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Although computational enzyme design is of great importance, the
advances utilizing physics-based approaches have been slow, and
further progress is urgently needed. One promising direction is
using machine learning, but such strategies have not been estab-
lished as effective tools for predicting the catalytic power of
enzymes. Here, we show that the statistical energy inferred from
homologous sequences with the maximum entropy (MaxEnt) prin-
ciple significantly correlates with enzyme catalysis and stability at
the active site region and the more distant region, respectively.
This finding decodes enzyme architecture and offers a connection
between enzyme evolution and the physical chemistry of enzyme
catalysis, and it deepens our understanding of the stability–activity
trade-off hypothesis for enzymes. Overall, the strong correlations
found here provide a powerful way of guiding enzyme design.

enzyme design j maximum entropy j evolution j catalysis

Enzymes are extraordinary catalysts that play vital roles in
nearly all biochemical processes. Designing efficient enzymes

could help in solving threats to humankind, including the energy
crisis, environmental pollution, and food shortages (1). The use
of computational modeling for enzyme design is very promising
(2–6). However, such approaches are still not at the stage where
they can guide sufficiently reliable enzyme design (7–9). Thus,
it is crucial to exploit additional options for improving the
design predictability. This work will explore the potential of sta-
tistical analysis of enzyme homologous sequences for enhancing
computational enzyme design prediction.

Naturally evolving enzymes can speed up chemical reactions
by many orders of magnitude (e.g., Fig. 1 A and B). Such a great
catalytic power reflects a very long evolutionary process that
started at the emergence of life. In principle, it is tempting to
study the origin of the catalytic power of enzymes using physics-
based models. However, machine learning methods may provide
an invaluable guide. The maximum entropy (MaxEnt) principle
(10) offers the least-biased model for the sequence distribution
by maximizing information entropy subjected to the statistics
obtained from multiple sequence alignment (MSA). The Max-
Ent model taking epistasis into account has been proposed to
distill evolutionary information within a protein family, which
was then correlated with residue–residue contact (11–13) and fit-
ness (14, 15), partly leading to the breakthrough of protein struc-
ture prediction (16). For enzymes, a high correlation between
the statistical energy derived from the MaxEnt model and
enzyme efficiency for beta-lactamase was found, but it did not
seem to work for trypsin and dihydrofolate reductase (DHFR)
(14). This generative model has been recently used to design
enzymes (17). The MaxEnt model on its current form can clas-
sify designed sequences in a binary way as functional or nonfunc-
tional based on a regression model trained with the statistical
energy and additional high-throughput experimental data. How-
ever, designed sequences chosen for biochemical analysis do not
show improved catalytic power compared with natural sequences
(17). Therefore, the MaxEnt approach has not reached the stage
of rational enzyme design, where one should be able to accu-
rately predict the effect of mutations on catalytic power and

design better enzymes. This might not be that surprising consid-
ering the complex interplay among various selection pressures
applied to enzyme evolution (18). In particular, enzyme stability
and activity may trade off with each other (19–22).

This work explores the hypothesis that the enzyme catalytic
center involved in the catalysis and transition-state stabilization
directly correlates with the selection pressure of enzyme effi-
ciency in a way that can be captured by the MaxEnt model.
This idea is confirmed by finding a significant correlation for
the catalytic center between enzyme catalysis and statistical
energy derived by applying the MaxEnt model (Fig. 1C). In
contrast, the statistical energy correlates well with protein sta-
bility for remote regions (referred to here as enzyme surface),
suggesting that a stable enzyme surface may be needed for opti-
mal enzyme function. Therefore, the results here show that
evolutionary information can be used to decode enzyme archi-
tecture and understand biocatalysis. Furthermore, we demon-
strate that the widely used consensus design is a special case of
the MaxEnt model. The correlations and insights thus offer a
powerful way to guide enzyme design.

The MaxEnt Model
Homologous enzyme sequences from different species share
the same evolutionary origin (23). The natural sequence varia-
tion within an enzyme family is constrained by different factors,
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including its physical chemistry (24). Therefore, distilling evolu-
tionary information from MSA of an enzyme family could shed
light on enzyme three-dimensional structure and function. Due
to limited homologous sequences and high computational cost,
the MaxEnt model is usually truncated to consider pairwise
epistatic effect. The MaxEnt model provides a Boltzmann dis-
tribution PðSÞ ¼ e�EMaxEntðsÞ=Z for each sequence S, where
EMaxEnt is the statistical energy with effective temperature as
unity and Z is the partition function:

EMaxEntðSÞ ¼∑
i

hiSi þ∑
i>j

JijSiSj,

Z¼∑
S

e�EMaxEntðsÞ:

The parameters hi and Jij are site energy and pairwise coupling
between amino acids at two different residue sites, respectively.
The EMaxEnt is shifted by a constant so that the wild type (WT)
has a zero value, which will not affect any results due to gauge
invariance. A lower EMaxEnt for a sequence indicates a higher
probability to appear during evolution and might reflect a
particular evolutionary advantage.

The statistical energy EMaxEnt corresponds to a spin-glass
Hamiltonian, which has enormous local frustrations (25). The
parameterization, which requires extensive sampling of the
model, is thus highly nontrivial, especially for large proteins with
hundreds of residues. Instead of using the popular pseudolikeli-
hood (PLL) approximation (13, 14), we have previously devel-
oped an efficient code that marries different computational
advancements to sample the Hamiltonian rigorously (26). The
derivation and parameterization details of the MaxEnt model can
be found in SI Appendix, Text. The PLL approximation is unable
to reproduce the statistics of natural sequences (27). Here, the
excellent reproduction and prediction of natural MSA statistics
validate our implementation (SI Appendix, Fig. S1).

Results
A critical obstacle to examining the enzyme evolution–catalysis
relationship is the lack of enzyme catalytic data covering suffi-
cient mutants for the target enzyme. Although deep mutational
scanning can measure the consequence of mutation at scale, the
relation between its readout and enzyme physical properties is
uncertain (28). Directly measuring the catalytic parameters (kcat,
kcat=KM , and kobs) requires laborious biochemical assays (29).
The experimental data are thus relatively sparse. To this end, we
first manually curated a database for enzyme efficiency upon
mutation from published literature (SI Appendix, Tables S1–S9),
focusing on the systems with many mutations either in the cata-
lytic center (here defined as within 7.0 Å from the substrate) or
the enzyme surface (here defined as beyond 9.0 Å from the sub-
strate). Many of the enzymes here are model systems in compu-
tational chemistry studies. The database contains 12
enzyme–substrate pairs, and for each pair, at least seven muta-
tions measured in similar conditions (pH and temperature) are
collected. The protein stability data were also included whenever
available; the database includes many higher-order mutations (up
to the 10th order). Meanwhile, we made sure that each enzyme
has thousands of homologous sequences in the MSA to get statis-
tically meaningful evolutionary information (SI Appendix, Table
S10). The enzymes studied here cover various types of reactions
identified by their different Enzyme Commission class number
(SI Appendix, Table S10).

We started with the haloalkane dehalogenase from Xanthobacter
autotrophicus that catalyzes the conversion of toxic haloalkanes to
alcohols (Fig. 1 A and B) (30). We evaluated the correlation
between the statistical energy EMaxEnt and the observed enzyme
catalytic power (expressed by both logkcat=KM and logkcat). All the
mutations are located in the catalytic center with a mean distance
of 3.4 Å from the substrate (Fig. 2A). Except for one double muta-
tion, the other six are single mutations. The enzymatic rates span
more than six orders of magnitude, posing great challenges for pre-
diction methods. Nevertheless, as seen from Fig. 2B, the EMaxEnt

shows impressive Pearson correlations with logkcat=KM and logkcat
with values of �0.87 and �0.95, respectively.

We then explored the catalytic center of chorismate mutase,
which is widely used in enzyme mechanism and design studies
(31). This enzyme transforms chorismite to prephenate in the
pathway to produce tyrosine and phenylalanine, essential for
plants, fungi, and bacteria (29). The enzyme mutations for choris-
mate mutase from Escherichia coli are 3.7 Å from the substrate
on average (Fig. 2C). Here again, the correlations are significant,
and the EMaxEnt has a correlation value of –0.68 with logkcat=KM

(Fig. 2D). The A32S mutation stands out as the only mutant with
increased efficiency relative to the WT; our approach also
detected such a unique experimental result. The MaxEnt model
has been recently applied to chorismite mutase to explore the
sequence space of the whole enzyme (17). However, the EMaxEnt

for the whole enzyme is not that informative for catalytic power;
only after combining with fitness data from high-throughput
experiments can it train a logistic regression model to binary clas-
sify whether a designed sequence is functional or not (17).

For both haloalkane dehalogenase and chorismite mutase,
the mutants are mainly single mutations. One may wonder
what the performance of the MaxEnt model on higher-order
mutations is. We then considered alcohol dehydrogenase from
Starmerella magnoliae; nine of the 20 mutants having experi-
mental kinetic data are higher-order mutations up to the 10th
order (32). The average distance between the mutations and
substrate is 6.2 Å (Fig. 2E). Here, the cofactor NADP+ and cat-
alytic triad were used as the reference point in calculating the
distance because of the absence of substrate in the Protein
Data Bank (PDB) structure; note that not every residue
involved in this case is very close to the substrate. The
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Fig. 1. The MaxEnt model for enzyme sequences connects enzyme evolu-
tion and function. (A and B) The enzyme accelerates chemical reaction by
lowering the activation energy using mainly the residues in the catalytic
center. Haloalkane dehalogenase (PDB ID code 2dhc) is used as an exam-
ple to illustrate enzyme catalysis and the reaction mechanism. (A) The resi-
dues within a distance of 7.0 Å from the substrate are highlighted. (B) The
scheme of the substitution nucleophilic (SN2) step is illustrated using the
substrate of 1,2-dichloroethane. (C) The MaxEnt model connects enzyme
evolution to the physical chemistry of enzyme catalysis. A pairwise MaxEnt
model is learned from the MSA, and each protein sequence (S) is associ-
ated with statistical energy (EMaxEnt) following the Boltzmann distribution.
We found that decreasing the statistical energy significantly correlates
with increasing enzyme efficiency and stability in the catalytic center and
enzyme surface, respectively.
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EMaxEnt–logkobs correlation is �0.74 (Fig. 2E). The successful
prediction for such higher-order mutations underscores the
potential of our approach. Interestingly, the EMaxEnt strongly
correlates with Tm (correlation value of 0.91) but with
the opposite trend as the catalytic efficiency, supporting the
activity–stability trade-off proposal (19–22). In this case, the
independent model without epistasis shows opposing trends as
the MaxEnt model (SI Appendix, Table S12). If we further dis-
sect the dataset into two subdatasets, one contains all single

mutations, and the remaining are in the other. The indepen-
dent model shows opposite trends between the two subdatasets.
The results demonstrate the importance of considering epistasis
in extracting evolutionary infromation.

Next, we examined the generality of our finding by consider-
ing an extensive set of enzymes summarized in Table 1. For all
the mutants in the catalytic center, we observed a strong corre-
lation between the MaxEnt model and the catalytic effect.
Although the collected data for some enzymes has a biased

Haloalkane dehalogenase

Chorismate mutase

Alcohol dehydrogenase

A B
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FE
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WT
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Fig. 2. The MaxEnt model for enzyme sequences correlates with enzyme efficiency at the catalytic center. (A and B) Haloalkane dehalogenase. (C and D)
Chorismate mutase. (E and F) Alcohol dehydrogenase. (A, C, and E) Substrates and mutated residues in the dataset are shown in red and blue, respec-
tively; only one unit of the dimeric chorismate mutase and the tetrameric alcohol dehydrogenase is highlighted. For alcohol dehydrogenase, the cofactor
NADP+ and catalytic triad are colored in red because of the absence of substrate. PDB ID codes used in rendering the structures are (A) 2dhc, (C) 1ecm,
and (E) 6tq5. Substrates are (A) 1,2-dichloroethane, (C) chorismate, and (E) cyclohexanol. (B, D, and F) Correlations between EMaxEnt and experimental
catalytic power. The least-squares regression line is plotted for each enzyme; the WT enzyme has a zero value of EMaxEnt.
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choice of mutants in experiment, the correlations are consis-
tently strong. The correlation seems insensitive to substrates for
ketosteroid isomerase. However, for DHFR, the strong correla-
tion disappears when moving from the catalytic center to the
enzyme surface. Such results confirm our hypothesis that the
catalytic center evolved under the selection pressure of optimiz-
ing enzyme catalysis.

In addition, the correlation obtained here using the rigorous
sampling of the Hamiltonian is slightly stronger than those
using PLL approximation, but both of them are better than the
independent model (SI Appendix, Text and Tables S12 and S13).
The consistent results obtained from the PLL approximation
again confirm our findings.

For the enzyme surface regions, which are at least 9.0 Å away
from the substrate (enzyme surface), the correlation between
EMaxEnt and enzyme efficiency is not that strong or systematic,
although in general, there seems to be a negative correlation.
Using beta-lactamase as an example (and discarding the substrate
difference in two enzyme–substrate pairs), EMaxEnt has a stronger
correlation with enzyme catalysis for mutations closer to the sub-
strate. This is again consistent with our above finding for the cata-
lytic center. The rationale is that the surface region is not directly
responsible for the evolution pressure of enzyme catalysis.

To better understand the physical nature of EMaxEnt, we also
considered in Table 1 the correlation between EMaxEnt and the
observed Tm (which is inversely related to the protein folding
energy). As seen from Table 1, we have a systematically nega-
tive correlation between EMaxEnt and Tm for the enzyme sur-
face, indicating that the MaxEnt model does reflect the protein
stability for regions far away from where catalysis happens. It is
reasonable since the MaxEnt model reflects the contact proba-
bility (11–13), which can be considered as a generalized free
energy function for protein folding (35).

It appears that the catalytic center and enzyme surface face
different selection pressures. The statistical energy inferred from
MSA strongly inversely correlated with enzyme efficiency and
enzyme stability in the catalytic center and enzyme surface,
respectively. The finding that a more stable enzyme surface might
help in promoting enzyme catalysis could also rationalize the
growing evidence that it is possible to engineer remote mutations
to improve catalysis (Table 1) (33, 36).

To demonstrate our approach to enzyme design, we redesigned
the catalytic center of haloalkane dehalogenase after parameteri-
zation of the MaxEnt model; 37% of the designed sequences

have lower EMaxEnt than the WT (SI Appendix, Fig. S2A), suggest-
ing possible enhanced catalysis. Interestingly, one of the top five
designs is a consensus design, where the residue is replaced by
the most frequently observed amino acid in the natural MSA (SI
Appendix, Fig. S2 B–D). Consensus design has already been
shown to be effective in protein engineering (37, 38), and it turns
out to be a special case of the MaxEnt model where epistasis is
considered. Our results thus provide a statistical basis for the con-
sensus design and suggest that the consensus amino acids near
the substrate are likely to improve enzyme catalytic power.

Discussion
This work explored the relationship between enzyme evolution
and catalysis by correlating EMaxEnt obtained from natural
homologous sequences with the catalytic power of different
enzymes. It is found that the correlation is significant for the cat-
alytic center, and adopting our finding to guide enzyme design is
straightforward. The catalytic center and enzyme surface face
different selection pressures. Therefore, it is more likely to
improve enzyme catalysis by optimizing the catalytic center
instead of the enzyme surface using evolutionary information.
This also explains why there are no consistent correlations
between catalytic power and evolutionary information in previ-
ous studies (14, 17); the complex physical constraints make it
highly nontrivial to predict enzyme efficiency from sequence
data. For trypsin and DHFR, the mutations in the dataset (14)
are on the enzyme surface, which is not likely to show a strong
correlation between EMaxEnt and catalytic power; such an expla-
nation also applies to cases when the whole enzyme is studied
(17). Adopting machine learning to protein studies is promising
(14, 15, 17, 39–46); here, we incorporate the understanding of
the physical chemistry of enzymes into machine learning and
thus, could obtain a consistent prediction for biocatalysis. For
simple protein (e.g., protein without domains for catalysis and
other complex functions), evolutionary information may be sim-
ply correlated with protein stability.

While we can use the correlation to estimate enzyme cata-
lytic power, it is interesting to look for some possible rationali-
zation. Thus, we checked the correlation between EMaxEnt and
Tm. Alcohol dehydrogenase provides strong evidence for the
enzyme activity–stability trade-off. However, for enzyme sur-
face, EMaxEnt and Tm are inversely correlated, while Tm is
roughly correlated with enzyme efficiency. This seems to con-
tradict the idea that catalytic preorganization costs folding

Table 1. Correlation between the MaxEnt model and enzyme efficiency/Tm

Enzyme EMaxEnt–logkcat/KM EMaxEnt–logkcat EMaxEnt–Tm

Distance to
substrate (Å) Mutation region Substrate

Haloalkane dehalogenase �0.87 �0.95 3.4 ± 0.4 Catalytic center 1,2-dichloroethane
Chorismate mutase �0.68 �0.51 �0.20 3.7 ± 0.8 Catalytic center Chorismate
Alcohol dehydrogenase* �0.74 0.91 6.2 ± 3.8 Catalytic center Cyclohexanol
Triosephosphate isomerase �0.62 �0.69 3.9 ± 1.6 Catalytic center Dihydroxyacetone phosphate
Ketosteroid isomerase �0.74 �0.75 2.1 ± 0.5 Catalytic center 5(10)-estrene-3,17-dione

�0.81 �0.77 3.4 ± 1.3 Catalytic center 5-androstenedione
DHFR† �0.74 5.4 ± 2.3 Catalytic center NADPH

0.08 11.4 ± 3.1 Enzyme surface
DHFR‡ �0.42 0.16 �0.65 10.6 ± 3.8 Enzyme surface NADPH
Beta-lactamase �0.57 �0.48 �0.68 10.4 ± 5.8 Enzyme surface 6-furylacrylpenicillanic acid

�0.37 0.04 16.4 ± 4.8 Ampicillin
Trypsin 0.06 �0.03 �0.65 10.1 ± 5.2 Enzyme surface Suc-Ala-Ala-Pro-Lys-PNA

The correlation values throughout this manuscript are the Pearson correlation coefficients. The two regions highlighted in the table are either catalytic
center (highly correlated with enzyme catalysis) or enzyme surface (highly correlated with enzyme stability). P values from two-tailed test for the
correlations in the highlighted region are shown in SI Appendix, Table S14.
*The enzyme kinetics is measured as logkobs (SI Appendix, Table S3) and collected from ref. 32.
†Data are collected from ref. 33 (SI Appendix, Table S6).
‡Data are collected from ref. 34 (SI Appendix, Table S7).
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energy (19, 20). However, the folding energy as expressed by
Tm is related to the stability of the entire enzyme, and the pre-
organization can be determined by the folding of a limited part
of the enzyme (31). As shown in our previous study on DHFR,
reducing the reorganization energy may or may not reduce the
protein stability since it requires protein restraints in specific
directions along the reaction coordinate and not necessarily
restraints in all directions (20). Interestingly, the role of the
protein surface in helping catalysis found here may not directly
be related to the reduction in the reorganization energy (47).

In addition to striving to understand the nature of the corre-
lation found in this work, we can also take a very pragmatic
“engineering” approach employing the correlation between
EMaxEnt and kcat. That is, regardless of whether the correlation
is negative or positive, we can generate mutants, determine
their EMaxEnt, choose those with increased kcat, and further
screen them with the empirical valence bond (EVB) calculation
(2, 7) for design experiments.

We anticipate that the emerging evolutionary information, with
the rapidly accumulating genomic sequence data, will facilitate
studies of more enzyme families. For cases where such informa-
tion is not sufficient or for new catalytic reactions, the perfor-
mance of the MaxEnt model might not be sufficient. In such
cases, we can further combine with EVB calculations (2, 7) to
model the catalytic power and further screen the design to
increase the success rate. The findings here seem to be a general
principle for enzymes but require a thorough examination of more
enzymes. We indeed found more enzymes to support the conclu-
sions present here while this manuscript was under review; the
results will be presented in a forthcoming manuscript. Whether

the enzyme architecture can be further decoded into more catego-
ries with evolutionary information also needs to be investigated.
Furthermore, enzymes may be far more intricate than we cur-
rently know; it would be exciting to understand the coupling
between different enzyme parts from evolutionary information.

The great potential of laboratory-directed evolution has
been demonstrated (48). In this respect, we believe that our
approach can help in extending the design by directed evolu-
tion. Moreover, our approach can be used to trace the moves in
directed evolution by following the prediction of the MaxEnt
model to understand how enzymes evolve. It could also be
applied to understand natural evolution, considering ancestral
sequences are homologs of the extant sequences.

In summary, we decoded enzyme architecture using evolu-
tionary information and connected enzyme evolution with
enzyme catalysis. Such a connection can help to bridge evolu-
tionary biology and enzymology. The high-throughput and
predictability from the MaxEnt model (or other generative
models) combined with experimental validation and computa-
tional modeling could push enzyme studies to a systems level.
Significantly, the results here call attention to integrating
domain knowledge in physical chemistry into machine learning
models for protein engineering.

Data Availability. All study data are included in the article and/or supporting
information.
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