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SUMOylation, as a post-translational modification, plays essential roles

in various biological functions including cell growth, migration, cellular

responses to stress and tumorigenesis. The imbalance of SUMOylation and

deSUMOylation has been associated with the occurrence and progression

of various diseases. Herein, we summarize and discuss the signal crosstalk

between SUMOylation and ubiquitination of proteins, protein SUMOylation

relations with several diseases, and the identification approaches for

SUMOylation site. With the continuous development of bioinformatics and

mass spectrometry, several accurate and high-throughput methods have

been implemented to explore small ubiquitin-like modifier-modified substrates

and sites, which is helpful for deciphering protein SUMOylation-mediated

molecular mechanisms of disease.
1. Introduction
Protein post-translational modifications (PTMs) include phosphorylation, glyco-

sylation, acetylation, ubiquitination, SUMOylation and many others [1]. As a

competitor of ubiquitination, protein SUMOylation has become one of research

hotspots in recent years. SUMOylation is one of PTMs, in which a member of

the small ubiquitin-like modifier (SUMO) family of proteins is conjugated to

lysine (Lys) residues in target proteins. SUMOylation modification is reversible

and dynamic process, in which the modified proteins can be deSUMOylated by

sentrin/SUMO-specific proteases (SENPs) [2]. The reversible attachment of a

SUMO to a protein is controlled by an enzymatic pathway that is analogous to

the ubiquitination pathway [3].

More and more researches have realized the importance of SUMOylation

in the normal function of the body [4]. Along with the accumulating knowledge

on its biological functions, SUMOylation has been reported to regulate protein

subcellular localization, protein–DNA binding, protein–protein interactions,

transcriptional regulation, DNA repair and genome organization [5]. Moreover,

there is abundant evidence to show the aberrance of SUMO regulation

is highly associated with various diseases, including cardiac disease [6],

neurodegenerative disease [7] and cancers [8].
2. Small ubiquitin-like modifier family members
The SUMO family is a highly conserved PTM form in all eukaryotes, which is

required for viability of most eukaryotic cells. There is only one SUMO gene

SMT3 in budding yeast, while at least eight SUMO paralogues are present in
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plants [9]. In mammalian cells, SUMO proteins consist of four

components, including SUMO-1, SUMO-2, SUMO-3 and

SUMO-4 [3,10]. SUMO-1 is one 101-amino-acid protein with

11.6 kDa. The SUMO-2 shares 95% homology with SUMO-3.

The SUMO-2 and SUMO-3 differ from each other by only

three N-terminal residues and have yet to be functionally distin-

guished, but together they share only approximately 45%

homology with their paralogue SUMO-1 [11]. Despite the low

sequence homologies, SUMO-1 and SUMO-2/3 share very

similar three-dimensional structures. SUMO-4 is the least

well characterized SUMO isoform. SUMO-4 is probably non-

conjugated under physiological conditions. A gene coding for

SUMO-4 was identified through analysis of single-nucleotide

polymorphisms associated with type 1 diabetes [12]. In addition,

the expression of SUMO-4 is increased in pre-eclamptic placen-

tas and in models of oxidative stress and hypoxic injury [13].

Therefore, SUMO-4 may be a potential post-translational

mechanism in the stressed pre-eclamptic placenta.

Nevertheless, there are important differences between

mammalian SUMO paralogues. First, most of target proteins

are modified exclusively by SUMO-1 in vivo, which is the

dominant SUMO type among the four representative ones in

mammalian cells [14]. Some other target proteins are conju-

gated to SUMO-2/3, or readily conjugated with all SUMO

paralogues. SUMO is important for cellular response to stress

[15,16], such as heat shock, DNA damage and oxidative

stress [5,10]. SUMO-1 and SUMO-2/3 have different dynamics

and responses to physiological stresses in mammalian cells. For

instance, the nucleoplasmic SUMO-1 is more resistant to

bleaching than the SUMO-2 or SUMO-3 in HeLa cells [17]. So

cellular SUMO-1 dynamical transitions between SUMOylation

and deSUMOylation take more time than the modification

dynamical reactions of the SUMO-2 and SUMO-3.
3. Signal crosstalk of SUMOylation with
ubiquitination

3.1. Small ubiquitin-like modifier is similar to ubiquitin
in structure

In the aspect of the structure between SUMOs and ubiquitin,

although the amino acid sequence alignments exist 18% identi-

cal between ubiquitin and SUMO-1, they have the same three-

dimensional structure, especially b-sheet wraps a spherical

folding of a-helix [18]. In addition, the position of the two

C-terminal Gly residues required for isopeptide bond for-

mation is conserved between ubiquitin and SUMO-1 [18,19].

The biological effects of ubiquitination and SUMOylation are

both largely determined by the binding of proteins bearing

specific interaction domains [20,21]. However, SUMO has an

N-terminal extension that is not found in ubiquitin [20],

which is probably the key point that SUMOylation has a

different cell biological function than ubiquitination.

3.2. Biochemical process of SUMOylation and
ubiquitination

The biochemical process of protein SUMOylation is related to

ubiquitination. Ubiquitin and SUMO, the most prominent

members of a conserved protein family of ubiquitin-like pro-

teins (Ubls), can be attached to Lys residues of target proteins
via an isopeptide bond [22]. The ubiquitin-like modifications

are carried out in a three-step cascade mechanism requiring

the consecutive action of activating enzymes (E1s), conjugating

enzymes (E2s) and ligases (E3s). In human cells, ubiquitination

is mediated by two E1 ubiquitin activating enzymes, approxi-

mately 35 kinds of E2 ubiquitin conjugating enzymes and a

variety of E3 ubiquitin ligases. The ubiquitinated proteins

are recognized by receptors that contain ubiquitin-binding

domains, while the deubiquitinases, a specialized family of

proteases, remove ubiquitin modifications [23].

Similarly, SUMOylation, an analogous modification of

ubiquitination, is similar to the conjugation pathway of ubiqui-

tin in the biochemical process (figures 1 and 2), which is

performed in turn under the E1, E2 and E3 enzyme catalysis

[20]. During protein SUMOlytion, SUMOs are synthesized as

propeptides that require cleavage to reveal C-terminal digly-

cine motifs by SENPs in mammal cells [24]. SUMOs are then

activated by an ATP-dependent heterodimer of SUMO activat-

ing enzyme subunit 1 (SAE1) and SAE2 [25], which passes the

activated SUMO protein onto the specific and unique conjugat-

ing enzyme, a ubiquitin conjugating enzyme 9 (Ubc9), through

a trans-esterification reaction and forming a high-energy thio-

ester bond [26]. The Ubc9 usually acts in conjunction with an

E3 ligating enzyme, then catalyses SUMO conjugation to the

substrate [27]. Finally, SUMO conjugation forms an isopeptide

bond between the SUMO C-terminus and a e-amino group of a

Lys within the target protein [11]. A number of proteins have

been discovered to have SUMO E3 activity, including Ran

binding protein 2 (RanBP2), the protein inhibitor of activated

STAT (PIAS), the polycomb protein Pc2 and others [21],

which enhance SUMO conjugation to proteins. While the

removal of SUMO modification from a protein is mediated

by SENPs [28]. Members involved in SUMO pathway in

mammal cells are summarized in table 1. In addition, protein

SUMOylation requires a consensus SUMOylation motif in the

target protein. For example, although there are several Lys

residues in a protein, only a few of them could be true SUMO-

ylation sites. SUMO-1, SUMO-2 and SUMO-3 interact with the

same N-terminal region of the E2 conjugating enzyme Ubc9

with similar affinities. In general, many SUMOylation sites

follow a consensus motif c–K–X–E or c–K–X–E/D (c is a

hydrophobic amino acid, K is the target Lys, X is any amino

acid and D/E is Asp or Glu) [21].

A growing number of proteins have been reported to act

as substrates for both ubiquitination and SUMOylation. The

modified proteins have a wide range of functions, which

are mainly found in their modified substrates [8]. These

two modifications between ubiquitination and SUMOylation

have many communications in biological functions, including

the control of signal transduction pathways, the maintenance

of chromosome integrity and genomic stability.
3.3. Correlation between SUMOylation and
ubiquitination-mediated biological functions

Although protein SUMOylation and ubiquitination both act on

the Lys amino acid residue, sometimes they are cooperated,

and other times they are competitively modified for a target

protein. SUMO modification usually increases protein stability.

For instance, the SUMOylation of Oct4 significantly increased

Oct4 stability and its DNA binding ability during embryonic

and germ cell development [29]. While SUMO regulates the
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expression of tripartite motif-containing proteins TRIM21,

which functions as the Oct-1 ubiquitin E3 ligase to control

Oct-1 degradation. Therefore, a higher TRIM21 expres-

sion enhances Oct-1 ubiquitination and reduces Oct-1

stability consequently [30].
Some proteins can be simultaneously modified by SUMO or

ubiquitin along with different even opposite roles mediated by

each modification. For example, SENP1 plays a key role in the

regulation of the hypoxic response through regulation of

HIF1a stability. In this regulation process, HIF1a SUMOylation



Table 1. The members of SUMO pathway in mammal cells.

members of SUMO
pathway Homo sapiens

SUMO SUMO-1,-2,-3,-4

activating enzyme E1 SAE1,SAE2

conjugating enzyme E2 Ubc9

ligase E3 RanBP2;PIAS1,-2,-3,-4;Pc2 and etc.

SUMO protease SENP-1,-2,-3,-4,-5,-6,-7
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can serve as a direct signal for the ubiquitin-dependent degra-

dation of VHL [31]. Promyelocytic leukaemia protein (PML)

could be SUMOylated and ubiquitinated when exposed to

arsenic trioxide. A pathogenic fragment of huntingtin (HTT)

protein can be modified by both SUMO-1 and ubiquitin at the

same Lys residue. The SUMOylation of HTT-fragment increases

neurodegeneration, whereas its ubiquitination decreases neuro-

degeneration in a Huntington’s disease model [32]. PES1 is a

component of the PeBoW complex; when stimulated by oestro-

gen, the SUMOylation of PES1 upregulates its stability and

function via inhibiting its ubiquitination [33]. Post-translational

modification of proliferating cell nuclear antigen PCNA

can be modified by ubiquitin and SUMO in response to DNA

damage [34].

In conclusion, SUMO modification has been shown to com-

pete with ubiquitination for common Lys residues in most

cases. On the other hand, SUMO modification also cooperates

with ubiquitination to regulate biochemical function.
4. Protein SUMOylation relates to multiple
diseases

4.1. SUMOylation and cancer
Recently, there are many studies have shown that expression of

the SUMO E1 activating enzyme (a heterodimer of SAE1 and

SAE2), the SUMO E2 conjugating enzyme (Ubc9) or the

SUMO E3 ligases appears to be enhanced in numerous cancers

[8,35–37]. The expression level of Ubc9 E2 is upregulated in

adenocarcinoma and ovarian cancer cells, and PIAS3 is also

increased with different degrees in lung cancer, breast cancer,

prostate cancer and colorectal cancer [8]. The enzymes involved

in SUMO modification is usually increased, which is closely

related to the pathogenesis of hepatocellular carcinoma

(HCC). For example, the expression of SAE1/2 is significantly

upregulated in cancer tissues of HCC patients [38]. Survival

rate of patients with liver cancer is related to the expression

level of SUMO-2. The only E2 enzyme Ubc9 is overexpressed

in HCC during SUMO modification [39], while SENP2, which

regulates the process of removing SUMO modification, can

inhibit the proliferation of HCC cells [40,41]. Moreover,

SUMOylation is important in the development of multidrug

resistance in HCC [42].

In addition, human tumorigenesis is closely related

to SUMOylation and SUMO-modified substrate proteins.

SUMOylation is critical to cancer stem cell maintenance and

self-renewal. Knockdown of SUMO activating enzyme E1 or

SUMO conjugating enzyme (E2) inhibits maintenance and self-
renewal of colorectal cancer stem cells [30]. The SUMOylated

MAFB promotes colorectal cancer tumorigenesis through cell

cycle regulation [43]. Similarly, SUMOylation of Akt is required

for cell growth and tumorigenesis, and K276 is the major SUMO

acceptor site of Akt [44].

4.2. SUMOylation and cardiac disease
Recent studies show that protein SUMOylation plays an

important role in cardiac function, and balanced SUMOyla-

tion/deSUMOylation is important for proper cardiac

development, metabolism and stress adaptation [6,45–47].

SUMOylation is attempted to treat cardiac disease. The

increase of Ubc9-mediated SUMOylation may represent a

novel strategy for increasing autophagic flux and ameliorat-

ing morbidity in proteotoxic cardiac disease [47]. The

Ubc9/The PML/RNF4 (a SUMO-targeted ubiquitin ligase)

axis plays a critical role as an important SUMO pathway in

cardiac fibrosis, which provides an attractive therapeutic

target for treatment of cardiac fibrosis and heart failure by

modulating the signal axis pathway [45].

4.3. SUMOylation and neurodegenerative disease
Neurodegenerative diseases often involve the formation of

abnormal and toxic protein aggregates, which are thought to

be the primary factor in neurodegenerative disease occurrence

and progression. Accumulating evidences demonstrate pertur-

bations of neuronal SUMOylation contribute to numerous

pathological conditions and neurological disorders [7,48,49].

4.3.1. Huntington’s disease

It is known abnormality of HTT protein modification is

associated with Huntington’s disease (HD) [50]. A patho-

genic fragment of HTT can be modified by SUMO-1 at the

Lys residue, HTT-fragment SUMOylation increases neuro-

degeneration in HD model. In addition, HTT SUMOylation

increases the degradation of ubiquitin–proteasome pathway,

resulting in the accumulation of HTT, which finally leads to

HD [32]. Other reports show HTT is modified by SUMO-2

to modulate insoluble mutant HTT protein accumulation,

and PIAS1 enhances SUMO-2 modification [50,51].

4.3.2. Parkinson’s disease

SUMOylation is linked with the development of Parkinson’s

disease (PD) [52]. The a-synuclein, which highly expressed in

the brain and associated with PD, has been verified to be

SUMOylated preferentially by SUMO-1 [53]. The SUMOyla-

tion of DJ-1 plays an intriguing potential role for PD. The

SUMO-modified DJ-1 participates in the transcriptional regu-

lation of genes concerned with the cellular regulation of

oxidative stress. Whereas DJ-1 mutation will prevent

SUMOylation and abolish all of its known functions [54,55].

The PIAS family members, as SUMO E3 proteins, interact

with DJ-1 and stimulate its SUMOylation in the process of

eliminating ROS [52,56].

4.3.3. Alzheimer’s disease

Alzheimer’s disease (AD) is an age-dependent, progres-

sive neurodegenerative disorder that is characterized by
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amyloid-b (Ab) plaque formation [7] and the presence of neu-

rofibrillary tangles composed of hyperphosphorylated tau

protein. Previous studies indicated that SUMO-3 overexpres-

sion affects Ab levels [57]. SUMO-1 also modulates Ab

generation via accumulation of the Alzheimer’s b-secretase

BACE1 [58]. The SUMOylation of tau protein is also associated

with the development of AD [59,60]. Tau protein can be both

SUMOylated and ubiquitylated [61]. Inhibition of the protea-

somal degradation pathway increases the tau ubiquitination

and decreases its SUMOylation, suggesting that SUMO and

ubiquitin might compete to regulate tau stability [53].

4.4. SUMOylation and innate immunity
SUMOylation also involves in the replication of a large

number of viruses, either through the direct modification of

viral proteins or through the modulation of cellular proteins

implicated in antiviral defense. There is growing evidence

that SUMO regulates several host proteins involved in intrin-

sic and innate immunity, thereby contributing to the process

governing interferon production during viral infection

[62–65]. SUMOylation of proteins have been implicated in

the resistance to RNA viral infection. For DNA viruses,

SUMOylation promotes the stability of the DNA sensor
cGAS and the adaptor STING to regulate the kinetics of

response to DNA virus [66,67].

SUMOylation is a novel post-translational modification for

TANK-binding kinase 1 (TBK1) [63]. TBK1 kinase activity is

required to allow the attachment of SUMO-1 or SUMO-2/3

proteins, and a SUMO modification at K694 contributes to

the antiviral function of TBK1, while the viral protein Gam1

antagonizes this post-translational modification. Another

study identified SUMO1 was the key gene for inflammatory

breast cancer [63]. TRIM38 acts as an E3 ubiquitin or SUMO

ligase, which targets key cellular signalling components, regu-

lating the innate immune and inflammatory responses [68].

SUMOylation of NF-kB essential molecule NEMO augments

NF-kB activity, NF-kB-dependent cytokine production and

pancreatic inflammation [69]. In summary, SUMOylation has

been deeply studied recently, and its understanding could be

vital for developing potential therapeutic strategies.
5. Approaches to identify SUMOylation site
Nowadays, the identification of SUMO modification has faced

several challenges due to low abundance of most SUMOylated

proteins. The approaches for SUMOylation identification



Table 2. The methods of predicting SUMO modification sites. GPS, group-based prediction system; MotifX, statistical phosphorylation sites prediction method;
PSSM, position-specific scoring matrix; SVMa, support vector machines; MS, mass spectrometry. WEKA, Waikato environment of knowledge analysis.

bioinformatic
tools characteristic year website

free or
not free refs

SUMOSP including SUMOSP 1.0 and 2.0

based on two algorithms

applied GPS and motifX in SUMOSP

2006 http://sumosp.biocuckoo.org/ free [70,71]

SUMOPLOT a commercially available SUMOylation site predictor

based on a SUMO-modified conserved sequence and

hydrophobicity analysis

2006 http://www.abgent.com/tools/

sumoplot/

free [72]

SUMOPRE using a probabilistic model for prediction 2008 http://spg.biosci.tsinghua.edu.cn/

service/sumoprd/predict.cgi

(unable to access)

unknown [73]

FINDSUMO based on PSSM 2008 http://findingsumo.com.cutestat.

com/

not free [74]

SUMMON based on the sequence information

automated pattern recognition tool

detects PTM fragment ion series within complex MS/MS

spectra

calculating two independent scores, one for the

modification and one for the target peptide

2008 http://summon.sourceforge.net/ free [75]

SUMOTR using structure and sequence information

higher in correlation coefficient and sensitivity

2010 unknown [76]

SEESUMO using the domain-specific knowledge in terms of

relevant biological features for input vector encoding

2011 http://bioinfo.ggc.org/seesumo/

(unable to access)

unknown [77]

SUMOHYDRO based on hydrophobic properties

using SVM for classification

2012 http://protein.cau.edu.cn/others/

SUMOhydro/

free [78]

SUMOHUNT using random forest-based classifier provided in WEKA

needing sequence and several physico-chemical

properties

2013 unknown [79]
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mainly include the bioinformatics coupled with the amino acid

site-directed mutagenesis and mass spectrometry (MS)-based

proteomics analysis. We can predict protein SUMOylation

sites by the analogue computation bioinformatics, which is

further verified by amino acid site-directed mutagenesis.

In addition, the variable SUMO modification sites of target

proteins are identified by MS-based techniques and the

biochemical validation (figure 3).

The identification of SUMOylation sites and SUMO-inter-

action motifs in proteins is fundamental for understanding

biological functions and regulatory mechanisms of SUMOs.

Recently several bioinformatics software tools have been devel-

oped to predict SUMOylation modification (table 2), including

SUMOSP [70,71], SUMOPLOT [72], SUMOPRE [73], FINDSUMO

[74], SUMMON [75], SUMOTR [76], SEESUMO [77], SUMOHYDRO

[78] and SUMOHUNT [79]. The SUMOSP and SUMOPLOT

approaches predict SUMO modification sites mainly based

on the conserved sequence c–K–X–E/D. Generally these

bioinformatics methods focus on the characteristics of a

rigorous algorithm of the existing SUMO-specific sites on

the substrate proteins, and some even consider the protein

space structure and hydrophobicity. These bioinformatics

predictions usually need experimental data validation.
5.1. Small ubiquitin-like modifier modification site is
identified by mass spectrometry

Despite the powerful SUMO-modified prediction software

providing a theoretical basis for the prediction of SUMO modifi-

cation sites, the precise identification of SUMO modification sites

is very important for investigating the target protein functions.

Recent advances in MS-based proteomics have greatly facilitated

the robust identification and quantification of PTMs [80,81],

including SUMO modification. The most common approach is

to isolate the target SUMOylated protein by affinity chromato-

graphy and to identify by MS [61,82–84]. It is noted that this

approach requires the expression of a mutant form of SUMO,

in which the residue preceding the C-terminal Gly–Gly

(diGly) is replaced with a Lys (SUMO (KGG)) [85]. Digestion

of SUMO (KGG) protein conjugates with endoproteinase Lys-

C yields a diGly motif attached to target lysines. Peptides

containing this adduct are enriched using a diGly-Lys (K-1-

GG)-specific antibody and identified by MS. This diGly

signature is characteristic of SUMO(KGG) conjugation alone,

as no other Ubl yields this adduct upon Lys-C digestion [85].

MS-based identification of SUMOylated sites is hampered

by the large peptide remnant of SUMO proteins that are left

http://sumosp.biocuckoo.org/
http://sumosp.biocuckoo.org/
http://www.abgent.com/tools/sumoplot/
http://www.abgent.com/tools/sumoplot/
http://www.abgent.com/tools/sumoplot/
http://spg.biosci.tsinghua.edu.cn/service/sumoprd/predict.cgi
http://spg.biosci.tsinghua.edu.cn/service/sumoprd/predict.cgi
http://spg.biosci.tsinghua.edu.cn/service/sumoprd/predict.cgi
http://findingsumo.com.cutestat.com/
http://findingsumo.com.cutestat.com/
http://findingsumo.com.cutestat.com/
http://summon.sourceforge.net/
http://summon.sourceforge.net/
http://bioinfo.ggc.org/seesumo/
http://bioinfo.ggc.org/seesumo/
http://protein.cau.edu.cn/others/SUMOhydro/
http://protein.cau.edu.cn/others/SUMOhydro/
http://protein.cau.edu.cn/others/SUMOhydro/
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on the modified Lys residue upon tryptic digestion. Regard-

ing this problem, tandem affinity purification can carry out a

more efficient enrichment of SUMOylated proteins by allow-

ing the use of strong denaturing conditions generally to

remove most of the contaminant proteins [86].

5.2. SUMOylation site is confirmed by site-directed
mutagenesis

The Lys site on a protein, possibly modified by the SUMO mol-

ecule, is usually mutated to the Arg residue by site-directed

mutagenesis to check biological function changes. This classic

biochemical method is very efficient to confirm the protein

SUMOylation site, but the throughput is not high as MS.

For instance, the SUMOylation of TARBP2 at K52 is found

to require for regulating miRNA/siRNA efficiency by this

biochemical method [87].

5.3. Proximity ligation assays for detection protein
SUMOylation in vivo

Detection of protein SUMOylation in situ by proximity liga-

tion assays (PLA) allows easy visualization of endogenous

protein–protein interactions at the single molecule level

[88–91]. PLA relies on the use of combinations of antibodies

coupled to complementary oligonucleotides that are ampli-

fied and revealed with a fluorescent probe, with each spot

representing a single protein–protein interaction. In PLA, one

antibody is directed against the substrate ‘protein X’, while

another targets SUMO-1, SUMO-2/3 or ubiquitin. PLA could

detect a ‘SUMOylated protein X’ fraction, but also ‘protein X’

interacting with other SUMOylated proteins. PLA offers

a quick, cheap and ultrasensitive way for initial testing of

ubiquitin-like modifications [92].

5.4. In situ SUMOylation assay
Another method is in situ SUMOylation assay [93,94], which is

based on the fluorescence detection of SUMOylation and deSU-

MOylation in cultured cells. The recombinant green fluorescence

protein fused to the SUMO-1 (GFP-tagging SUMO1) is used to

visualize the nuclear rim, nucleolus and nuclear bodies. These

GFP signals represent cellular regions where SUMOylation

efficiently takes place. The recombinant SUMO-specific protease

SENP1 catalytic domain is added to erase GFP signals when

deSUMOylation happens. Some novel integrative technolo-

gies have been developed according to the above principles.
A semi-intact cell system, in combination with siRNA-based

knockdown of nucleoporin RanBP2 [93], reveals a modulatory

role of RanBP2 in the nuclear rim and PML bodies.
6. Prospective
SUMO modification has been in existence more than a

decade. SUMOs have been established as essential regulators

of many cellular functions. It is considered to be one of the

important factors regulating the function of the intracellular

protein, and abnormal protein SUMOylation will lead to

the occurrence of disease.

Recently, the relationship of protein SUMOylation

and autophagy has been studied. Autophagy is a catabolic pro-

cess that facilitates nutrient recycling via degradation of

damaged organelles and proteins through lysosomal-mediated

degradation [46,95–97]. Autophagy is one of the main mech-

anisms in the pathophysiology of neurodegenerative disease.

The accumulation of autophagic vacuoles (AVs) in affected

neurons is responsible for Ab production. Previous investi-

gation has proved that SUMOylation is associated with

autophagy. Overexpression of SUMO1 increased autophagic

activation, inducing the formation of LC3-II-positive AVs in

neuroglioma H4 cells [98]. Ubc9 overexpression induced rela-

tively high levels of autophagy and led to an increase in

autophagic flux, while Ubc9 depletion led to decreased LC3-

II expression. This may represent a novel strategy for increasing

autophagic flux and ameliorating morbidity in proteotoxic

cardiac disease [6]. Conversely, autophagy can regulate Ubc9

levels during viral-mediated tumorigenesis. Ubc9 and autop-

hagy are important co-factors to prime early stages of human

papillomavirus-mediated tumorigenesis [99].

With the continuous development of bioinformatics

and MS, several accurate and high-throughput methods

have been implemented to explore SUMO-modified sub-

strates and sites, which is helpful for deciphering protein

SUMOylation-mediated molecular mechanisms of disease.
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