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Abstract
Background: gene identification in genomic DNA sequences by computational methods has
become an important task in bioinformatics and computational gene prediction tools are now
essential components of every genome sequencing project. Prediction of splice sites is a key step
of all gene structural prediction algorithms.

Results: we sought the role of mRNA secondary structures and their information contents for
five vertebrate and plant splice site datasets. We selected 900-nucleotide sequences centered at
each (real or decoy) donor and acceptor sites, and predicted their corresponding RNA structures
by Vienna software. Then, based on whether the nucleotide is in a stem or not, the conventional
four-letter nucleotide alphabet was translated into an eight-letter alphabet. Zero-, first- and
second-order Markov models were selected as the signal detection methods. It is shown that
applying the eight-letter alphabet compared to the four-letter alphabet considerably increases the
accuracy of both donor and acceptor site predictions in case of higher order Markov models.

Conclusion: Our results imply that RNA structure contains important data and future gene
prediction programs can take advantage of such information.

Background
In recent years, complete genomic sequences of many
eukaryotic organisms are available and identifying genes
in genomic DNA sequences by computational methods
has become an important task in bioinformatics. Compu-
tational gene prediction tools are now essential compo-
nents of every genome sequencing project. These
programs generally identify potential coding regions by
homology searches against databases or by identification

of gene structural elements (e.g. start and stop positions
and donor and acceptor splice sites) in an unknown DNA
sequence. The latter task is routinely done using algo-
rithms trained by observed signals in sequences of known
structure.

Ab initio gene prediction methods are based on searching
for splice site signals in genomic sequences. The 5' bound-
ary or donor sites of introns in eukaryotes almost always
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contain the dinucleotide GU, while the 3' boundary or
acceptor sites contain the dinucleotide AG. However,
because of the common occurrences of these conserved
dinucleotides, correct detection of splice sites is not possi-
ble if the gene finding algorithm is merely based on the
GU-AG rule. Unfortunately, signals around these sites
(and especially acceptor signals) are not strictly conserved.

Different methods have been developed for splice site
detection, including probabilistic models, neural net-
works and support vector machines, and techniques based
on statistical analyses [1,2]. These methods fundamen-
tally seek conserved motifs or features surrounding the
splice sites in training datasets containing known real and
decoy (non-real) splice sites. They are generally different
in the way that they recognize the dependencies between
different positions within a signal sequence. Generally, if
we take only the splice signal into account for exon/intron
boundary determination, we may obtain many incorrectly
predicted (false) splice sites.

In eukaryotes, the vast majority of splicing processes are
catalyzed by the spliceosome complex, which has been
estimated to contain several hundred different proteins in
addition to different snRNAs. These factors are responsi-
ble for accurate positioning of the spliceosome on the 5'
and 3' splice site sequences [3]. Different experimental
evidence suggests that RNA secondary structure can affect
the splicing process (see [4] and references therein). In
addition, it has been suggested that RNA structure predic-
tion can aid the prediction of human acceptor sites [5]
and yeast donor and acceptor sites [6].

Patterson and coworkers [5] applied decision trees and
support vector machines as standard machine learning
approaches, to improve the prediction of acceptor sites
with the consideration of structure metrics (e.g. structure
free energy and "maximum helix forming probability")
calculated from folding of 100-nucleotide windows
around each site/non-site. They reported that considera-
tion of such metrics can result in subtle but significant
improvements in the prediction of acceptor sites, while
the role of these metrics in the prediction of donor sites
was reported to be insignificant.

Our group recently applied neural networks to investigate
whether addition of RNA secondary structure information
can improve yeast donor and acceptor splice site predic-
tions [6]. We predicted pre-mRNA secondary structures
for each "gene" (starting from an AUG and ending in a
stop codon). We then converted the structure to a string of
two alphabet symbols: stem (S) and loop (L). Then, we
combined these symbols and the four-letter alphabet of
nucleotides (A, G, C, U) into an eight-letter alphabet. It
was found that both donor and acceptor site predictions

based on eight-letter alphabet are noticeably more suc-
cessful compared to the predictions based on the four-let-
ter alphabet. Our results suggest that eight-letter alphabet
contains important information (detected by the net-
works) which is not present in the four-letter alphabet.

In this study, using Markov models of different orders, we
investigated whether the addition of RNA structure infor-
mation positively influences the accuracy of eukaryotic
donor and acceptor site predictions. We first predicted the
RNA secondary structure for a 900-base window centered
on each splice site, and each non-site (decoy site) and
translated it into the eight-letter alphabet, similar to our
previous work. Zero-, first- and second-order Markov
models were applied for the four-letter and eight-letter
alphabets. To demonstrate the accuracy and efficiency of
the proposed method, a leave one out cross validation test
was performed for each dataset. Our results indicate that
when a combination of sequence and structure, i.e. the
eight-letter alphabet, is applied to predict splice sites by
Markov models, the accuracy of prediction considerably
improves. Interestingly, this phenomenon is recognizable
in a variety of plant and vertebrate datasets. Therefore, we
propose that this approach can be extended to other splice
site prediction programs.

Results and discussion
Why 900-nucleotide sequences were chosen to feed the 
RNA structure prediction program?
It is practically impossible to predict the structure of full-
length pre-mRNAs in higher eukaryotes because of their
large sizes and time limitations. Instead, we chose to select
a "window" around each site to feed the RNA structure
prediction program.

For 1000 real donor sites in the HsGS dataset (see Meth-
ods), we extended the extracted sequences to bigger sizes
(i.e. 200, 300, etc centered at each real/decoy donor site)
and predicted their structures. Then, we counted the
number of S→L and L→S changes in a 21-nucleotide win-
dow around the donor GU (4 nt in exon + GU + 15 nt in
intron). It means that for each of the 1000 donor sites we
calculated the number of changes (Hamming distance)
between the structure of the 21-nucleotide donor region
when folded in a 100-nucleotide window versus a 200-
nucleotide window; a 200-nucleotide window versus a
300-nucleotide window, and so on. Figure 1 depicts the
average changes vs. the extension of the window. With the
enlargement of window from 100-nt to 200-nt, the aver-
age number of changes is considerable (in ~36.7% of
positions, either of S→L or L↓S changes were observed),
while after the 900 to 1000 extension few substantial dif-
ference found in this value (i.e. it remained about 13.8%)
with the extension of the sequence. Roughly the same
results were obtained in case of AG sites with the consid-
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eration of a 21-nucleotide window around the acceptor
site (15 nt in intron + AG + 4 nt in exon).

In addition, we predicted the secondary structure of forty
6000-nt sequences (randomly selected from genes in
HsGS dataset). The linear distances of all paired bases in
the predicted secondary structures were calculated: for
nucleotide i base-paired to nucleotide j, |i - j| was consid-
ered as the linear distance of these two nucleotides. The
distributions of these linear distances are shown in Figure
2. A considerable fraction of interactions (~83%) are
closer than 900-nt. To capture more possible interactions
we had to choose huge windows, for which prediction of

structure was extremely slow; for example, ~90% of inter-
actions were closer than 2000-nt. Based on these results,
we decided to use 900-nucleotide windows to extract the
secondary structures of our splice site datasets from the
above-mentioned datasets.

RNA structure prediction improves splice site prediction 
accuracy
After prediction of RNA structures of 900-base sequences
around each splice site, we translated the normal RNA
sequences to eight-letter sequences based on whether or
not each nucleotide was in a stem. Then we trained zero-,
first- and second-order Markov models with conventional
sequence and with eight-letter sequences for prediction of
donor and acceptor sites.

Table 1 summarizes the results of this experiment for five
different datasets (see Methods). The bold-underlined
pairs are those values that show improvements with the
application of eight-letter Markov models compared to
four-letter models. It is obvious that in case of the second-
order Markov model the improvement is exceptionally
considerable, while in case of zero-order model this
enhancement is not a general phenomenon. It should be
noted that Patterson et al [5] reported improvements only
in case of the 3' sites.

There are different factors that influence the importance of
predicted RNA structure for splice signal detection with
different orders of Markov models. First, the number of
observations for each dataset at each position of splice sig-
nal decreases when higher order Markov models are

Distribution of predicted linear distances of base-paired nucleotides in RNA sequencesFigure 2
Distribution of predicted linear distances of base-paired 
nucleotides in RNA sequences. See text for details.

Average number of structural changes in a 21-nucleotide window around 1000 donor GUsFigure 1
Average number of structural changes in a 21-nucleotide window around 1000 donor GUs. See the text for details.
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applied. Thus, the randomness of the training datasets
may negatively influence the prediction accuracy. In addi-
tion, since RNA base-pairing often occurs between contin-
uous runs of nucleotides longer than 2–3 nucleotides, a
zero-order Markov model (which assumes no dependen-
cies between positions) cannot perfectly take the struc-
tural information into account. In contrast, the prediction
accuracies of first-, and more effectively, second-order
Markov models enhance notably.

Since the improvements obtained with the application of
eight-letter instead of four-letter alphabet is generally
small, it is necessary to verify the observed deteriorations
and improvements are statistically significant. As
explained in the Methods section, we calculated p-values
for test of differences in these quantities. Very few cases
showed insignificant differences, which means that the

observed differences are far from being produced by
chance.

In our study, AraClean dataset can be considered as an
example of small training datasets, which is usually the
case when studying novel genomes; BG570 and HMR195
are examples of genes with poorly conserved signals. Also,
note that for the two smallest datasets (i.e. AraClean and
HMR195), the improvement is more obvious. For the
above datasets, the success of application of eight-letter
alphabet in splice site prediction implies that the structure
around splice sites are preserved enough to be useful in
prediction.

Log likelihood ratios show conservation of structure at 
splice sites
It is well-known that in living systems, RNA molecules
may fold differently from what is predicted by computa-

Table 1: Comparison of eight-letter vs. four-letter predictions of acceptor and donor sites for different datasets. Where application of 
eight-letter alphabet enhances the prediction compared to the conventional four-letter alphabet, the data pair is shown in bold.

Markov Models:

Zero-order First-order Second-order

Dataset Alphabet Site CC Sp Sn CC Sp Sn CC Sp Sn

AraClean: 4- 3' 0.8540* 0.8923 0.9039 0.8821 0.8906 0.9504 0.9011 0.9138 0.9511
8- 3' 0.8536* 0.8911 0.9048 0.9002 0.9043 0.9611 0.9414 0.9456 0.9744

4- 5' 0.8832 0.8871 0.9565* 0.8917 0.8989 0.9550 0.9066 0.9019 0.9737
8- 5' 0.8817 0.8853 0.9565* 0.9088 0.9010 0.9781 0.9422 0.9351 0.9874

AtGS: 4- 3' 0.7025 0.8338 0.8763 0.7450 0.8539 0.8976 0.7787 0.8769 0.9053
8- 3' 0.7002 0.8359 0.8705 0.7455 0.8495 0.9041 0.7943 0.8776 0.9219

4- 5' 0.8029 0.8846 0.9224 0.8224 0.8948 0.9311 0.8455 0.9048 0.9440
8- 5' 0.7986 0.8787 0.9252 0.8222 0.8997 0.9250 0.8576 0.9138 0.9464

HsGS: 4- 3' 0.7848 0.8649 0.9287 0.8167 0.8831 0.9403 0.8450 0.8979 0.9524
8- 3' 0.7843 0.8635 0.9299 0.8207 0.8888 0.9375 0.8574 0.9085 0.9530

4- 5' 0.8117 0.8779 0.9409 0.8449 0.8988 0.9510 0.8740 0.9139 0.9639
8- 5' 0.8070 0.8788 0.9348 0.8446 0.8935 0.9570 0.8842 0.9249 0.9619

BG570: 4- 3' 0.9002 0.9046 0.9597 0.9163 0.9276 0.9570 0.9346 0.9347 0.9761
8- 3' 0.8981 0.8996 0.9626 0.9174 0.9137 0.9748 0.9427 0.9512 0.9696

4- 5' 0.8845 0.9056 0.9369 0.9105 0.9153 0.9644 0.9353 0.9351 0.9780
8- 5' 0.8841 0.9070 0.9346 0.9136 0.9218 0.9615 0.9437 0.9406 0.9838

HMR195: 4- 3' 0.8812 0.8850 0.9596 0.9054 0.9169 0.9567 0.9406 0.9432 0.9774
8- 3' 0.8832 0.8868 0.9603 0.9120 0.9172 0.9661 0.9556 0.9525 0.9885

4- 5' 0.8775 0.8980 0.9378 0.9204 0.9290 0.9645 0.9532 0.9526 0.9850
8- 5' 0.8783 0.9224 0.9095 0.9275 0.9458 0.9558 0.9633 0.9618 0.9892

* Data pairs with insignificant differences (Mann-Whitney test).
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tional methods. With the best possible prediction soft-
ware, we completely ignore the importance of RNA-
binding proteins in the formation of RNA structures. Nev-
ertheless, if the RNA secondary structure is important as a
signal, one can expect preserved structural patterns to be
present in the signal sequences, particularly when several
previous reports insist on the existence of such structural
patterns.

Figure 3 summarizes the log likelihood ratio (LLR, see
Methods) of loop formation at different positions of a 31-
nt window around splice sites in AtGS and HsGS dataset.
LLR patterns of AraClean and AtGS, and also LLR patterns
of BG570, HMR195 and HsGS are qualitatively the same
(data not shown). Note that the patterns of LLR near the
splice sites are roughly the same in human and A. thaliana.
These patterns are presumably important in the function
of spliceosome at different sites, and also confirm the
importance of RNA structure in prediction of splice sites.
For example, existence of a region upstream of the 3' AG
(specially in case of AtGS dataset), which is preferably
excluded from being in stem structures, might be related
to the fact that existence of stem structures just upstream
of the acceptor site inhibits exon ligation [7]. Another
important functional sequence is a small region around
GU donor sites, which interacts with the U1 snRNA and/
or U6 snRNA at the beginning of spliceosome-mRNA
interaction. In case of both datasets, it can be seen that the
adjacent nucleotides in the left side and also in the right
side of the GU dinucleotide prefer to be present in loop
structures (see [6]). It seems surprising however, that the
GU dinucleotide has a considerable tendency to take part
in hybridization with some other parts of the mRNA mol-
ecule. We could not establish any functional or sequence
similarity between the sites that pair with this GU in the
predicted structure. These sites actually were scattered in
the 900-nt sequences. Although this can be simply consid-
ered as an artifact, it also might be the result of an
unknown detection mechanism (e.g. via an RNA-duplex-
binding protein), which happens chronologically prior to
the binding of U1 snRNA.

One may argue about the impact of RNA structure per se
on the splice site prediction. For example, it is previously
reported that in case of noncoding RNAs, the distinct sta-
tistical properties result mostly from local base-composi-
tion bias and not from RNA structure [8].

Table 1 shows that when zero-order Markov model is
used, predictions based on eight-letter alphabet generally
worsen the splice site identification compared to the four-
letter alphabet. In contrast, applying the first-order
Markov model fairly improves eight- vs. four-letter splice
site predictions, while the use of the second-order Markov
model remarkably improves them. If the observed

improvements had been simply resulted from the struc-
tural differences caused by GC content variations between
real and decoy sites, one could have expected to observe
the improvements in case of Markov models of any order.
Our results imply that the secondary structure informa-
tion in adjacent nucleotides is in fact the factor that
improves the eight-letter-based predictions.

We considered a 21-nt window around each donor or
acceptor site, assuming that this window includes all
information-containing positions. Figure 3 implies that
this cannot be absolutely correct, since far away positions
clearly contain species-specific signals. For our datasets,
we extended the splice signal window 5 nucleotides from
each side. When eight-letter alphabet was applied, predic-
tions of splice sites with this 31-nt window were slightly
more successful in comparison with the previous predic-
tions. Altogether, we concluded that the size of the win-
dow marginally influences the prediction of splice sites.
This is in contrast with four-letter-based predictions, since
the information content reduces to zero for distant posi-
tions relative to the conserved GU/AG.

Optimization of RNA structure prediction software for 
gene prediction: a must?
In this work, we used Vienna software [9] to predict the
structure of real and decoy RNA molecules in our datasets.
In previous works, Mfold [10] has been exploited to pre-
dict RNA structures [5], [6]. The success of these studies
suggests that future gene prediction programs may incor-
porate RNA structure prediction modules. However, the
RNA structure prediction programs might not act ideally
for gene prediction software, because these programs are
designed to find the structure with the least free energy
and they test all possible secondary structures; as a result,
they are too slow and are not suitable to be associated
with gene prediction in genomic sequences, in which a lot
of sites should be tested. Therefore, a rapid but approxi-
mate structure prediction algorithm might be more use-
ful. Moreover, these programs work best for short
sequences and they should be revised to perform better
for longer RNA molecules [11]. There are also other algo-
rithms and strategies to predict RNA structure [12]. One
should check whether these programs are more useful to
be associated with gene prediction programs. Optimized
algorithms for RNA structure prediction may significantly
improve current gene prediction software.

Methods
RNA secondary structure prediction
The Vienna RNA package [9] was used to predict the most
stable RNA fold for each sequence. The RNAfold program
in the package predicts the minimum free energy structure
of a single sequence, based on the algorithm originally
developed by Zuker and Stiegler [13]. The predicted struc-
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Log likelihood ratio (LLR with log-base-2) of formation of loop structure at different positions around splice sites in AtGS and HsGS datasetsFigure 3
Log likelihood ratio (LLR with log-base-2) of formation of loop structure at different positions around splice sites in AtGS and 
HsGS datasets. The sequences are shown in 5'→3' direction. Asterisked positions are those positions that show a significant 
difference (p < 0.05 based on the test for differences of two binomial proportions) between the frequency of "loops" in real 
and decoy sites. 3' AtGS (A), 3' HsGS (B), 5' AtGS (C) and 5' HsGS (D).

(A)

-0.3

-0.2

-0.1

0

0.1

0.2

* * * * * * * * * * * * * * * * * *

Position

L
LR

A G

(B)

-0.3

-0.2

-0.1

0

0.1

0.2

* * * * * * * * * * * *

Position

L
L

R

A G

(C)

-0.6

-0.4

-0.2

0

0.2

* * * * * * * * * * * * * * * * * *
Position

L
LR

G U

(D)

-0.6

-0.4

-0.2

0

0.2

* * * * * * * * * * * * * * *

Position

L
L

R

G U



BMC Bioinformatics 2006, 7:297 http://www.biomedcentral.com/1471-2105/7/297
tures were converted to a string of two-symbol alphabet
(i.e. S, L) corresponding to whether each nucleotide is
paired or unpaired, respectively. Then, with the combina-
tion of L and S symbols and four-letter nucleotide alpha-
bet (i.e. A, U, C, G), each sequence was converted to an
eight-letter alphabet sequence. The nucleotide sequences
of splice sites (four-letter) and the sequence-structure
combination strings (eight-letter) were used for training
Markov models (see below).

Datasets
To evaluate the performance of splice site prediction and
comparison of primary sequence vs. prediction based on
the combination of sequence and structure, we used some
well-known non-redundant datasets with standard donor
GUs and acceptor AGs: AraClean dataset with 144 A. thal-
iana genes [14]; AtGS and HsGS datasets with 1323 A.
thaliana and 1115 H. sapiens genes respectively [15];
BG570 dataset with 570 vertebrate genes [16]; and
HMR195 dataset with 195 human, mouse and rat genes
[17]. In addition, for each donor or acceptor site, 2 GUs
and 2 AGs other than the splice site were randomly
selected from each dataset (to construct our non-real or
"decoy" datasets). In case of each real or decoy site, a 900-
base sequence centered at the invariant GU or AG dinucle-
otides was extracted from the above-mentioned datasets
(see below).

Window size
Patterson et al [5] selected 100-nucleotide sequences cen-
tered at each GU or AG dinucleotide, but this might not
be the best choice. In a real enormous pre-mRNA mole-
cule in eukaryotes, it is logical to assume that there are
many faraway nucleotides base-paired to each other to
form secondary structures. We selected 900-nt sequences
centered at each real/decoy site; then the RNA secondary
structures were predicted for these "windows" (see Results
and Discussion).

Positional Markov models
For devising a positional Markov model, we extracted
local 21-nt windows surrounding the candidate splice
sites. These local contexts consist of four adjacent nucle-
otides upstream and fifteen adjacent nucleotides down-
stream the GU for donor sites. Fifteen adjacent
nucleotides upstream and four adjacent nucleotides
downstream the AG sites were considered in case of accep-
tor sites. These segments around donor and acceptor sites
are modeled by separate Markov models where the
observed state variables are the elements drawn from the
four-letter alphabet, or alternatively from the eight-letter
alphabet.

We applied zero-, first- and second-order Markov models
[18,19]. Briefly, in an nth-order Markov model the proba-

bility of the observation of a character in the ith position
depends merely on the characters in its n previous posi-
tions.

We applied zero, first and second order Markov models.
For example, Given a sequence x = x1x2...xl-1xl, the first
order Markov model is such that:

in which P1(x1) and Pi-1i(xi|xi-1) refer to the probability of
x1 at the first position and the conditional probability of xi
at position i given that xi-1 is at position i-1, respectively.
In second order Markov model, each symbol depends on
the value of the two preceding symbols. The zero order
(positional) Markov model is simply a positional weight
matrix [19], and probability of each symbol is independ-
ent of the other positions. In order to distinguish the false
splice sites consisting of the conserved GU and AG dinu-
cleotides, we define a false model M- to characterize the
signal segments for false splice sites. To use these models
for discrimination, we calculated the score as:

This model was applied both for the four-letter and the
eight-letter alphabet sequences.

Considering the two-letter alphabet of structure (i.e. L and
S), we defined log likelihood ratio (LLR) of "Loops" as:

LLR = log2 (fr,l/fd,l)  (3)

in which fr,l is the frequency of "loops" (i.e. letter L) at the
lth position of real sites and fd,l is the frequency at the lth
position of decoy sites. Positive LLR values indicate that
the lth nucleotide in the window is placed in loops more
than what is expected by chance; the reverse is true for
negative values.

Since each nucleotide in the real and decoy datasets is
folded either as a "loop" or a "stem", performing a "test of
two binomial proportions" allows us to see whether the
difference between the L/(L+S) proportions of real and
decoy sites is statistically significant. This test was per-
formed using MINITAB© 14 software. A p-value less than
0.05 was considered significant.

Performance measures

Sensitivity (Sn) and specificity (Sp) as common measures
for determining the accuracy of prediction methods [16]
were calculated as:

P x x x P x P x xl i i
i

l

i i( ) ( ) ( | ),1 2 1 1 1
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Sn = TP/(TP + FN)  (4)

Sp = TP/(TP + FN)  (5)

where TP is the number of true positives, FN is the
number of false negatives, TN is the number of true nega-
tives and FP is the number of false positives. Sp is propor-
tion of predicted real sites that are actually real, while Sn
is the proportion of real sites that have been correctly pre-
dicted as real. Since neither Sp nor Sn alone constitutes
good measures of global accuracy, other measures are
developed. The preferred measure for global accuracy
which has traditionally been used is correlation coeffi-
cient, defined as:

Leave one out cross validation analysis
For each dataset, a leave one out cross validation
(LOOCV) analysis was performed, i.e. each site (real or
decoy) was removed and the remaining sites were used to
train the Markov models and to score (to test) the
removed site. In case of each Markov model, using the
above scores, a fixed cutoff value was chosen for each
dataset in all iterations of the LOOCV tests, so as to max-
imize the discrimination between real and decoy sites by
maximizing CC.

In our study, it is important to see whether the application
of the eight-letter alphabet results in improvements in the
splice signal predictions compared to the conventional
four-letter alphabet, and whether the (probable) improve-
ments are statistically significant. To test the significance
of the observed differences in the performance measures,
for each dataset (real or decoy) we left one sequence out
at a time. Then, based on the above mentioned cutoff
value, TP, TN, FP and FN were determined. Using Equa-
tions (4), (5) and (6), the Sn, Sp and CC values were cal-
culated. With this procedure we obtained distributions for
CC, Sn and Sp values for each model. These distributions
were then used to investigate whether the observed differ-
ences were significant. The level of significance was con-
sidered as p < 0.001 in the Mann-Whitney test for the
difference in the medians of the distributions of four- vs.
eight-letter-based performance measures. MINITAB© 14
was used to perform the analysis.
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