest p-values were: Protein Ubiquitination Pathway,

PPARα/RXRα Activation, and Sonic Hedgehog Signaling (Fig 3). To highlight the molecules

and their respective positions in the cell, the Protein Ubiquitination and TGF-β Signaling

pathways were visualized in Fig 4.

The KEGG-pathway analysis revealed that DEGs in the cryopreservation group were

mainly associated with eight significant pathways including: Proteasome, Aminoacyl-tRNA
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biosynthesis, 2-Oxocarboxylic acid metabolism, Biosynthesis of amino acids, and Citrate cycle

(TCA cycle) (S3 Table).

In contrast the Reactome analysis resulted in a much large number of significant pathways.

Some of the top returned entries include, Cellular responses to stress, Cellular responses to

external stimuli, Regulation of RUNX2 expression and activity, Autodegradation of Cdh1 by

Cdh1:APC/C, and Regulation of PTEN stability and activity (S4 Table).

Upstream regulator analysis. The IPA upstream regulator analysis identifies regulators

and when applicable, predicts their activity based on their down-stream effectors. Our IPA UR

analysis identified 122 affected URs. Three of these URs were predicted to significantly inhib-

ited activity: RB1, SMARCB1, and TP53. Ten significantly affected URs were themselves differ-

entially expressed. Six of these URs had two or more affected downstream molecules

(ADIPOR2, ATXN1L, and CLU were upregulated; APP, EP400, and HSPA5 were downregu-

lated) (Fig 5 and S5 Table).

Disease and function analysis. There were a number of significant biological functions

identified from the IPA analysis (S6 Table). Of note, the biological function Migration of con-

nective tissue cells had a significantly inhibited z-score (z = -2.395). Both Cellular infiltration

by macrophages and Cell viability of epithelial cell lines were significantly activated with z-

scores of 2.578 and 2.213, respectively. Additional significant functions included with greater

than 20 DEGs: Cell death of tumor cell lines, Viral Infection, Expression of RNA, Transcrip-

tion of RNA, and Transactivation (Fig 6).

Gene ontology analysis. GO biological process (GOBP) analysis of the cryoinjury group

revealed 19 enriched categories including: mitochondrial gene expression, proteasomal pro-

tein catabolic process, cellular amino acid metabolic process, and positive regulation of prote-

olysis (S7 Table). In terms of cellular component (GOCC), the DEGs were significantly

enriched in 6 categories, mitochondrial matrix, peptidase complex, mitochondrial protein

complex, chaperone complex, ATPase complex, and organelle inner membrane (S8 Table).

For molecular function (GOMF), the DEGs in the cryopreservation group were mainly

Fig 2. Post-thaw viability, fertilization (2-cell), and early embryonic development (4-cell) of cryopreserved

oocytes with respect to untreated controls. Data shown are mean±SEM. ����: P<0.0001.

https://doi.org/10.1371/journal.pone.0231108.g002
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associated 13 significant entries, the top of which were: coenzyme binding, oxidoreductase

activity, acting on the CH-CH group of donors, ribonucleoprotein complex binding, and sul-

fur compound binding (S9 Table).

Construction of PPI network and identification of hub genes. After the upregulated

and downregulated DEGs were submitted into STRING online database, the PPI networks

were constructed with a confidence score >0.4. The PPI network of the cryopreservation

group consisted of 301 nodes and 387 edges. Subsequently, top hub genes were identified from

the up- and downregulated PPI network using 6 centralities (MNC, MCC, Degree, EcCentric-

ity, EPC and Stress). The top 10 genes for each centrality are shown in Table 2. The results

revealed that a total of 19 hub genes were identified as a result of lasting cryoinjury to active

transcriptome. When up- and downregulated DEGs were subjected to the MCORE plug-in of

Cytoscape, two modules scored above 4 and had more than 6 nodes (Fig 7A). We next used

Fig 3. IPA canonical pathway analysis of DEGs. The enriched pathways are given on the y-axis. The x-axis represents

the significance (negative Log of P-value). The color of the dots indicated level of significant z-score: black: |z|<1.96,

red/activated: z>1.96, blue/inhibited: z<1.96.

https://doi.org/10.1371/journal.pone.0231108.g003
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MCL because it seems to yield more accurate predictions than other algorithms [60]. Of 64

clusters identified, five had more than 6 nodes (Fig 7B).

Validation of microarray data. Quantitative RT-PCR was used to verify the microarray

results. A total of 7 genes were selected based on their highly differentiated expression in

microarray analysis. The expression of these genes was normalized to the expression of the

housekeeping gene PPIA. When compared to the control group, the expression of CPA1 (1.43

fold), OOSP1 (1.89 fold), and PIGN (2.43 fold) was significantly increased in the lasting

Fig 4. IPA cellular view of: A) 15 affected molecules in the significant Protein Ubiquitination pathway. B) Canonical pathway

TGF-β Signaling pathway, coloring indicating measured and predicated states.

https://doi.org/10.1371/journal.pone.0231108.g004

Fig 5. IPA upstream regulator analysis of DEGs. The enriched regulators are given on the y-axis. The x-axis

represents the significance (negative Log of P-value). The color of the dots indicated level of significant z-score: black: |

z|<1.96, red/activated: z>1.96, blue/inhibited: z<1.96. Arrows preceding the regulator name indicate the direction of

differential expression from the cryopreservation group.

https://doi.org/10.1371/journal.pone.0231108.g005
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cryoinjury group, whereas the expression of ALLC (1.66 fold), GSTO1 (1.48 fold), LY6A (2.4

fold), and PHLDA3 (1.45 fold) was significantly reduced (Fig 8A and 8B) consistent with the

microarray data.

Discussion

By performing standard freezing and thawing at the MII stage, followed by in vitro fertilization

and embryo culture to the four-cell stage, and then by subjecting the resulting 4-cell embryos

to microarray analysis, this study reveals that cryopreservation induces lasting changes to the

embryonic transcriptome along with predicted effects on embryo physiology and developmen-

tal potential. To probe cryoinjuries, the standard slow freezing method was chosen in the pres-

ent study because it is known to induce significant injuries immediately after thawing and

Fig 6. IPA disease and function analysis of DEGs. The enriched functions are given on the y-axis. The x-axis represents the

significance (negative Log of P-value). The color of the dots indicated level of significant z-score: black: |z|<1.96, red/activated:

z>1.96, blue/inhibited: z<1.96.

https://doi.org/10.1371/journal.pone.0231108.g006
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subsequently during fertilization and development. Indeed, the post-thaw survival, fertiliza-

tion, and cleavage to the four-cell stage were significantly lower in the cryopreservation group

with respect to untreated controls (Fig 2), suggesting a significant cryoinjury, and thus suitabil-

ity of this method to probe cryoinjuries.

To study acute cryoinjuries to the oocyte transcriptome, microarray analysis should ideally

be performed short after freezing and thawing of MII oocytes. However, mammalian MII

oocytes are known to be transcriptionally silent and to use maternal mRNAs until activation of

embryonic genome [41, 42]. Consequently, microarray analysis at the MII stage would primar-

ily show degradation of maternal mRNAs but not reveal the acute effect of cryopreservation

on active transcriptome. Considering that the major activation of the transcriptional machin-

ery occurs at the 2-cell stage in the mouse [43], the 4-cell stage was selected in the present

study to decipher cryoinjuries to transcriptionally active genome. Hence, the present study

reveals previously unexplored cryoinjuries to the active transcriptome.

Previous studies on slowly frozen-thawed and vitrified MII oocytes revealed that both cryo-

preservation methods lead to the reduction in the mRNA content of some genes involved in

chromosomal structure maintenance, DNA repair, cell-cycle regulation, cellular response to

stress, and ubiquitination pathway [34–36]. Although there are similarities between the find-

ings of the studies mentioned above and our results, a number of dissimilarities also exist. For

instance, the transcript level of certain genes was low (Creg1, Pfkfb2) as a result of cryopreser-

vation in both previously published studies and our study while an opposite (e.g., Szt2, Cstf2t,
and Cenpa) or no effect (e.g., LY6A, and OOSP1) of cryopreservation has been observed on

many transcripts. These dissimilarities are probably due to differences in the timing of the

transcriptome analysis. The aforementioned three studies [34–36] assessed the transcript levels

at the MII stage shortly after cryopreservation, whereas our study examined the transcriptome

at the four-cell stage after activation of embryonic genome. Since the MII oocytes are normally

transcriptionally silent, the up- and downregulated genes reported in the previously published

three studies could be explained by the following possibilities: (1) increased degradation of

many transcripts by cryopreservation-associated processes (downregulated ones); (2) com-

pared fresh controls, slower degradation of a small number of mRNAs in cryopreserved

oocytes resulting in their detection at a higher level (upregulated ones); and (3) demethylation

of promoters of some genes by cryopreservation leading to their premature transcription

(upregulated ones). The several-fold (2 to 9) smaller number of upregulated genes versus

Table 2. The top ten ranked hub genes obtained from CytoHubba analysis based on 6 different centralities.

MCC MNC Degree EC Stress EPC

PSMA7 PSMA7 UBXN7 WSB2 UBXN7 PSMA7

UBE2E3 UBE2E3 PSMA7 APP PSMA7 ITCH

ITCH ITCH ITCH UBE2E3 ITCH CDC27

CDC27 CDC27 CDC27 ITCH STUB1 ANAPC10

ANAPC10 ANAPC10 ANAPC10 CDC27 CCT2 STUB1

STUB1 SKP2 STUB1 STUB1 SKP2 SKP2

SKP2 PSMC3 PSMC3 SKP2 PSMC4 PSMC3

PSMC3 PSMC4 SKP2 PSME3 MARS PSMC4

PSMC4 PSME3 PSMC4 RSP12 UBE2H PSME3

PSME3 MCM3 UBE2H HSPA5 HSPA5 UBE2H

MCC: Maximal Clique Centrality; MNC: Maximum Neighborhood Component; EPC: Edge Percolated Component; EC: EcCentricity; DEG: Differentially expressed

genes

https://doi.org/10.1371/journal.pone.0231108.t002
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Fig 7. The top clusters obtained from Protein-Protein Interaction (PPI) network analysis. A) MCODE clusters with scores above 4 and had more than 6 nodes. B)

The top five MCL clusters, each more than 6 nodes. The interaction networks were visualized by the Cytoscape. Red and blue circles indicate up- and downregulated

genes, respectively.

https://doi.org/10.1371/journal.pone.0231108.g007
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downregulated ones in the three aforementioned studies support the explanations above. In

contrast, our microarray analyses yielded approximately 2-fold higher numbers of upregulated

genes after cryopreservation compared to downregulated ones, suggesting that we were prob-

ing the active transcriptional response. Nevertheless, the cryopreservation-induced changes in

the maternal transcript content of MII oocytes, as reported in the previous studies, are likely to

contribute to the lasting cryoinjuries to the active transcriptome observed in the present study.

As a result of lasting cryoinjuries to active transcriptome, 305 genes displayed altered

expression. These genes impact five major functional categories: mitochondrial function, pro-

tein ubiquitination and maintenance, cellular response to stress and oxidative states, fatty acid

and lipid regulation/metabolism, and cell cycle maintenance. Effects on these processes/func-

tions were identified in multiple analyses including IPA, Reactome and GO/KEGG tools.

Additionally, we identified 19 Hub genes within the DEG list from Cytoscape analysis, and

120 significantly affected IPA upstream regulator genes, of which 10 were themselves differen-

tially expressed. The proteins encoded by these genes occupy special locations within regula-

tory hierarchies and take on heightened importance for understanding the mechanisms

underlying phenotypic changes, and as targets for further study. For example, nine of these

hub genes impact protein ubiquitination, the largest affected IPA pathway in terms of number

of affected component molecules. Four hub genes encode proteins involved in stress response

pathways, which are also prominently affected in GO and IPA analysis. Three of the Hub pro-

teins are also affected IPA upstream regulators (MCM3, APP, and HSPA5), with HSPA5

appearing in the affected protein ubiquitination pathway. Three IPA upstream regulators man-

ifested predicted inhibition in activity (RB1, TP53 and SMARCB1), along with predicted acti-

vation of TGF-ß signaling. In addition, we note an especially high prominence in our results of

effects on mitochondrial functions, cytoskeleton, cell stress, and cell death.

In the present study, microarray data were validated using quantitative RT-PCR. It is worth

to note that fold changes varied to some degree between two methods. For example, our

RT-PCR results show that expression of CPA1 was 1.43-fold increased in the cryopreservation

group with respect to the control group while our microarray data suggest more than 5-fold

increase. Such differences may reflect different methods for normalization. Nevertheless, both

methods yielded similar results in terms of significantly up- and down-regulated genes, con-

firming that the false discovery rate (FDR) was minimal.

Fig 8. Validation of microarray data by RT-PCR. The mRNA levels of three upregulated (A) and four downregulated genes (B) determined by microarray analysis

were quantified by RT-PCR relative to Ppia expression in the control and cryopreservation groups. � = p<0.05; �� = p<0.01; ���� = p<0.0001.

https://doi.org/10.1371/journal.pone.0231108.g008
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It is useful to consider the effects of oocyte cryopreservation and cryoinjury in the context

of embryonic genome activation (EGA) and subsequent modulation of gene expression there-

after. The oocyte genome undergoes extensive remodeling in preparation for meiosis, and as a

part of transcriptional silencing and modulating the supply of nuclear encoded mitochondrial

proteins and mitochondrial activity [61]. The epigenetic state of the oocyte may then predis-

pose or restrict subsequent embryonic genome regulation as well as impacting metabolism

and other essential functions. A series of genome activation events occur in the mouse embryo.

The first wave (EGA1) occurs soon after the first cleavage, driven in large part by oocyte-

derived factors such as DPPA2 and DPPA4 activating expression of DUX, and subsequently

ZSCAN4 and other EGA1 genes [62]. EGA1 is terminated within a matter of just hours, a pro-

cess that is essential for viability [63]. EGA1 is terminated through the action of SMCHD1 [64]

and an E3 ligase that destabilizes maternal factors [62, 65], The next transcriptional wave,

EGA2, is the major activation event, with thousands of genes being induced [62, 64]. Subse-

quently, EGA3 occurs at the 8-cell stage, so that the 4-cell stage (between EGA2 and EGA3),

targeted here for analysis, corresponds to a period of relatively little change in gene expression

[66, 67], thus providing a stable readout of the fidelity of EGA1 and EGA2. Many essential

events underlie this orderly sequence, including mitosis, cell division, metabolic regulation,

and correct regulation of cellular membrane dynamics and integrity. The first S-phase estab-

lishes the ability for gene transcription to occur, and the second S-phase allows a transcription-

ally repressive state to be established; this constitutes the emergence of the fundamental ability

of the embryo to regulate gene transcription [62, 68]. Because early actions of oocyte-expressed

transcription factors like SMCHD1 impact gene expression and developmental events during

later cleavage stages [69] cryoinjuries to the oocyte can exert long-term effects on a variety of

processes. The disruptions in the four-cell stage transcriptome profile observed with cryoin-

jury impact a number of essential processes that are regulated by the newly activated genome,

as evidenced by effects on mitochondrial function, cellular dynamics and blebbing, cell divi-

sion, protein metabolism, and diverse signaling pathways.

In conclusion, oocyte cryopreservation induces lasting injuries to oocytes that affect embry-

onic gene expression pattern, characterized by distinctly upregulated and downregulated path-

ways that may explain poor development of frozen-thawed oocytes. This is of significance

because only ~2% of cryopreserved human oocytes can develop to term while majority of

them survive cryopreservation [70]. Addressing these cryoinjuries may lead to improved

oocyte cryopreservation.
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