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Robot grasping in unstructured and dynamic environments is heavily dependent on

the object attributes. Although Deep Learning approaches have delivered exceptional

performance in robot perception, human perception and reasoning are still superior

in processing novel object classes. Furthermore, training such models requires large,

difficult to obtain datasets. This work combines crowdsourcing and gamification to

leverage human intelligence, enhancing the object recognition and attribute estimation

processes of robot grasping. The framework employs an attribute matching system

that encodes visual information into an online puzzle game, utilizing the collective

intelligence of players to expand the attribute database and react to real-time perception

conflicts. The framework is deployed and evaluated in two proof-of-concept applications:

enhancing the control of a robotic exoskeleton glove and improving object identification

for autonomous robot grasping. In addition, a model for estimating the framework

response time is proposed. The obtained results demonstrate that the framework is

capable of rapid adaptation to novel object classes, based purely on visual information

and human experience.

Keywords: crowdsourcing, gamification, grasping, robot perception, image classification

1. INTRODUCTION

Over the last decades, autonomous intelligent robotic systems have achieved notable levels of
speed, precision, and repeatability, surpassing human ability to execute a wide range of tasks
that involve some form of interaction with the environment. Despite the significant progress in
the robot grasping and manipulation fields (Mahler et al., 2017), humans still excel in activities
related to perception and reasoning due to the complexity, subjectivity, and uncertainty involved
in these processes (Torresen, 2018). In order for robots to better understand and react to changes
in their surroundings, they need environmental awareness and intelligent reasoning that will lead
to sophisticated problem-solving. This is not yet feasible with traditional artificial intelligence
methods, but can be achieved by involving humans in the decision-making process.

Recently, robotics researchers started utilizing human intelligence through crowdsourcing
to solve complex tasks, improving the capabilities of existing autonomous intelligent systems
(Chernova et al., 2010; Breazeal et al., 2013; Kehoe et al., 2015; Zhao and Han, 2016; Ibáñez et al.,
2020). For instance, in Gouravajhala et al. (2018), the authors propose a system that employs online
non-expert human crowds to cooperate with robots to segment and label objects in 3D point clouds.
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Through the system, a single worker was able to segment a
scene with an average time of 89 s and a mean precision of
96%. With a crowd of three workers, the segmentation time
dropped to an average of 26.5 s, with a decrease in precision
of 15%. In Khoo et al. (2015), the authors explore the use of a
crowd-based navigation system to assist visually impaired people
in navigating public spaces. Utilizing the system, a crowd of
11 participants was able to navigate artificially generated mazes
in times ranging from 3 to 4 min. The RoboTurk platform
(Mandlekar et al., 2018) employs crowdsourcing to collect robot
arm manipulation data for training reinforcement learning
models. Relying on contracted workers, the platform was able
to collect over 2,200 demonstrations in 20 h of system usage.
In Sorokin et al. (2010), the authors relied on the Amazon
Mechanical Turk crowdsourcing platform (Amazon, 2005) to
segment and annotate 3D scenes into labeled objects, improving
robot grasping. Response time and annotation quality on the
Turk platform depends on the payment, with rates exceeding 300
annotations per hour for an hourly compensation of 1 USD at the
time of the study (Sorokin and Forsyth, 2008).

Although crowdsourcing platforms are an effective way of
solving complex reasoning problems through collective thinking,
most of them lack crowd motivation, requiring expensive
incentives, such as rewards or payments for user participation
(Amazon, 2005). An alternative for increasing the participant
engagement in problem-solving environments is to provide
aesthetically pleasing, easy to learn, intellectually challenging
interfaces that entertain and motivate the user, such as gaming
platforms. Every year, more than two billion people spend a
considerable amount of time daily playing games that test their
problem-solving skills in diverse scenarios (Wijman, 2018). The
data collected through these robust, synchronized, and high-
speed gaming networks can be used to deal with real-world
problems, even without players being aware of the process
(Cooper et al., 2010; Chernova et al., 2011; Chirayath and Li,
2019). The NASANeuralMulti-Modal Observation and Training
Network (NeMO-Net) (Chirayath and Li, 2019) and Foldit
(Cooper et al., 2010) are examples of games that extract scientific
outcomes and value through player participation. In the first,
players identify and classify coral reefs using satellite and drone
images, and the data is used to train a Convolutional Neural
Network (CNN). The Foldit online game is used to engage
non-scientists in predicting complex protein structures.

There are several features that make the combination
of gamification and crowdsourcing frameworks specifically
applicable to robotic contexts. Robots require sophisticated
perception that should be able to sense and understand
dynamic and unstructured surroundings to execute tasks with
ease (Luo et al., 2017). To accomplish this, the robotic and
gaming environments should share common parameters that
are based on simulated real-life conditions. In the gaming
environment, human players can understand, evaluate, and
respond to these simulated conditions by altering their gameplay,
improving robot performance (Crick et al., 2011). Such
gamification schemes contribute toward a synergistic human-
machine collaboration that improves and facilitates robotic
problem-solving (Jarrahi, 2018).

Our previous work (Bewley and Liarokapis, 2019), proposes
abstract foundations for a framework combining gamification
and crowdsourcing in a synergistic manner for robotics
applications. The paper also introduces a standardized
terminology for describing crowdsourcing techniques in
robotics. It discusses some implementation challenges and how
gamification can contribute to the cost-effectiveness, privacy,
scalability, and ethical integrity considerations of crowdsourcing.
However, that work is purely theoretical and does not offer a
solution to any specific problem in robotics. Nevertheless, the
abstract flow of information in the gamified crowd computer
concept served as a guideline in the development of the
framework proposed in this work.

This work proposes a crowdsourced attribute matching
framework that leverages human perception to support
and improve the grasping and manipulation capabilities of
autonomous robotic platforms. The system encodes visual
information into an engaging online puzzle game, relying on
the collective intelligence of players to identify the attributes
of unknown objects and images. The game employs a popular
tile-matching format, where the players connect images that
share the same attributes. Correct matches make the connected
tiles disappear, awarding points to the player. A small fraction of
unknown images are mixed with known ones, which facilitates
attribute identification through the game’s matching mechanism.
This is used to expand an initial object database and solve
perception problems in near real-time. The novel aspect of
this work is in the synergistic combination of game mechanics
with a crowdsourcing framework for the purpose of enhancing
robot perception. The game interface is designed to challenge
and entertain the players, as opposed to traditional robotic
crowdsourcing approaches, such as Clair et al. (2016) or
Kent (2017) that directly expose the robot context and often
fail to intrinsically motivate the users to participate without
financial compensation. The developed interface also effectively
obfuscates the underlying robotic application to address any
security and confidentiality concerns. The framework was
evaluated in two real-time, proof-of-concept applications: (i)
enhancing the control of a wearable robotic exoskeleton glove for
assisted manipulation and (ii) improving object identification for
autonomous robot grasping. The first was chosen to highlight the
framework’s capability to operate without a local classifier and
demonstrate its suitability for applications in remote, assistive
robotics. The second was chosen to validate its performance
in a more industrial vision task, in synergy with a dedicated
local classifier.

2. FRAMEWORK DESIGN

A high-level diagram of the framework interacting with a group
of clients is depicted in Figure 1. In this setting, the framework
consists of three modules: a client managing a robot context, the
server handling client requests and generating game parameters,
and a game that is distributed to players for crowdsourcing.
A client can also be a group of clients. Each client is solving
a task that requires the extraction of characteristics of objects
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FIGURE 1 | Structure and flow of information within the proposed attribute matching framework. The example client manages a Robot Context that relies on an

Attribute Classifier to characterize objects detected in the robot environment. Predictions of the Attribute Classifier are assessed based on their confidence, and the

client can request assistance with labeling the low-confidence predictions. The Label Request passes to the server, which synthesizes Game Parameters by

combining ground truth and received data. The Game Parameters are passed to the Game Engine, which is accessible to the users. The players create matches

between the known and unknown images based on their attributes. The matches are filtered and returned to the server, which aggregates them to estimate the

Attributes of the unknown images. The results are passed to the client, which can use them directly in the Task Planner. When a label reaches high enough confidence

and number of matches, it becomes known / validated and is included in the database, which can be utilized to re-train the classifier of the client. The framework is

flexible on the client side and can be adapted to arbitrary task specifications. Icons were sourced and modified from Flaticon (2010).

that exist in the robot’s environment and are captured through
a vision-based system. Typically, the client accomplishes that
using aMachine Learningmethod (marked as Attribute Classifier
in Figure 1), which processes segmented scene images and
outputs attribute predictions with certain confidence values. If
the prediction confidence is sufficiently high for a particular
object, the client needs no assistance and execution can continue
autonomously. However, when encountering predictions with
low confidence or objects that the classifier was not trained on,
the Confidence Assessment module may submit a Label Request
to the framework and rely on the players to obtain an estimate
of the unknown object attribute. The Label Request contains an
image of the object in the scene, as well as its attribute group
that describes what kind of attributes the players should look for
(e.g., stiffness and object class). The Server collects label requests
from multiple clients and uses them to construct parameter
sets for game instances distributed to the players. The game
parameters include approved labels from the Attribute Database,
as well as a small fraction of unknown images sampled from the
label requests. The Game Engine encodes the received images
into the developed tile-matching game presented in Figure 2.
In the game, players receive points for matching three or more
tiles that share the same attributes. The web interface offers
a leveling system that unlocks in-game rewards, as well as a
leaderboard that increases competitiveness and motivation. The
players are incentivized to enlarge and closely inspect the tiles
before matching, as the level is lost after a number of matching
errors. Every time an unlabeled tile is paired with two or more

tiles of the same type, the match is sent to the server. The
server aggregates matches received from all active game instances
and updates the status of labels submitted by the clients. Once
a sufficiently large number of matches for a specific label is
reached and the crowd consensus exceeds a chosen confidence
threshold, the label is approved/validated and is included in
the database for future use. Once the label is approved, the
new information (Attribute) is passed to the Task Planner for
immediate use in generating robot commands. The framework
and an online version of the game are deployed and available at:
https://www.newdexterity.org/aispy.

The framework is very flexible on the client side and
does not impose a specific structure on their solution design.
Depending on the task specifications, the clients can choose to
periodically re-train their Attribute Classifier on the growing
database to improve performance over time. In case re-training
becomes computationally too expensive as the database grows
in size, clients may use only a limited subset of labels to
train on. They also have full control over the images they
submit, and they are free to delete any of their own labels
to keep their database size under control. Alternatively, the
classifier can be automatically trained in a continuous manner
through appropriate reinforcement learning methods (Gu et al.,
2017; Johannink et al., 2019) to reduce the amount of human
involvement. Apart from its effects on model training, the
knowledge acquired over time does not negatively impact the
framework performance and is limited only by the amount
of available server storage. The framework can only assign
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FIGURE 2 | Interface of the developed tile-matching game. The player

matches adjacent tiles based on the classes listed in the top right corner. To

facilitate attribute recognition of individual tiles, they can be enlarged using the

tile inspection mode. If connected tiles share the same attribute, they

disappear and increase the player score. The number of permitted matching

errors per level is limited, which encourages the player to inspect the tiles

closely before connecting them. If players are stuck on a level, they can utilize

boosters that can either reload the board, shuffle the tiles, or remove a specific

type of tile. The game is compatible with Windows, Linux, Android, iOS, and

HTML5 to allow running in a web browser.

pre-defined attribute classes to new images, which means that
the initial client configuration does not get changed through
crowd participation. Clients are also free to choose how much
trust they place in the prediction of their classifier. They can use
the proposed framework to verify only predictions with lower
confidence, or they can choose to employ both the framework
and classifier for every prediction, in order to establish an
additional layer of verification. This behavior may be controlled
through thresholds in the Confidence Assessment module.

2.1. Server Architecture
The server accepts label requests from clients, encodes them into
game instances, and interprets the results. It consists of three
main components: the attribute database, the client Application
Programming Interface (API), and the game engine API. In
addition, it offers a simple website for user registration and access
to the game.

For storing the user, image, and label data, a relational
database type is employed. Registered users can act as clients
or players, opting in to link their identity to any images, label
requests, or matches submitted to the server. The database can

be initialized with an arbitrary number of image collections and
ground truth labels. Each label contains an image reference,
bounding box, attribute group, attribute name, and confidence
value. The attribute group represents a high-level description
of object attributes, such as “stiffness” or “object class.” The
matches submitted by players are stored in a separate table and
linked to their respective label requests. Once the number of
matches for a particular label exceeds the set threshold, the
most common match is assigned as label attribute and the label
confidence is calculated as the ratio between the number of most
common matches and the total number of matches. A label
request is accepted as ground truth when the number of matches
reaches a certain threshold and its confidence value exceeds
95%. These values can be adjusted according to the client and
task specifications.

On the client side, the server allows for label submission and
querying through the Hypertext Transfer Protocol (HTTP). The
clients are able to submit label requests paired with new images,
or in reference to existing images stored on the server. After
submission, clients can receive updates for their label requests
in terms of confidence and number of matches. Clients may also
withdraw any labels they submitted. On the game side, the server
offers an HTTP API for requesting tile textures and submitting
matches with unlabeled tiles. Upon request from a game instance,
the server randomly selects one or more active label requests,
along with a number of ground truth labels from the same
attribute group. These are compiled into an atlas image and sent
to the game instance, along with the attribute names of ground
truth labels, and the identities (ID) of the label requests. When
a valid match that includes an unknown image is submitted by
the player, the game sends an update containing the label ID and
attribute name back to the server.

2.2. Game Interface
The game design was inspired by the addictive tile-matching
genre of video games, where players manipulate tiles in order to
make them disappear according to a defined matching criterion.
In the game, the player is presented with an 8 × 10 grid of tiles
overlaid with the images received from the server, as depicted
in Figure 2. Each tile is tagged with its corresponding attribute
name if the image is known, or a label request ID if the image
is unknown. The player can highlight a chain of three or more
adjacent tiles which disappear if their attributes match. A match
is also accepted if the tile chain includes known tiles with the
same attribute and a single unlabeled tile. In this case, the game
submits to the server a match that links the unlabeled tile with
the common attribute of the rest of the chain. To authenticate
their matches, users are required to input their credentials before
starting the game. For completing a level, the player must reach
a target score by performing successful matches. The number of
permitted matching errors per level is limited, which motivates
the players to inspect the tiles closely before creating a match. To
facilitate this, the player can enlarge any tile in inspection mode,
which is particularly valuable for mobile devices. To help players
identify matching tiles, the list of relevant attributes is displayed
in the top right corner of the game interface. The players are also
motivated through a leveling system and an online leaderboard.
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Upon leveling up, helpful boosters, such as “shuffle” and “reload”
are unlocked to prevent players from getting stuck. Early levels in
the game are configured to contain only known tiles in order to
train new players and familiarize them with the game mechanics.
Higher levels require a higher score to complete, and permit a
lower number of matching errors. The game can be exported
for Windows, Linux, Android, iOS, or HTML5 to run in a
web browser.

2.3. Security
In order to ensure responsive gameplay, the game runs fully
on the user’s device. This presents a security risk, since
individuals with malicious intent might abuse the game-server
communication to submit artificial matches and sabotage the
labeling system. To prevent this, all critical communication
with the server, such as matching and level completion, must
be accompanied by what we call a Proof of Play. The server
provides each game instance with a random seed that is used
to populate and refill the tile grid. Proof of Play includes
this seed, and the sequence of player actions leading to the
current game state. Before accepting any request from a game,
the server can therefore check the player’s actions and verify
that the game was actually played. This drastically reduces the
risk of system exploitation and provides added security to the
client applications.

3. MATCHING RATE ESTIMATION

Performance of the framework from a client’s perspective can be
characterized through the time required to resolve a submitted
label request. Assuming a constant matching rate of individual
players, the expected number of matches per submitted label m
over time t can be estimated by:

m =
cm · p · ag

d · l · at
· t, (1)

where cm is the matching constant, p is the number of active
players, ag is the number of attributes sampled in each game
instance, at is the total number of attributes in the attribute
group, l is the number of active labels, and d is the matching
difficulty. The matching constant cm is static for a given game
format, and can be estimated from live game data by monitoring
and/or varying the other parameters. The role of p and l is
intuitive; a higher number of players increases the matching
rate, while a higher number of candidate labels decreases it.
The ratio between ag and at represents the matching capacity;
if a given attribute group contains more attributes than a single
game instance can contain, there is only a ag/at chance that the
unknown label can be matched with its true class. In other words,
a randomly sampled attribute group with dozens of classes will
produce only a handful of cases in which the unlabeled images are
mixed with known images that share the same attribute. Finally,
the matching difficulty d is defined in terms of similarity between
objects (images) with different attributes. In this setting, the
measure of similarity was based on object super-categories of the
COCO dataset (Lin et al., 2014). For instance, matching between

images that all belong to a single super-category (e.g., fork, knife,
spoon) is more difficult than matching between diverse super-
categories (e.g., orange, tv, teddy bear). The matching difficulty
was therefore defined as:

d =
ag

E
[

sg
] , (2)

where E
[

sg
]

represents the expected number of different super-
categories in a game instance sg . This is obtained by:

E
[

sg
]

=

ag
∑

i=1

i · P
(

sg = i | ag
)

, (3)

where P
(

sg = i | ag
)

represents the probability of sampling
i super-categories in a game instance, given the sample
size of ag . This can be calculated as the ratio between
possible samples that contain i super-categories and all possible
sampling combinations:

P
(

sg = i | ag
)

=

[

xag yi
]

G(x, y)
(at
ag

) . (4)

Here, G(x, y) is a bivariate generating function of the form
G(x, y) =

∑

m,n>0 gm,nx
myn, while

[

xmyn
]

G(x, y) refers to

coefficient gm,n of G(x, y). The expression
(at
ag

)

represents all

possible combinations of sampling ag attributes from a total
of at , computed through a binomial coefficient. The generating
function G(x, y) is constructed to have the x variable tracking
the number of sampled attributes, and y tracking the number
of super-categories:

G(x, y) =

|S|
∏

i=1



1+

si
∑

j=1

(

si

j

)

· xjy



 , (5)

where S is the set of all super-categories in the attribute group,
with |S| 6 at , and si is the number of attributes belonging to the
i-th super-category of set S.

4. EVALUATION METHODS

This section presents the experimental setup and methods for
evaluating the attribute matching performance of the proposed
framework, as well as the apparatus and methods for the two
proof-of-concept applications.

4.1. Attribute Matching
In the first stage of experiments, the attribute matching capability
of the proposed framework was evaluated in terms of labeling
accuracy and matching rate. For this purpose, the system was
deployed on a local network, accessible to a subject group of
25 players. After registering with the game server, the players
were given a brief introduction to the game mechanics, as well
as some time to practice. The game was configured to receive
five random attribute classes with five different images per class,
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plus an additional two unlabeled validation images. The chosen
attribute group for the evaluation experiments was “object type,”
which corresponds to a traditional object classification problem.
Object images were sourced from the COCO database (Lin et al.,
2014), in particular from the 2017 training set. The experimental
evaluation consisted of multiple runs, where the seed database
of the framework was initialized with 5, 10, and 15 randomly
selected attribute classes (object types). In each run, a group of
2 and 5 validation images were submitted to the framework for
labeling. For each validation image set, the number of matches
and the label confidence for each image was monitored over a
time period of 10 min, with 25 users playing simultaneously. The
recorded data was also used to estimate thematching constant cm.

4.2. Classification Confidence Interval
Estimation
In order to evaluate the proposed framework, the results obtained
during the object classification experiments with the robotic
exoskeleton glove and the intelligent robotic platform require
an estimation of their classification confidence. The confidence
intervals for binary classification can be estimated through a
number of methods, where the simplest and most common
approach relies on approximating the error with a standard
normal distribution. However, this approach has been shown
to perform poorly, especially with small sample sizes and in
cases where the expected success proportions are close to 0
or 1 (Brown et al., 2001). Since some samples obtained through
the framework are likely to fall into the above categories,
the confidence intervals are estimated through the method
introduced by Wilson (1927), which offers better performance in
corner cases. For proportion p, the Wilson confidence interval is
defined as follows:

w− < p < w+ (6)

The lower limit w− and upper limit w+ of the interval for
confidence α can be obtained through:

w−,w+ =
1

1+
z2α/2

n

(

p̂+
z2α/2

2n

)

±
1

1+
z2α/2

n

√

p̂
(

1− p̂
)

n
+

z2α/2

4n2

(7)
Where p̂ is the observed success proportion, n is the number of
matches, and zα/2 is the z-score for which the area of α/2 is found
under the normal curve. The classification interval calculation for
a high level of confidence (95%) gives an estimate of the reliability
of the framework results for a group of players.

4.3. Enhancing the Control of a Wearable
Robotic Exoskeleton Glove
The first application focused on utilizing the framework for
enhancing the control of a wearable, soft robotic exoskeleton
glove for assisted manipulation in a food preparation task. In
the experiment, the exoskeleton glove developed by the New
Dexterity research group was used (shown in Figure 3). The
exoskeleton glove was designed to assist human hands with
limited mobility during the motion rehabilitation process and

to improve the grasping and dexterous manipulation capabilities
of the hand, in both impaired and able-bodied individuals. The
device is composed of a glove, a tendon-driven system with
six tendons (five tendons for finger flexion and one for thumb
opposition), and a pneumatic system that consists of four soft
actuators and five laminar jamming structures. More details
regarding the exoskeleton glove design and operation can be
found in Gerez et al. (2020). A small camera (Raspberry Pi
CameraModule V2, Raspberry Pi Foundation, UK) wasmounted
on the palm of the robotic exoskeleton glove to capture images for
the object tracking algorithm during task execution.

The kitchen is one of the most complex environments for
robots in terms of control complexity when attempting to grasp
and manipulate objects. The variety of object shapes, textures,
and materials make such robot-assisted tasks still a challenge
for the current exoskeleton glove devices (Zhou and Ben-Tzvi,
2014; Chu and Patterson, 2018). For this reason, this experiment
consisted of executing force-controlled, cooking-related tasks
with the assistance of the exoskeleton glove. A ground truth
database of 100 common kitchen object images was constructed
and labeled to initialize the server. The images were labeled as
“soft,” “medium,” or “hard” within the “stiffness” attribute group.
Since the seed database was very small, it was not possible to
train an attribute classifier that relies only on traditional Machine
Learning methods in order to reliably estimate the stiffness
of completely new objects. Such issues with training set size
are common in robotic applications, reinforcing the need for
solutions based on gamification and crowdsourcing.

In the experiment, a set of common kitchen objects was placed
on a table and the user was equipped with the exoskeleton
glove. Initially, the glove was pointed to the table so that the
camera could capture all the objects in its field of view. The
object bounding boxes were segmented from the video frames
by first applying the Canny edge detector (Canny, 1986), dilating
the result, extracting closed contours (Suzuki et al., 1985) and
finding their bounding rectangles. Since no trained attribute
classifier was available for this task, all extracted objects were
sent to the game server for labeling. The participants who
played the game thus received the unknown object images
from the glove environment as additional tiles in the game,
which they connected with the ground-truth tiles to identify
their stiffness. The glove wearer waited until all submitted label
requests for unknown object stiffness were classified with at
least three matches. As the glove moved across the scene, the
bounding box closest to the center of the video frame was
considered to be the target object for grasping. To find which
object corresponds to the central bounding box, ORB keypoints
and descriptors (Rublee et al., 2011) were extracted from the
central bounding box and the initial images labeled by the
framework. The central bounding box in the live feed was thus
linked to the object with the highest number of descriptor
matches. When the wearer attempted to grasp an object by
touching it with the palm, the camera view got occluded,
shading the image. The relative image brightness was thus used
to trigger the grasp. With the stiffness of the grasped object
known, the glove was able to apply the ideal amount of force
to successfully execute the task. The maximum force applied by
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FIGURE 3 | Information flow in the exoskeleton glove control enhancement experiment. The camera mounted on the exoskeleton glove captures the scene image,

where object bounding boxes are detected through edge detection and contour extraction. The unknown object images are submitted for labeling to the server, within

the “stiffness” attribute group. The server generates game instances where the players connect objects that share the same stiffness attribute (“soft,” “medium,”

“hard”). Player matches are aggregated and the assigned stiffness attributes of unknown objects are returned to the glove. As the glove gets pre-positioned above an

object, the object image is linked to the labeled results by comparing its ORB (Rublee et al., 2011) descriptors. When the user attempts to grasp an object and

occludes the palm camera, the glove triggers a grasp that exerts an appropriate amount of force on the object, with respect to its stiffness.

the robotic exoskeleton glove was set for each level of stiffness
(soft, medium, and hard) by limiting the maximum current
applied to the motors of the tendon-driven system (which assists
on the execution of the fingers flexion). The players were not
aware which underlying perception problem they were solving
through gameplay, which demonstrated the generalization and
obfuscation capabilities of the proposed framework. A total of
five objects were labeled in this experiment, with 25 users playing
the game simultaneously. The matching rates for individual
objects were also compared with predicted values over a time
period of 10min.

4.4. Improving Object Identification for
Autonomous Robot Grasping
In the second application, the developed framework was
employed for executing autonomous robotic grasping tasks.
In particular, it refined the perception estimates of a trained
object detection and classification algorithm. The task consisted
of detecting and picking out bottles from a group of objects
with an intelligent robotic platform developed by the New
Dexterity research group at the University of Auckland, as
shown in Figure 4. The platform is equipped with two 6-
DoF serial manipulators (UR5, Universal Robots, Denmark),

a reconfigurable torso, and a head that acts as the perception
system. Only one arm was used in the experiments, equipped
with an adaptive gripper also developed by New Dexterity
(Gorjup et al., 2020). The gripper consists of a 3-fingered rotary
module and a parallel-jaw element. The 3-fingered rotary module
utilizes a scroll wheel mechanism and a clutch to perform
grasping and rotational motions. The parallel-jaw element uses
a rack and pinion mechanism to execute grasping motions with
a pair of fingers with compliant finger pads. The head module
of the robot houses an Azure Kinect DK module (Microsoft
Corporation, USA), which streams RGB and depth data of the
observed scene.

In the experiment, six objects were placed on a table surface in
front of the bimanual robotic platform, as depicted in Figure 4.
The objects consisted of a bowl, a cup, a chips can, and three
bottles of different sizes and shapes. The RGB video stream
of the scene was processed by a CNN, pre-trained on the
COCO database (Huang et al., 2017). The network produced
results in terms of object classes, confidences, and bounding
boxes that were drawn on the output image for visualization.
To enable the generation of 6D grasp poses, object clusters
were segmented from the depth cloud data stream. Object
centroids and principal axes were computed by applying the
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FIGURE 4 | Information flow in the object identification for the autonomous robotic grasping experiment. The camera in the robot head captures the scene image,

which is processed by a pre-trained Convolutional Neural Network (CNN) (Huang et al., 2017). The network detects and classifies the objects in the robot scene,

highlighting in green the bottles with high confidence, and in blue bottles with lower confidence. The bottles with high confidence are immediately picked up and

disposed of, while bottles with low confidence are submitted to the framework for identification. The server generates game instances where the players connect

objects that share the same class (bottles, cups, bowls, etc.). The player matches are aggregated and the assigned classes of unknown objects are returned to the

robot. As the confidence of detected bottles gets refined by the framework, they are scheduled for pick-up. The chips can is incorrectly classified by the CNN, but the

players reject the classifier prediction, preventing a sorting error.

dimensionality reduction method Principal Component Analysis
(PCA) (Artac et al., 2002) to the object point clusters. The grasp
position was selected as the cluster centroid, while the grasp
orientation was computed with respect to the cluster’s principal
axis. The object clusters were connected to their bounding
boxes by projecting their centroids to the RGB image and
matching them based on the distance from the centers of the
bounding boxes.

The network outputs were filtered to highlight the bounding
boxes of any detected bottles in the scene and depict other classes
in gray. Any bottles that were detected with confidence higher
than 90% by the CNN were immediately scheduled for pick-
up. Predictions with lower confidence were submitted for re-
evaluation to the game server while the robot picked up the high-
confidence bottles. This allowed for a parallel execution of the
perception processing tasks in a synergistic manner between the
humans and the robot. Any lower-confidence objects that were
labeled as bottles by the game server were scheduled for pick-
up by the robot. Labeling was performed with 25 users playing
the game simultaneously. The labeling time and confidence were
recorded and the matching rates were again compared with the
theoretical values.

5. RESULTS

5.1. Attribute Matching
The attribute estimation accuracy and response time of the
proposed framework were evaluated through a series of
experiments where small sets of known images were submitted
for processing. Performance was assessed under different
conditions, varying the size of the validation image set, and
the number of different classes in the attribute group. Figure 5
displays the framework evaluation results for a group of 25
players in six different conditions (attribute groups of size 5,
10, and 15, with 2 and 5 validation labels). In Figure 5A, it is
visible that the matching rate is linear, as assumed in the model
proposed in section 3. The effects of the attribute group size and
of the submitted label density on matching speed can also be
observed. The recorded data was used to estimate the matching
constant cm, with respect to the proposed linear model. The
matching constant was computed for each test case, resulting
in the average cm = 0.0241 s−1, with a standard deviation
of 0.00408 s−1. Figure 5B shows that the proposed framework
performs best when the number of ground truth attribute classes
is low. With attribute group sizes of 5 and 10, all validation
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FIGURE 5 | Results from the framework evaluation experiments. (A) Presents the average number of matches per validation label over time, with respect to the

number of attribute classes and the number of submitted validation labels. (B) Presents the classification distribution and confidence for the evaluated test cases with

varying numbers of attribute classes and unknown validation labels. A label was considered classified if it reached 5 or more player matches, a confidence exceeding

70%, and the assigned crowd attribute was correct. The correct confidence was computed as the ratio between the correct and total number of matches.

labels were correctly classified by the system, with a confidence
of well over 90%. In the last case of 15 attribute classes, the
percentage of classified labels and the average confidence are
considerably lower, which is mostly due to the lower matching
rate and higher chance of misclassification. This can be mitigated
by employing a larger number of players or by including label
hints that limit the permissible number of attribute classes in
the game. Larger attribute groups can also be divided through
clustering methods to boost the labeling performance. Overall,
the results demonstrate that the framework can be efficiently
combined with robotic systems that are able to provide a set
of initial guesses with the submitted label requests, limiting the
permissible number of attribute classes in the game.

5.2. Enhancing the Control of a Robotic
Exoskeleton Glove
The first set of experiments focused on validating the proposed
framework in estimating the stiffness of multiple objects during
the execution of cooking tasks using a robotic exoskeleton glove.
The goal of these experiments was to intuitively assist the user
in performing manipulation tasks, without them controlling the
amount of force necessary to grasp the objects, while the players
were asked to match objects with similar level of stiffness in the
game (soft, medium, or hard). Figure 6 depicts the four critical
steps involved in the task execution: subfigure (A) shows the soft
robotic exoskeleton hovering over the scene to detect objects,
subfigure (B) shows the user cutting a slice of cheese, while
the exoskeleton glove grasps the block of cheese with medium
force (for “medium” object stiffness), subfigure (C) presents the
exoskeleton glove grasping a cherry tomato with low force (for
“soft” object stiffness), subfigure (D) shows the exoskeleton glove
grasping a black pepper grinder with high force (for “hard” object
stiffness), subfigure (E) depicts the camera view of the scene and
the objects detected, and finally, subfigures (F–H) present the
camera field of view for the objects detected (cheese, tomato,
and pepper grinder) before they were grasped. The bounding box

closest to the center of the video frame was considered to be the
target object for grasping.

Figure 7 shows the classification confidence and interval
in terms of stiffness for each object during the experiments.
All objects except the cheese were successfully classified with
a confidence above 90%. The lower confidence obtained for
the block of cheese can be associated with the lack of
consensus on which level of stiffness the object belongs to. The
comparison between the actual and predicted matching rate for
the exoskeleton glove experiment is presented in Figure 8A. It
is visible that the actual values closely match the prediction,
which was computed with respect to the matching constant cm
estimated in section 5.1. Although the stiffness identification
process was not instantaneous, it could theoretically be reduced
to under 1 s if approximately a thousand players were playing
the game at the same time (which represents <0.01% of the
number of users actively playing games in the Steam platform
alone Steam, 2020). Conversely, the glove would perform
poorly with fewer players, since it does not have a dedicated
classifier to fall back on. To avoid such issues, robot systems
should employ a local classifier whenever possible, and rely
on the crowdsourcing framework to verify its predictions.
Overall, the experiments demonstrate that the combination of
the gamification framework and the on-board camera of the
exoskeleton glove can assist the user by controlling the grasping
forces completely autonomously and in successfully executing a
series of tasks in unstructured environments.

5.3. Improving Object Identification for
Autonomous Robot Grasping
The second set of experiments focused on evaluating the
proposed framework in improving object identification for
grasping and sorting objects using an autonomous robotic
system. The goal of the experiment was to collect user data
through the gaming platform to optimize object identification
for bottle sorting, improving the classification confidence of a
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FIGURE 6 | Instances from the execution of the exoskeleton glove control enhancement experiment. The top row shows the robotic exoskeleton glove executing the

experiment. The bottom row shows the camera field of view (E) with the detected objects. (A) Presents the user capturing a scene image that is segmented and

submitted for labeling to the framework. (B–D) Present the user grasping examples of medium (cheese), soft (tomato), and hard (pepper) objects. (F–H) Present the

camera view during reach to grasp motions for the cheese, tomato, and pepper objects, respectively.

FIGURE 7 | Average classification confidence for the exoskeleton glove

control enhancement experiment. The total number of matches over a period

of 10 min was 375, with 25 players playing the game simultaneously. The

average confidence interval for the object stiffness classification experiment

was 82.1% < p < 89.1%.

pre-trained CNN. Figure 9 presents the different critical stages
involved in the task execution: subfigures (A–C) present the
intelligent robotic platform grasping and disposing bottles that
are arbitrarily positioned in the environment, while subfigure
(D) presents the completed bottle sorting task. Subfigure (E)
shows the initial confidence values for the objects in the scene
(bottles detected with confidence higher than 90% by the CNN
were scheduled for pick-up), subfigure (F) presents the objects
identified as bottles which were submitted for re-evaluation to
the game server, receiving at least three matches, while, finally,
subfigure (G) shows the sorting of bottles identified by the game,
leaving on the table the cup, the bowl, and the chips can. The

chips can was misclassified by the CNN as a bottle, but this
prediction was rejected by the players.

Table 1 summarizes the experimental results for the objects
submitted to the game for classification. The minimum number
of matches for the bottles was obtained after 96 s, which triggered
the pick-up. After that, labeling was still monitored until the 10
min mark for evaluation purposes. In Figure 8B, the matching
rate of this experiment is compared to the expected values
predicted by the proposed model and the matching constant
cm estimated in section 5.1. The actual matches over time
are slightly lower than the prediction, but still closely match
the trend. Compared to Figure 5A, the average number of
matches is considerably lower than the corresponding case
with five attributes. This is due to the increased matching
difficulty, as 4 out of 5 object types in the bottle sorting
experiment belonged to the same supercategory. Overall,
the experiments demonstrated the potential of crowdsourcing
through gamification in autonomous robotic environments,
refining decision-making by employing human reasoning in
the loop.

6. DISCUSSION

The proposed attribute matching framework showed positive
results in the evaluations, which indicate significant performance
improvements with increasing crowd density. Operating with a
limited number of label requests, a small fraction of the daily
active player base could push labeling delays from minutes to
near real-time performance. In addition to the crowd density,
the framework performance depends on a number of other
factors, including the game interface configuration, the number
of submitted labels, the size of the attribute group, and the
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FIGURE 8 | The predicted and actual number of matches over time in the (A)

control enhancement of the exoskeleton glove experiment and (B) object

identification for autonomous grasping. The time is counted from the first

received player match.

matching difficulty. These were captured through the proposed
matching rate estimation model, which followed the actual
matching activity in the live robot applications with a slight
error. The discrepancy is likely a result of the chosen difficulty
estimation method, which is based on the similarity of objects
present in the game. This approach can not fully capture the
matching difficulty, as it does not consider the object shape,
background contrast, or image quality. The matching difficulty
estimation could potentially be improved by incorporating a no-
reference image quality assessment module, such as BRISQUE
(Mittal et al., 2012).

An advantage of the proposed system is its flexibility, as it
can be adapted and extended for any type of object attribute
that a human can identify visually. Human perception is for
instance unparalleled in the estimation of object affordances or
“action possibilities” (Gibson, 1979; Montesano et al., 2008; Sun
et al., 2010). Affordances play a major role in manipulation
planning as they determine the appropriate grasp types for
particular objects, which can be very beneficial for frameworks
relying on vision (Zeng et al., 2018; Ficuciello et al., 2019).
Visual estimation of object characteristics other than the class
was presented through the exoskeleton glove experiments, where
the chosen object attribute was its stiffness. Those experiments
have also demonstrated the limits of visual attribute estimation
in the case of cheese, where a consensus on its stiffness could
not be reached.

An inherent limitation of the matching system is that every
attribute requires a number of entries in the initial seed database.
Since players can only match new images with ground truth
examples, a label request can only be assigned an attribute that is
already represented in the database. A solution for this would be
to grant administrative rights to verified clients, allowing them to
create and manage their own seed databases and attribute groups
to fit their needs. Adding a new attribute to the seed database
would, in this case, require only a small amount of annotating
effort on the client side.

Another issue exposed in the experiments is the effect of
attribute group sizes on labeling speed and accuracy. With

TABLE 1 | Summary of results for object identification.

Description Value

Can confidence 50.0%

Big bottle confidence 97.1%

Small bottle confidence 82.7%

Total matches 87 matches

Average bottle confidence 90.6%

Bottle confidence interval 80.7% < p < 95.6%

increasing numbers of attribute classes and no prior predictions
on label requests, the number of game instances where unknown
tiles can be paired with the correct ground truth instances
decreases. In many such cases, unknown tiles are mixed
with tiles that are unrelated to them in terms of attributes,
confusing the players and increasing the likelihood of incorrect
matches. The objectively incorrect matches with unlabeled tiles
get accepted by the game since they can not be verified,
which reinforces the player to match the particular tiles in a
wrong manner in the future. This can be effectively addressed
by including label hints or permissible attribute classes into
the label request. With an initial guess, the server would be
able to create game parameters where attributes of known
tiles are more likely to match with the unlabeled tiles. In
addition, this issue would also be mitigated by larger crowds of
participating players.

7. APPLICATIONS

The proposed framework can be employed in two main
application categories: real time robotic perception enhancement
and passive database generation. The practical applications
presented in this paper were examples of the former, although
the labeling performance was not exceptionally responsive due to
the relatively small group of participating players. Depending on
the crowd density and the number of submitted label requests,
this delay can range from seconds to minutes, which may
not be sufficient for certain real time applications. However,
the methodology can be efficiently integrated into systems that
are able to postpone interaction with unknown objects. For
instance, the framework can be effectively applied with indoor
service robots that operate in a bounded environment. In
such applications, the robot can request an attribute estimate
as soon as a new, unknown object is encountered, even
though it may not need to interact with it at that time.
This allows the robot’s perception system to gradually adapt
to a changing environment through periodic re-training on
newly labeled objects. Another example is autonomous waste
sorting, where unrecognized objects or materials can be put
aside until the appropriate attribute estimates are received.
While waiting on the crowd consensus, the system can still
manipulate objects that are recognized with the dedicated
vision system, as was demonstrated in the bottle picking
experiments. The second group of applications concerns

Frontiers in Robotics and AI | www.frontiersin.org 11 April 2021 | Volume 8 | Article 652760

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Gorjup et al. Crowdsourcing and Gamification for Robot Perception

FIGURE 9 | Instances from the execution of the object identification experiment that facilitates autonomous robot grasping. The top row shows the robotic platform

executing the experiment. The bottom row shows the camera field of view with the detected objects. (A–C) Present the robotic platform grasping and disposing

bottles placed arbitrarily on a table, while (D) presents the completed bottle sorting task. (E) Presents the camera view during grasping of the bottle that was identified

with high confidence by the CNN. (F,G) Present the camera view during grasping of bottles that were identified with low confidence by the CNN, but confirmed

through the proposed attribute matching framework by the players.

passive database generation, where a client submits several
label requests with the goal of expanding their attribute
database. In this context, the framework does not need to
support the operation of a live robot system, allowing such
applications to request estimates of higher confidence at the
cost of longer labeling times. This approach can be employed
to create labeled collections from raw images available in public
databases or obtained through mobile robot exploration in
unknown environments.

The framework and game parameters should be configured
with respect to the requirements of the target application. Since
the number of active label requests directly affects estimation
delays, real-time robot systems should aim to submit fewer
labels at a time, while offline systems can afford to submit
larger quantities. If permissible, real-time systems can also
be configured with lower confidence thresholds to boost the
estimation speed. The number of attribute classes should be
kept as low as possible with a recommended maximum of 10,
as the experiments have shown a significant drop in estimation
confidence above this limit. If shrinking the number of attribute
classes is not an option, the attribute group can be split into
several smaller clusters of similar classes, which are linked to
a parent group of attribute categories. The images can thus be
labeled in a hierarchical manner through groups of appropriate
size, providing attribute estimates with higher confidence. The
server is designed to grant as much flexibility to the robot
applications as possible, and will not attempt to adjust the client
configuration in case of poor performance. Instead, the client
applications can monitor the framework performance over time
and employ the proposed matching rate estimation model to

adjust their parameters with respect to the desired confidence and
response time.

8. CONCLUSION AND FUTURE WORK

This work proposed a crowdsourced attribute matching
framework that enhances robot perception by leveraging human
intelligence in grasping and manipulation tasks. Decisions
of the participating crowd are collected through an online
tile-matching game that is designed to entertain and motivate the
players. The framework can identify unknown object attributes
by linking them to a collection of ground truth images that
expands through crowd participation. The system was evaluated
in terms of matching rate and attribute estimation accuracy,
with respect to the number of attribute classes and unknown
labels. A model for estimating the expected matching rate was
also proposed and validated. The framework was successfully
employed in two proof-of-concept robotic applications, serving
both as a primary attribute classification module and as a
supplementary prediction refinement tool. It was shown that the
small crowd of players was able to efficiently classify attributes
of novel objects encountered by the robot, based on a compact
database of seed images.

To ensure stability of the proposed framework, its security
and robustness will need to be further considered. A large
scale evaluation over a longer period of time will also be
necessary to accurately estimate the expected response times
with respect to the number of active players and label requests.
This will enable the implementation of a load-balancing system
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to limit the volume of accepted label requests and ensure
appropriate response times. This information could also be
used in game level planning, to find the optimum balance
between player experience, game difficulty, and labeling quality.
In this process, game design aspects and theories will be taken
into consideration.

Beyond the simple case of discrete label assignment,
approaches for applying this methodology to find solutions to
continuous problems will be investigated. These may include
control of complex end-effectors, determining appropriate
force profiles for object manipulation, or reactive control in
collaborative tasks. Such tasks will likely demand user interfaces
with higher flexibility, such as virtual or augmented reality
devices (VR/AR). Through VR/AR environments, the robot’s
surroundings can be captured, encoded, and reconstructed in
an immersive manner, giving the player a richer experience
with more environmental detail. To tackle complex continuous
problems, such interfaces can be intuitively integrated with
motion capture devices tracking the user head, body, and
hand motion.
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