
Original article

Rapid storage and retrieval of genomic
intervals from a relational database system
using nested containment lists

Laura K. Wiley1, R. Michael Sivley2 and William S. Bush1,*

1Department of Biomedical Informatics, Center for Human Genetics Research, Vanderbilt University, 2215 Garland Ave, Nashville, TN 37232 USA

and 2Department of Electrical Engineering and Computer Science, Center for Human Genetics Research, Vanderbilt University, 2215 Garland Ave,

Nashville, TN 37203 USA

*Corresponding author: Tel: +1 615 343 8608; Fax: +1 615 936 1427; Email: will@chgr.mc.vanderbilt.edu

Submitted 20 March 2013; Revised 28 June 2013; Accepted 2 July 2013

Citation details: Wiley,L.K., Sivley,R.M. and Bush,W.S. Rapid storage and retrieval of genomic intervals from a relational database system using

nested containment lists. Database (2013) Vol. 2013: article ID bat056; doi: 10.1093/database/bat056.

...

Efficient storage and retrieval of genomic annotations based on range intervals is necessary, given the amount of data

produced by next-generation sequencing studies. The indexing strategies of relational database systems (such as MySQL)

greatly inhibit their use in genomic annotation tasks. This has led to the development of stand-alone applications that

are dependent on flat-file libraries. In this work, we introduce MyNCList, an implementation of the NCList data structure

within a MySQL database. MyNCList enables the storage, update and rapid retrieval of genomic annotations from the

convenience of a relational database system. Range-based annotations of 1 million variants are retrieved in under a

minute, making this approach feasible for whole-genome annotation tasks.

Database URL: https://github.com/bushlab/mynclist

...

Introduction

A typical genomic annotation is represented in the form of

an interval (i.e. a range of base-pair positions), such as the

boundaries of a gene. Millions of interval-based genomic

annotations are available from multiple online resources,

most notably the UCSC genome browser, which provides

genomic elements in BED file format (chromosome, start,

stop and label). Although this format is convenient for

browsing a single genomic region or base-pair position

through an online genome browser, large collections

of genomic intervals are difficult to rapidly search. A

common task in genomics is to search interval data (such

as a collection of BED files) to identify a set of interval-

based annotations that overlap with a target interval.

For example, a user may want to identify genomic elem-

ents located within a deleted region. The main challenge

for these types of interval-based queries is maintaining a

sorted order of intervals to facilitate rapid searches—a

task known as indexing within database management

systems (DBMS).

Indexing is complicated by nested intervals, in which one

interval occurs entirely within the boundaries of a second

interval. If no nested intervals are present, sorting intervals

by their start position also properly sorts their end pos-

itions. Relational database indexing strategies, which

assume a single key, can thus properly order non-nested

intervals. However, when a nested interval occurs, sorting

based on start position no longer guarantees that the end

positions will be properly ordered, as shown in Figure 1.

To better understand the consequences of this problem,

consider the more familiar task of sorting date intervals.

Consider a football team that each year accepts some

new players and loses some existing players. Some players

...

� The Author(s) 2013. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly
cited. Page 1 of 5

(page number not for citation purposes)

Database, Vol. 2013, Article ID bat056, doi:10.1093/database/bat056
...

https://github.com/bushlab/mynclist
,
While
base
 --
up
,

may stay for only a short time, whereas others spend their

entire careers with the same team. As such, one player’s

career with that team may be entirely nested within an-

other’s, illustrated in Figure 1. Now consider the question:

who played for this team in year 2008? If player careers

were non-nested and ordered (as for players A–E), we

could identify the last player to join in 2008, and then

work our way backward through the sorted list until we

found the first player (C) who quit before 2008. However,

consider a second set of players (L–P), if the team member-

ship of some players is nested within the membership of

other players, there could be a player (M) who joined

before player N but stayed with the team after 2008.

Because we can draw no conclusions about the ordering

of when players quit, we must scan all players who joined

before year 2008. In the worst case, we ask about the cur-

rent year, requiring us to scan everyone who ever played

for the team.

In aggregate, table scans like these become very slow,

reducing the feasibility of relational databases for genomic

annotation tasks (1). An interval-based data structure called

Nested Containment List (NCList) was developed to address

this issue (2). The NCList data structure and associated al-

gorithms were released as part of a Python graph database

library, pygr. This implementation achieved 5–500-fold

faster query times than other DBMS-style indexing methods

available at the time. Since publication, the NCList structure

has been used for sequence alignment using UCSC genome

alignments (3, 4), processing ChIP-seq and ChIP-chip data

(5), and has been incorporated into the popular JBrowse

genome browser (6).

The NCList data structure achieves better query perform-

ance by hierarchically organizing all nested intervals. This

guarantees that each search space consists of contiguous

non-nested intervals (i.e. the search space is ordered both

on start and stop). Each interval points to a sublist of all

completely contained intervals. The query algorithm fol-

lows a recursive path that returns all overlapping intervals

within all contained sublists. The time complexity of this

type of query is O(MlogN), where M is the depth of the

tree and N is the database size.

Existing NCList implementations provide exceptional

performance for interval query operations but lack the

flexibility and convenient interface of a traditional DBMS,

most notably the ability to perform in-place updates on

an existing structure. MyNCList is an implementation of

the NCList data structure in the common database manage-

ment software MySQL. It provides mechanisms for in-place

updates and querying using MySQL stored procedures.

These tools facilitate the construction of a single updatable

Figure 1. Nested intervals disrupt ordering and query strategies. Given these two historic rosters and the question: who played in
2008 (represented with the red line)? In the non-nested example, sorting individuals by their first-year results was done in the
same order as when we sort by the players’ last year. Thus, we can use a traditional index on start and end positions to quickly
scan backwards, stopping at the 2004–2007 range (player C). In the nested example, the ordering of players by their last year on
the team is different from when we sort by their first year. Thus, if we implement the same reverse search technique used in the
non-nested example, stopping our query at the 2004–2007 range (player N) would skip player M. Therefore, we must search the
entire set of players when intervals are nested.

...

Page 2 of 5

Original article Database, Vol. 2013, Article ID bat056, doi:10.1093/database/bat056
...

while
Who
-
,
-
;
s
500
,
database management system
,

Figure 2. The NCList algorithm and update procedure. (A) The original interval organization where contiguous overlapping
intervals are grouped and individual intervals point to sublists containing the completely overlapped intervals. (B) Transition
structure highlighting the intervals to be added (bolded with alphabetic labels). (C) The completed structure with inserted
intervals fully incorporated.

...

Page 3 of 5

Database, Vol. 2013, Article ID bat056, doi:10.1093/database/bat056 Original article
...

repository of information for the rapid annotation of

genomic sequence variants.

Implementation

Construction of the NCList data structure consists of a

Python script that accepts interval annotations in the BED

file format. Intervals are processed and placed into a nested

containment tree. After tree generation, the script pre-

pares the MySQL data structure and stores the data into

node, edge and masterkey tables. The masterkey table

uses a numerical identifier to link each interval stored in

the node table to its alphanumeric label from the original

BED file. Because the intervals in the node table are hier-

archical, the edge table is used to link parent intervals to

their nested child intervals. The node table contains the id,

start and stop positions of all intervals in the structure and

a sublist (sub) value. All intervals contained by the same

parent are assigned the same sub value, thus grouping

intervals in a hierarchical relationship. The base intervals

(i.e. those intervals that do not fit within any other interval)

are assigned to sub 0, the root of the tree. When a range

may fit within multiple partially overlapping intervals, the

child interval is assigned based on a user-specified param-

eter; the default is to assign the interval to the first parent

in the sorted order. The tree construction algorithm begins

by sorting all intervals by their start positions. Construction

of the nested containment tree is performed in a single

pass.

In-place updates are accomplished using two stored pro-

cedures (addition and removal of intervals) in MySQL. To

update the coordinates of an interval, it must be removed

and reinserted with the new start and stop positions. To

increase the speed of these procedures, we create two

binary tree indices on the node table; one on the sub,

start and stop position of each range, and one on the

start and stop values only. The edge table is indexed by

interval id and the sub values.

There are multiple distinct conditions possible when

adding or removing ranges from the structure (shown as

the alphabetic ranges in Figure 2). Intervals in the bottom

layer of the structure (intervals A and B) are automatically

assigned to sub 0, as they are not completely overlapped

by any other interval. Interval A contains no sub 0 ranges,

so it is simply added to the node table, and no other al-

teration is necessary. However, interval B does contain a

Figure 3. Query performance of MyNCList compared with partition-based and multiple-indexing strategies in MySQL.
Performance is shown in annotations per second (A) and in raw execution time (B).

...

Page 4 of 5

Original article Database, Vol. 2013, Article ID bat056, doi:10.1093/database/bat056
...

,
,
,

sub 0 interval (interval 3). Thus, interval 3 is given a new

sub value, and an entry in the edge table is added point-

ing from interval B to this new value. Intervals C, D and E

are found deeper in the structure. When an interval is

completely contained and contains children (e.g. interval

C), the inserted interval (C) is given the sub value of its

child (interval 5). The children are assigned a new sub

value, and an entry in the edge table pointing to the

new sub is added. When there are no child intervals, add-

itions are less complex. If the parent of an added interval

(interval D) already has children, the interval is simply

added to the node table with the same sub value as the

other children. If the interval does not have any siblings

(interval E), a new sub value is assigned, and an entry into

the edge table pointing from the parent is added.

The deletion mechanism is less complex, as two interval

types (A and D) can be deleted without any alterations.

Interval E requires the entry in the edge table pointing

from its parent be removed. The children of interval B are

reassigned to sub 0 and the entry in the edge table

removed. Interval C is similar, here the children are assigned

the sub value of interval C, and the entry in the edge table

is removed.

Results and discussion

We evaluated the performance of the MyNCList process

using a combined set of multiple gene exons with

�973 000 intervals. Construction of the Nested Contain-

ment Graph completes within seconds, but does require

the BED file to be entirely loaded into memory. The insert

mechanism for this database adds �400 intervals per

minute, whereas the delete mechanism removes �2800

intervals per minute. The scalability of these operations is

typical of other tree-based data structures.

We compared the query performance of MyNCList with

two other popular indexing strategies; a partition-based

index and a start/stop position multi-index. We generated

tables containing random sets of single base-pair positions

in increasing orders of magnitude (1000, 10 000, 100 000

and 1 000 000) drawn uniformly across the human genome

to simulate variable sequence positions. We then anno-

tated these positions using a test database derived

from exons extracted from the Ensembl, Aceview and

UCSC genome databases, equaling �973 000 intervals,

reflective of a true annotation task. Simulated variant pos-

itions were then joined to the test database using the

multi-index strategy, using the partitioning strategy and

using the MyNCList stored procedure. All database

operations were performed with MySQL query and key

cache features disabled. The performance of these meth-

ods for our test database is shown in Figure 3. Notably,

annotation time for the indexed tables scales linearly with

the number of locations, whereas annotation time for

MyNCList scales logarithmically. As such, a query of

100 000 positions completes in 9.8 s using MyNCList, but

requires several hours to complete with other indexing

strategies. A table of 4.7 million positions is annotated

in 3.1 min using MyNCList, exceeding the performance

of the ANNOVAR, making this a viable method for high-

throughput annotation of variants discovered from whole-

genome sequence data (1). We also expect these measures

to be conservative, as optimization of the MySQL key

cache and other features will improve performance.

Availability

The Python script and MySQL package are available for

non-commercial research institutions. For full details see

http://chgr.mc.vanderbilt.edu/bushlab/.

Acknowledgements

The authors thank Scott Dudek for input on code revisions.

Funding

National Institute of General Medical Sciences at the

National Institutes of Health (T32 GM080178). Funding for

open access charge: Vanderbilt University.

Conflict of interest. None declared.

References
1. Wang,K., Li,M. and Hakonarson,H. (2010) ANNOVAR: functional

annotation of genetic variants from high-throughput sequencing

data. Nucleic Acids Res., 38, e164.

2. Alekseyenko,A.V. and Lee,C.J. (2007) Nested Containment List

(NCList): a new algorithm for accelerating interval query of

genome alignment and interval databases. Bioinformatics, 23,

1386–1393.

3. Lin,L., Shen,S., Tye,A. et al. (2008) Diverse splicing patterns of

exonized Alu elements in human tissues. PLoS Genet., 4, e1000225.

4. Lu,H., Lin,L., Sato,S. et al. (2009) Predicting functional alternative

splicing by measuring RNA selection pressure from multigenome

alignments. PLoS Comput. Biol., 5, e1000608.

5. Salmon-Divon,M., Dvinge,H., Tammoja,K. et al. (2010) PeakAnalyzer:

genome-wide annotation of chromatin binding and modification

loci. BMC Bioinformatics, 11, 415.

6. Skinner,M.E., Uzilov,A.V., Stein,L.D. et al. (2009) JBrowse: a next-

generation genome browser. Genome Res., 19, 1630–1638.

...

...

Page 5 of 5

Database, Vol. 2013, Article ID bat056, doi:10.1093/database/bat056 Original article
...

Discussion
while
to
,
,
,
where
Multi
Partioning
,
while
econds
utes
1
.
http://chgr.mc.vanderbilt.edu/bushlab/
This work was supported in by the
[
].

