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Abstract

Cancer stem-like cells (CSCs) have been reported to play major roles in tumorigenesis,

tumor relapse, and metastasis after therapy against colorectal carcinoma (CRC). Therefore,

identification of colorectal CSC regulators could provide promising targets for CRC. Ligand-

of-Numb protein X1 (LNX1) is one E3 ubiquitin ligase which mediates the ubiquitination and

degradation of Numb. Although several studies indicate LNX1 could be a potential suppres-

sor of cancer diseases, the functions of LNX1 in mediating cancer stemness remain poorly

understood. In this study, LNX1 was identified as a negative regulator of cancer stemness in

CRC, which was downregulated in colonospheres or side population (SP) cells. Further-

more, the coxsackievirus and adenovirus receptor (CXADR) was found to be one critical

downstream mediator of cancer stemness regulated by LNX1. Interestingly, the anti-breast

cancer drug tamoxifen was found to be an agonist of LNX1 and suppress cancer stemness

in CRC. In sum, this study provided the evidences that LNX1 signaling plays important roles

in regulating the stemness of colon cancer cells.

Introduction

As one of the most commonly diagnosed cancer diseases in both men and women, colorectal

carcinoma (CRC) has caused serious concerns demographically and economically throughout

the world. Statistically, there are 95,270 cases of CRC and 49,190 deaths in the US in 2016

whereas in China, almost 376,000 patients were diagnosed with CRC and 191,000 of both gen-

ders died of CRC in 2015 [1]. With the occurrence of chemoresistance and tumor relapse after

therapy, the frontier of cancer stemness has become the focus of recent developments in CRC

research [2,3]. Plethora of research reports have demonstrated that there is a small group of

cells named as cancer stem-like cells (CSCs) possessing the ability of self-renewal and higher

proliferation rate with increased capacity of invasion, metastasis and tumor formation [4,5,6].
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Although there is no consensus on the concept on CSCs in academia, this group of cells are

enriched in solid tumors following chemointervention and function as the “arch-criminal”

which finally leads to drug resistance and tumor recurrence after therapy against CRC [7,8,9].

At present, targeting CSCs has become one of the promising strategies for the development of

CRC therapy [10].

Identifying new properties of CSCs, exploring the biochemical mechanisms of CSCs and

searching for the key regulator of cancer stemness will be instructive for the reversal of drug

tolerance and the inhibition of the tumor recurrence mediated by cancer stemness in CRC

study. Currently there are different methodologies to identify and isolate CSCs including cell

sorting using the stemness-specific cell surface marker, detection of side population (SP) phe-

notype by Hoechst 33342 efflux, assessment of the ability to form spheres or tumors, and anal-

ysis of aldehyde dehydrogenase (ALDH) activity [11]. There are several CSC markers which

have been identified in CRC study including CD133, CD44, ALDH1, LGR5, EpCAM, CD24,

CD29, CD166, as well as ABC transporters [12,13,14,15,16,17,18]. As one broad-spectrum

stemness marker, CD133 was widely used to identify the CSC population in various kinds of

cancer cells including CRC [19,20,21,22]. Although there has been a rapid advancement in the

field of CSCs research which have provided optimism for the application of more reliable CRC

therapies, however, the identification of specific markers of colorectal CSCs still remains a

challenge [23,24,25]. Besides the identification of CSC markers using antibodies, there are

other ways to distinguish them in the heterogeneous solid tumor tissue. CSCs can be enriched

in SP after fluorescence activated cell sorting due to ABC transporters such as ABCG2 activa-

tion in this population which cannot be stained with Hoechst 33342, compared with those

treated with verapamil [26,27]. To evaluate the stemness, the extreme limited dilution assay

(ELDA) has been widely used to determine the efficiency of sphere formation or tumor gener-

ation in nude mice. Briefly, serial dilutions of cells were cultured using serum-free culture

methods to compare the rates of sphere formation between different groups [28]. Using this

method, several CSC markers have been identified.

Ligand-of-Numb protein X1 (LNX1) is one E3 ubiquitin-protein ligase of NUMB which

mediates the protein degradation of its downstream targets in a ubiquitin-dependent way [29].

There are two isoforms of LNX1 named respectively as LNX1 p70 and LNX1 p80, in which

LNX1 p80 contains 4 PDZ domains at its C terminal and a RING domain at its N terminal

that mediates ubiquitination and subsequent proteasomal degradation of its targets including

NUMB [29]. In addition, LNX1 could independently interact with several other proteins via

PDZ domains for its role as an E3 ubiquitin ligase [30,31,32,33,34]. Recently it has been dem-

onstrated that members of the LNX family could be suppressor genes in various cancer dis-

eases [33,35]. However, the precise function of LNX in mediated tumorigenesis or relapse after

therapy is poorly understood. Here in this article, LNX1 was first identified as a negative regu-

lator of cancer stemness in CRC and we showed that targeting LNX1 could provide a promis-

ing strategy against CSCs for clinical CRC research.

Materials and methods

Cell culture

Six colorectal carcinoma cell lines (Colo205, HCT116, HCT8, HT29, Caco-2 and LS174T)

were purchased from American Type Culture Collection (ATCC; Manassas, VA, USA).

HCT116, HCT8, HT29, Caco-2, LS174T were maintained in DMEM medium containing 10%

fetal bovine serum (FBS) and 50 U/mL penicillin/streptomycin and Colo205 was cultured

using RPMI1640 medium containing 10% FBS and 50 U/mL penicillin/streptomycin. The cell

cultures were incubated at 37˚C with a humidified atmosphere containing 5% CO2. The HT29
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stable LNX1 knockdown cells line was created by lentiviral transduction of a pLentilox3.7 vec-

tor containing a specific construct (LNX1 shRNA sense 5’-GGAGAATGACCGTGTGTTA-
3’). Another two stable LNX1-knockdown Colo205 cell lines were created respectively with

two specific constructs targeting LNX1 including the above one and another construct (LNX1-

2 shRNA sense 5’-GGTGCTTGTATAACTGTAA-3’).

siRNA transfections

For transient knockdown studies, cells were transfected with pools of scrambled or target

gene-specific siRNAs (100 nM) using Lipofectamine 2000 according to the manufacturer’s

instructions. The sequences of designed siRNAs were as follows (sense): LNX1 5’-GGAGA
AUGACCGUGUGUUA-3’, CXADR 5’-GGAAGUGACUUUAAGAUAA-3’, NUMB 5’- GGU
UAGAAGAGGUGUCUAA-3’, c-Src 5’-GGCUCCAGAUUGUCAACAA-3’, ErbB2 5’-GGAAG
GACAUCUUCCACAA-3’, Claudin1 5’-CAAUAGAAUCGUUCAAGAA-3’.

Antibodies

Mouse monoclonal antibody against LNX1 was purchased from Abgent (San Diego, CA). Rab-

bit polyclonal antibodies against ALDH1A1, CD133, LGR5 and the mouse monoclonal anti-

body against ABCB5 were purchased from GeneTex (GeneTex, CA). Rabbit polyclonal

antibody against CXADR was purchased from Novus Biologicals, Inc. (Littleton, CO). Anti-

GAPDH and HRP-conjugated secondary IgG were purchased from Santa Cruz Biotechnology

(Santa Cruz, CA).

Sorting and analysis of SP cells

Cells were dissociated with trypsin, resuspended at 1×106 cells per mL in DMEM with 2% FBS

containing 5 μg/mL Hoechst33342 at 37˚C for 90 min with or without 100 μM verapamil

(Sigma) to inhibit ABC transporters. Then cells were incubated on ice for 10 min and washed

with ice-cold PBS before flow cytometric sorting and analysis. Propidium iodide (PI) was used

to distinguish live and dead cells and the Hoechst negative and PI negative population repre-

sents the group of SP. Flow cytometry data were analyzed using FlowJo 7.6.1 software.

Colonosphere formation assay

Cells were seeded in ultra-low cluster plates (Corning Inc., Corning, NY) and cultured in

DMEM/F12 serum-free medium (Invitrogen) supplemented with 20 ng/mL EGF, 20 ng/mL

bFGF, 0.4% BSA, and 2% B27 (BD Pharmingen, Carlsbad, CA) as well as 1% methyl cellulose

(Sigma-Aldrich). For ELDA, the cells at different densities were cultured 12 wells per cell den-

sity in stem cell medium in 96-well plates for 1 to 2 weeks. The numbers of wells with at least

one tumorsphere (diameter >50 μm) were counted in a blinded manner. The frequency of

sphere-initiating cells was calculated by ELDA online program at http://bioinf.wehi.edu.au/

software/elda/.

Tumorigenicity in vivo

Different numbers of HT29 cells were injected subcutaneously into the flanks of the male nude

mice at three weeks of age which were housed in a specific pathogen-free facility. The tumors

were counted after 18 days of injection and the tumor formation rate was calculated using

ELDA analysis.
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Western blot

Cells were washed with 1x PBS and lysed on an ice with RIPA buffer supplemented with a pro-

tease inhibitor cocktail (P8340) (Sigma-Aldrich). Lysates were subjected to SDS/PAGE fol-

lowed by blotting with the indicated antibodies. Signal detection was achieved using Clarity

Western ECL substrate (Bio-Rad).

RNA extraction and RT-PCR

Total RNAs were isolated with TRIZOL reagent (Invitrogen) following the manufacturer’s

instructions. RT-PCR was performed in 20 μL of reaction mixture. PCR products were

resolved on 1.2% agarose gels and stained with GelRed. Glyceraldehyde 3-phosphate dehydro-

genase was also detected as a loading control.

Statistics

Results are expressed as mean ± SD. Statistical analyses involving two groups were performed

by means of Student’s t test. All data were processed with GraphPad Prism 5.0 software.

Results

LNX1 is a negative regulator of cancer stemness in colorectal carcinoma

By detecting RNA level of LNX1 of the sorted SP and non-SP from the colorectal carcinoma

cell line HT29, it was found that LNX1 was highly expressed in SP cells with higher levels of

LGR5, ABCB5, ALDH1A1 and CD133 rather than non-SP group (Fig 1A, 1B and 1C). In an

attempt to investigate the role of LNX1 in the SP maintenance, LNX1 knockdown assay using

siRNA was performed revealing that downregulation of LNX1 increased the frequency of SP

in HT29 (Fig 2A and 2B). To validate the function of LNX1 in regulating cancer stemness in

colorectal carcinoma, the colonoshpere formation assay and ELDA analysis were performed

using stable transfected shLNX1 HT29 cell line (vector as the control). Based on the observa-

tion, depletion of LNX1 enlarges the capacity of the colonosphere formation and increases the

sphere formation rates (Fig 2C, 2D and 2E). Histological analysis was performed to confirm

the origin of these xenograft tumors (S4 Fig). This observation was also confirmed by SP analy-

sis and colonosphere formation assay using another colorectal carcinoma cell line Colo205 in

which LNX1 was also depleted with two separate shRNA constructs using lentivirus infection

(S1 Fig). Moreover, knockdown of LNX1 decreased the tumor formation rate in vivo

(Table 1). Thus, LNX1 was identified as a negative regulator of cancer stemness in colorectal

carcinoma.

Inhibition of cancer stemness by LNX1 partially requires CXADR

To investigate the molecular mechanisms of the inhibition of cancer stemness mediated by

LNX1, we screened potential substrates of LNX1 using RNAi and the SP analysis. Interestingly,

knockdown of coxsackievirus and adenovirus receptor (CXADR) markedly decreased percent-

age of SP compared with other groups (Fig 3A and S2 Fig). Notably, CXADR was highly

expressed in colonospheres of HT29 or SP cells rather than the control groups (Fig 3B and

3C). Besides, it was also observed that the level of CXADR was negatively correlated with the

level of LNX1 in various colorectal carcinoma cell lines (Fig 3D).

In order to further confirm the relationship between LNX1 and CXADR, LNX1 knock-

down assay was performed which reveals that depletion of LNX1 increased the level of

CXADR (Fig 3E). Furthermore, LNX1 and CXADR double RNA interference assay showed

that the upregulation of SP percentage in the absence of LNX1 was significantly affected by

LNX1 negatively regulates the stemness of colorectal cancer
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CXADR depletion. However, knockdown of LNX1 has little effect on the change of SP per-

centage caused by CXADR interference (Fig 3F–1, 3F-2, 3F-3 and S3 Fig). These results indi-

cate that suppression of cancer stemness mediated by LNX1 partially requires the CXADR

interference in colorectal carcinoma.

Screening of LNX1 agonists to suppress cancer stemness in colorectal

carcinoma

Quantitative LNX1 promoter activity profiles from HT29 cells treated with 5 drugs were

obtained using the Dual Luciferase Reporter system, in which tamoxifen and quercetin both

evidently increased the transcription activity of LNX1 (Fig 4A). Western blot results confirmed

that tamoxifen could both upregulate the level of LNX1 in HT29 and Colo205 cell lines (Fig

4B). In addition, colonosphere formation assay and ELDA analysis reveal that tamoxifen could

Fig 1. Analysis of LNX1 and CSC markers in CRC SP and non-SP cells. (A) Sorting of SP and non-SP

cells using BD Aria software. The verapamil group was set as the negative control. (B) and (C) are the western

blot and the semi-quantitative RT PCR analysis of genes (LNX1 as well as CSC markers in CRC including

LGR5, CD133, ABCB5 and ALDH1A1).

https://doi.org/10.1371/journal.pone.0188665.g001
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Fig 2. Analysis of the function of LNX1 in mediating cancer stemness in CRC. (A) Effect of LNX1

knockdown on the percentage of SP. (B) The efficiency of LNX1 knockdown using semi-quantitative RT PCR

analysis. (C) Effect of LNX1 knockdown on the capacities of colonosphere formation (n = 8 per group). (D)

Effect of LNX1 knockdown on the rates of colonosphere formation (p value was calculated using the online

ELDA software). (E) The efficiency of LNX1 knockdown using shLNX1 lentivirus particles. Data from

triplicates are presented as the mean±SD, *P<0.05, **P<0.01, ***P<0.001.

https://doi.org/10.1371/journal.pone.0188665.g002

Table 1. Effect of LNX1 knockdown on the tumor formation rate using the HT29 cell line.

HT29 Numbers of tumors/total injections TCF(95% CI) TCF Estimate fold P-value

Cells per injection

1×106 1×105 1×104 1×103

vector 7/8 4/8 1/8 0/8 1/655511-1/127312 1/288919 1.0 P<0.05

shLNX1 8/8 6/8 3/8 0/8 1/115449-1/25115 1/53846 5.4

Different numbers of HT29 cells were injected subcutaneously into the male mude mice of 3 weeks old. Tumors were counted and the the formation rate

was calculated using ELDA after 18 days of injection. TCF means tumor-initiating cell frequency. CI represents confidence interval.

https://doi.org/10.1371/journal.pone.0188665.t001
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inhibit the capacity of colonosphere formation and decrease the sphere formation rates in the

presence of LNX1, which demonstrated it as a potential target for colorectal carcinoma therapy

against CSCs (Fig 4C and 4D).

Fig 3. CXADR functions as a downstream CSC-meditator of LNX1. (A) Targets screening of LNX1 using SP analysis. B, C, D

represent the expression analysis of CXADR and LNX1 respectively in HT29 compared with HT29-derived colonospheres (A); in SP and

non-SP group(B); in various CRC cell lines(C).(E)Effect of LNX1 knockdown on CXADR level. (F-1) Effect of double knockdown of

CXADR and LNX1 on the percentage of SP. (F-2) The inhibition percentage of SP frequency by LNX1 in the presence or absence of

CXADR. (F-3) The inhibition percentage of SP frequency by CXADR knockdown in the presence or absence of LNX1. Data from

triplicates are presented as the mean±SD, *P<0.05, **P<0.01, ***P<0.001.

https://doi.org/10.1371/journal.pone.0188665.g003
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Discussion

Existence of CSCs is one driving force of colon tumorigenesis and malignancy and one major

reason which leads to the drug resistance and tumor recurrence after therapy. There has been

a rapid advancement in the field of CSCs research in colorectal carcinoma which has provided

enough room for the application of more reliable cancer therapies [36]. Here we identified

LNX1 as a new negative regulator of cancer stemness in colorectal carcinoma. It was also dem-

onstrated that the expression of LNX1 was downregulated in colonospheres or SP of colorectal

carcinoma cells. By exploring the underlying molecular mechanisms, it was found that LNX1

suppresses cancer stemness which partially requires the CXADR interference in colorectal

carcinoma.

Several CSC markers on the cell surface functions as receptors to collect the information from

the tumor microenvironment (TME) and facilitate the mutual communication with TME which

was required by the tumor heterogeneity and the enrichment of CSCs [37,38,39]. Although

CXADR has been reported to function as a virus receptor, its primary biological functions are

unknown. Recently its has been shown that CXADR was highly expressed in tumor tissues rather

than normal tissues and the anti-CXADR antibody could be a feasible drug candidate against

cancer disease [40]. Here our results indicate that LNX1 suppresses cancer stemness which par-

tially requires the downregulation of CXADR. As the component of the epithelial apical junction

complex, CXADR protein was delicately regulated by the PDZ-domain-containing protein

MAGI-1. Although LNX1 p80 contains both PDZ domains and the RING domain which is

required for the ubiquitin-mediated protein degradation, however it cannot be ruled out the fact

Fig 4. LNX1-based drug screening to suppress cancer stemness in CRC. (A) Effect on small molecules

on LNX1 transcription. (B) Effect of tamoxifen on the LNX1 protein level in HT29 and Colo205 cell lines

detected by western blot. (C)Effect of tamoxifen and LNX1 knockdown on the capacities of colonosphere

formation (n = 8 per group). (D) Effect of tamoxifen and LNX1 knockdown on the rates of colonosphere

formation (p value was calculated using the online ELDA software). Data from triplicates are presented as the

mean±SD, *P<0.05, **P<0.01, ***P<0.001.

https://doi.org/10.1371/journal.pone.0188665.g004
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that CXADR was downregulated via other systems including the receptor endocytosis and degra-

dation pathway rather than the LNX1-mediated ubiquitination pathway. Moreover, depletion of

CXADR could not abolish the function of LNX1 in regulating cancer stemness, indicating there

may be other downstream substrates of LNX1 in colorectal carcinoma.

Based on the Dual-Luciferase Reporter system of LNX1 promoter, we screened different

drugs in an attempt to find out a small molecule that could suppress cancer stemness via targeting

LNX1. Interestingly, it was observed that tamoxifen downregulated the transcriptional activity of

LNX1 and suppressed cancer stemness. Moreover, tamoxifen required LNX1 to downregulate

the capacity and the rate of the colonosphere formation. Thus, LNX1 could be a potential drug

target in cancer therapy against colorectal CSCs. As the endocrine agent most commonly used at

all stages of breast cancer, tamoxifen has proved beneficial after therapy against estrogen receptor

(ER)-positive breast cancer. Surprisingly, LNX1 was downregulated in ER-silenced MCF7 cells

according to the gene expression profiles from curated Datasets in the Gene Expression Omnibus

(GEO) repository (GDS4061). This phenotypic profiling using an Affymetrix Human Genome

U133 plus 2.0 GeneChip is obtained by Sanaa Al Saleh using siRNA-mediated knockdown of the

estrogen receptor α (ERα) in the breast cancer cell line MCF7 and it was observed that ERα
knockdown resulted in estrogen/tamoxifen resistant cells with changed morphology, increased

motility with the cytoskeleton rearrangement and the ability to invade simulated components of

the extracellular matrix [41]. By exporting the GEO profile of LNX1, it was observed that LNX1

was downregulated in ERα-silenced breast cancer cells (Fig 5A). It might give a reasonable expla-

nation why chemotherapy with tamoxifen has better effect on patients with ER-positive breast

cancer than patients with ER-negative breast cancer. That is, LNX1 could not be significantly

upregulated by tamoxifen in the absence of ER in breast cancer (Fig 5B). However, the relation-

ship between LNX1 and ER still remains to be investigated.

Supporting information

S1 Fig. Analysis of the function of LNX1 in mediating cancer stemness in colorectal carci-

noma cell line Colo205. (A) Effect of LNX1 knockdown on the percentage of SP in Colo205.

Fig 5. Probable mechanisms underlying tamoxifen therapy targeting ER-positive cells against breast

cancer. (A) Effect of ER knockdown on the LNX1 level, data was obtained from the curated Datasets in the

Gene Expression Omnibus (GEO) repository(GDS4061). (B) Schematic presentation of the predicted

mechanisms underlying tamoxifen therapy targeting ER-positive cells against breast cancer, the broken lines

indicate the possible cases at different circumstance. In ER-positive cells, tamoxifen could trigger the

expression of LNX1 and exert its anti-tumor function, which could be abolished in ER-negative cells due to the

restricted LNX1 level.

https://doi.org/10.1371/journal.pone.0188665.g005
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(B) Effect of LNX1 knockdown on the capacities of colonosphere formation (n = 8 per group).

(C) Effect of LNX1 knockdown on the rates of colonosphere formation (p value was calculated

using the online ELDA software). (D) The efficiency of LNX1 knockdown using two shLNX1

constructs. Data from triplicates are presented as the mean±SD, �P<0.05, ��P<0.01,
���P<0.001.

(TIF)

S2 Fig. Screening of downstream targets of LNX1. SP analysis was performed using BD Aria

software and was analyzed using FlowJo 7.6.1 software.

(TIF)

S3 Fig. Effect of double knockdown of CXADR and LNX1 on the percentage of SP. SP anal-

ysis was performed using BD Aria software and was analyzed using FlowJo 7.6.1 software.

(TIF)

S4 Fig. Histological analysis of HT29 xenograft tumors. Tumor sections were stained with

hematoxylin and eosin (H & E).

(TIF)
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