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Abstract
Purpose  Glioblastoma multiforme (GBM) is the most common and lethal of primary malignant brain tumors. Hypoxia 
constitutes a major determining factor for the poor prognosis of high-grade glioma patients, and is known to contribute to 
the development of treatment resistance. Therefore, new strategies to comprehensively profile and monitor the hypoxic status 
of gliomas are of high clinical relevance. Here, we have explored how the proteome of secreted extracellular vesicles (EVs) 
at the global level may reflect hypoxic glioma cells.
Methods  We have employed shotgun proteomics and label free quantification to profile EVs isolated from human high-
grade glioma U87-MG cells cultured at normoxia or hypoxia. Parallel reaction monitoring was used to quantify the identi-
fied, hypoxia-associated EV proteins. To determine the potential biological significance of hypoxia-associated proteins, the 
cumulative Z score of identified EV proteins was compared with GBM subtypes from HGCC and TCGA databases.
Results  In total, 2928 proteins were identified in EVs, out of which 1654 proteins overlapped with the ExoCarta EV-specific 
database. We found 1034 proteins in EVs that were unique to the hypoxic status of U87-MG cells. We subsequently identi-
fied an EV protein signature, “HYPSIGNATURE”, encompassing nine proteins that strongly represented the hypoxic situation 
and exhibited close proximity to the mesenchymal GBM subtype.
Conclusions  We propose, for the first time, an EV protein signature that could comprehensively reflect the hypoxic status of 
high-grade glioma cells. The presented data provide proof-of-concept for targeted proteomic profiling of glioma derived EVs, 
which should motivate future studies exploring its utility in non-invasive diagnosis and monitoring of brain tumor patients.
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Introduction

Glioblastoma multiforme (GBM) is the most common and 
malignant type of primary brain tumor in adults with a 
median survival of approximately 15 months [1–3]. GBM 
is identified from less malignant, low grade gliomas, by 
extensive regions of hypoxia [4] that directly correlate with 
the aggressive behaviour [5]. Hypoxia results from the high 
proliferative and metabolic activity of malignant cells [6] 
and is associated with pseudopalisading necrosis as well as 
vascular hyperproliferation [7]. Tumor hypoxia modulates 
stromal cell interactions in the microenvironment that fur-
ther support the survival and dissemination of malignant 
cells [4, 8–11]. Numerous studies have previously shown 
that tumor progression is driven by hypoxic signaling [12], 
and the expression of hypoxia-related markers correlate 
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with poor patient outcome in several tumor types, includ-
ing GBM [13]. However, the development of strategies for 
non-invasive monitoring of brain tumor hypoxic signalling 
remains a challenge of high clinical relevance, especially 
with regard to the relative inaccessibility and spatiotemporal 
heterogeneity of GBM tumors.

Extracellular vesicles (EVs) are excessively secreted by 
tumor cells into the circulation, and are emerging as a prom-
ising candidate for liquid biopsy-based approaches in can-
cer [14–16]. Exosomes and microvesicles are lipid-bilayer 
EVs [17] that have come to be recognized in intercellular 
communication, promoting the development and progres-
sion of various disease conditions [18]. Numerous studies 
have shown that exosome-like EVs may mediate hypoxia-
dependent intercellular signaling in GBM [19]. Moreover, 
pilot studies based on an antibody array targeted at angi-
ogenesis-related proteins, suggested that the EV proteome 
may reflect the tumor oxygenation status in GBM [20]. To 
further develop EV-based strategies for non-invasive tumor 
diagnosis and monitoring of hypoxia, it is essential to com-
prehensively identify proteins that are efficiently sorted to 
EVs and that reflect the hypoxic status of the cell or tissue 
of origin.

In this study, we employed label free quantification 
(nontargeted method) and parallel reaction monitoring 
(targeted method) to globally characterize the proteome 
of EVs derived from U87-MG high-grade glioma cells 
with the aim to understand how EV profiling can be 
exploited to noninvasively define the hypoxic status of 
glioma tumors.

Results

Global proteome identification in EVs derived 
from high‑grade glioma cells

EVs from U87-MG, i.e. the most well-characterized human 
glioma cell-line [21, 22], grown under normoxic (EVNORM) 
or hypoxic (EVHYP) conditions were isolated by standard 
sequential ultracentrifugation [20]. The size distribution 
and morphology of EVs was analyzed by transmission 
electron microscopy (TEM), where EVNORM and EVHYP 
predominantly were found in the size range of 50–150 nm 
in diameter with no apparent difference in their morphology 
(Fig. 1a, b). Nanoparticle tracking analysis (NTA) showed 
similar size distribution, where both EVNORM and EVHYP 
were found in the size range of 80–150 nm (Fig. 1c, d), 
which is consistent with the typical size distribution profile 
of exosomes [23]. We found significantly increased secre-
tion of EVs by U87-MG cells when cultured under hypoxia 
as compared to normoxia (Fig. 1d), which is in accordance 
with previous findings [24, 25]. Currently, in addition to 

the mechanism of biogenesis and size [26], EVs are gener-
ally referred to as exosomes also based on the expression 
of CD9, CD63, and CD81 proteins [27], which were all 
found to be present in U87-MG derived EVs, together with 
a strong enrichment of the membrane raft marker Flotillin 
1 (Fig. 1e).

We then employed shotgun proteomics by data-depend-
ent acquisition to comprehensively determine the proteome 
of EVNORM and EVHYP derived from U87-MG cells. We 
identified a total of 2089 EVHYP and 2035 EVNORM pro-
teins (Fig. 1f; Supplementary Tables 1, 2). There were 1034 
protein groups unique to EVHYP (Fig. 1f; Supplementary 
Table 3) and 1055 protein groups common to both EVNORM 
and EVHYP (Fig. 1f; Supplementary Table 4). We next cre-
ated a multiconsensus list combining EVNORM and EVHYP 
protein identities (Supplementary Table 5) and then com-
pared the multiconsensus protein group to the ExoCarta 
EV public database [28]. The multiconsensus EV identities 
(2928 proteins) showed extensive overlapping of 1654 com-
mon identities with the ExoCarta database and also iden-
tified 1274 unique identities (Fig. 1g), which support the 
sensitivity of detection of the EV proteome with the current 
approach.

Processing of the EV proteome by label free 
quantification (LFQ)

Discovery MS analysis resulted in the identification of thou-
sands of proteins, and it is not feasible to analyze the abun-
dance signature of each individual protein by targeted MS/
MS. Therefore, to filter the proteins identified in EVNORM 
and EVHYP based on their significance in hypoxia, we sub-
jected the discovery MS-identified proteins to nontargeted 
LFQ in Proteome Discoverer (PD) version 2.2 (Fig. 2a). We 
could then obtain the abundance value of each protein in 
EVHYP and EVNORM in terms of the LC/MS precursor peak 
quantification of the unique peptides for a particular protein. 
Subsequently, a ratio of the abundance values of each pro-
tein in EVHYP over EVNORM was calculated, which identi-
fied a total of 580 hypoxia significant (Hsignificant) proteins 
(Log2 fold change, cut-off > 0.01), and other proteins that 
were above Log2 fold change cut-off > 0.01, were taken as 
hypoxia downregulated (Hnonsignificant) proteins (Supplemen-
tary Table 6).

Hsignificant proteins were found to be distributed mostly 
in nucleic acid binding, hydrolase, enzyme modulators, 
and cytoskeletal protein subclasses, as determined by 
Gene Ontology system of classification using PANTHER 
version 14.0 [29] (Fig. 2b). Then we analysed the differ-
ences in functional classification pertaining to biological 
processes, molecular functions, and cellular localization of 
the Hsignificant (orange bars) and Hnonsignificant (blue bars) pro-
teins (Fig. 2). A substantially higher number of Hsignificant 
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proteins were localized in organelles (GO:0,043,226) and 
macromolecular complexes (GO:0,032,991) compared 
to Hnonsignificant proteins (Fig. 2c). More Hsignificant proteins 
were associated with cellular (GO:0,009,987), metabolic 

(GO:0,008,152), and cellular component biogenesis pro-
cesses (GO:0,071,840) and catalytic activity (GO:0,003,824) 
compared to Hnonsignificant proteins (Fig. 2d, e), consistent 
with characteristics of the hypoxic tumor state [30, 31].

Fig. 1   Characterization of EVs 
isolated from normoxic and 
hypoxic glioma cells. Electron 
microscopy shows comparable 
shape and size distribution of 
EVs isolated from normoxic 
(a) and hypoxic (b) U87-MG 
cells. Scale bar, 200 nm. Nano 
tracking analysis showing vari-
ations in particle concentration 
in normoxia (c) and hypoxia 
(d) of U87-MG cell-derived 
EVs. e U87-MG cells and EVs 
were probed for CD9, CD63, 
CD81, Flotillin 1, and tubulin 
by immunoblotting. f Venn dia-
gram illustrating protein groups 
identified in normoxic (n = 9) 
and hypoxic (n = 12) cell EVs 
using LC–MS/MS procedures, 
as indicated in the Supplemen-
tary Methods section. g Venn 
diagram showing comparison 
of protein groups identified in 
U87-MG cell EVs by LC–MS/
MS with ExoCarta, a public EV 
proteomics database
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Validation of Hsignificant profile by parallel reaction 
monitoring (PRM)

To validate the Hsignificant proteins identified above by LFQ, 
we next performed PRM (Fig. 3a). A set of selection criteria 
specific for targeted PRM analysis as described in Rauniyar 
was applied [32], including peptide length, uniqueness, mis-
cleavage, modification, precursor charge, chromatographic 
peak, and signal intensity to further filter identified pro-
tein groups and select appropriate quantotypic peptides for 
proteins of interest using Skyline version 3.1. In addition, 
we added a few protein groups based on their relevance in 
glioma. Consequently, we selected a total of 135 protein 

groups with 5 unique quantotypic peptides per protein group 
for quantification by targeted PRM. Firstly, we performed 
an unscheduled PRM run on EVNORM and EVHYP samples 
to analyze the ionization of selected peptides and optimize 
their retention time and transition charge state. The chroma-
togram output was analyzed in Skyline and the 2 to 3 most 
quantotypic flyable peptides and appropriate transition states 
per protein were selected for the scheduled PRM run for all 
135 protein groups (Supplementary Table 7).

The peak normalized areas (PAN) of individual pep-
tides of all proteins analyzed were extracted from the 
Skyline, and the average of replicate PAN values of each 
individual peptide of all proteins in EVNORM or EVHYP 
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Fig. 2   Non-targeted label free quantification of EV protein groups 
identified by LC–MS/MS. Schematic diagram showing label free 
quantification of EV proteins identified by Proteome Discoverer (a). 

Functional classification analyses assigned as protein class (b), cellu-
lar component (c), biological process (d), and molecular function (e) 
of Hsignificant (orange bars) and Hnonsignificant (blue bars) proteins
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samples were calculated. In all cases, the selected peptides 
of 135 candidate proteins had quantifiable distribution 
of area under curve for the identified peptide transitions 
(Supplementary Table 8). On analysing the fold change, 
we found 17 proteins significantly differentially expressed 
in EVHYP as compared to EVNORM (Fig. 3b; Supplementary 
Table 8). We further applied peptide significance and nor-
malized peak area restrictions on the hypoxia response of 
the Hsignificant EV proteins (N = 17) and filtered it down to 
a signature of 9 proteins that included Insulin-like Growth 
Factor-Binding Protein 3 (IGFBP3), Tissue Factor (F3), 

Carbonic Anhydrase 9 (CA9), Solute Carrier Family 2 
Facilitated Glucose Transporter Member 1 (SLC2A1), 
Nucleolin (NCL), Osteopontin (SPP1), Monocarboxylate 
Transporter 1 (SLC16A1), Membrane-Associated Proges-
terone Receptor Component 1 (PGRMC1), and Annexin 
A5 (ANXA5) (Fig. 3c). These proteins defined a profile 
of unique proteins (N = 9) efficiently sorted from donor 
cells to EVs and enriched at hypoxic conditions, hereafter 
referred to as “HYPSIGNATURE” (the PAN of the replicates 
of the different peptides is given in Supplementary Fig. 1).
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Fig. 3   Relative quantification of selected EV protein groups/peptides 
by LC-PRM-MS/MS. a Schematic diagram showing quantification of 
proteome extracted from normoxic or hypoxic U87-MG cell-derived 
EVs by PRM. b Volcano plot showing differentially expressed pro-
teins in EVs isolated from normoxic and hypoxic U87-MG cells. 
Each protein is represented as a dot and is mapped according to its 

fold change (EVHYP compared to EVNORM) on the abscissa axis (x) 
and t test P value on the ordinate axis (y). Colored dots indicate sig-
nificant proteins and black dots indicate non-significant proteins. c 
List of proteins found enriched (fold change) in EVs isolated from 
hypoxic as compared with normoxic U87-MG cells, as quantified by 
PRM
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HYPsignature can identify GBM mesenchymal subtype

We assayed the pathways enriched by the HYPSIGNATURE 
proteins using ConsensusPathDB-human interaction data-
base [33]. This identified HYPSIGNATURE to be closely asso-
ciated with the Hypoxia-Inducible Factor-1α (HIF-1α) tran-
scription factor network (adjusted P value = 0.00012) and 
HIF-1 signalling pathway (adjusted P value = 0.0057) with 
high significance (Fig. 4a). Tissue factor (F3) was previously 
shown by our group to be enriched in hypoxia-derived EVs 

[20]. The hypoxic enrichment of other top candidates of the 
HYPSIGNATURE (Fig. 3c), was supported by immunoblotting, 
which showed increased levels of IGFBP3 (Fig. 4b) and 
CA9 (Fig. 4c). Immunoblotting analysis was unable to detect 
other candidate proteins (NCL, SLC16A1, SPP1, ANXA5) 
in EVs, either from normoxia or hypoxia (Supplementary 
Fig. 2b). A potential limitation of these results is the lack of 
EV housekeeping proteins, and equal protein loading rely on 
BCA total protein concentration. However, gene array analy-
sis showed increased expression of IGFBP3 (P = 0.0012), F3 
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(P = 0.0001), CA9 (P = 0.0001), SLC2A1 (P = 0.0001), and 
PGRMC1 (P = 0.0017) mRNA in hypoxic as compared with 
normoxic U87-MG cells (Supplementary Fig. 2a).

Several studies have established the association 
of GBM mesenchymal subtype with hypoxia and an 
aggressive tumor phenotype [34–36]. To address how 
the HYPSIGNATURE may associate with the mesenchy-
mal phenotype, we compared the cumulative Z score of 
HYPSIGNATURE with different subtypes of primary GBM 
cells obtained from Human Glioblastoma Cell Culture 
(HGCC) i.e. classical, proneural, neural and mesenchymal 

(Fig. 5a). The cumulative HYPSIGNATURE Z score (1.78) 
was in close proximity to the HGCC mesenchymal sub-
type (0.24), evident by their average positive Z score as 
compared with the classical (− 0.18), proneural (− 0.28), 
and neural (− 0.41) subtypes (Fig. 5b). Next, we compared 
the HYPSIGNATURE cumulative Z score with GBM subtypes 
obtained from Cancer Genome Atlas Program (TCGA) 
using the Gliovis portal, which again showed the proxim-
ity of HYPSIGNATURE Z score with the mesenchymal (1.26) 
as compared with classical (0.94), proneural (0.89), and 
neural (0.83) GBM subtypes (Fig. 5c).
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Discussion

In this study, we used an optimized combination of nontar-
geted and targeted quantitative proteomics to comprehen-
sively profile hypoxia-regulated proteins associated with 
high-grade glioma cell derived EVs. We have identified 
a protein signature, “HYPSIGNATURE”, in EVs secreted by 
U87-MG cells that is associated with the HIF hypoxic 
signaling response and exhibited close proximity to the 
mesenchymal GBM subtype. Importantly, out of the nine 
proteins encompassing the HYPSIGNATURE, seven proteins 
are known as plasma membrane integrated proteins with 
an extracellular domain available for specific recognition 
by antibodies and other targeting agents. Together, our 
findings thus propose that the hypoxic status of GBM 
tumors can be defined by the EV HYPSIGNATURE, which 
may be utilized not only to noninvasively immunephe-
notype glioma tumors but also as potential therapeutic 
targets.

The utility of EVs across diverse cellular functions, 
including recent investigations that support the application 
of EVs as non-invasive biomarker tools [14, 16, 37, 38], 
strongly motivates improved efforts to comprehensively 
profile the proteome of EVs derived from cells grown at 
disease mimicking conditions. Using discovery proteom-
ics, a previous study [39] identified a total of 844 proteins 
in EVs isolated from GBM cells. In comparison, we iden-
tified approximately 3000 proteins in EVs, out of which 
1034 proteins were unique to hypoxic EVs. Importantly, 
the major aim of the present study was to specifically iden-
tify an EV signature that mimics the hypoxic situation, i.e. 
a pathognomonic feature of GBM tumors associated with 
disease aggressiveness and treatment resistance. Although 
the studies are limited to one glioma cell-line, it may be 
argued that the obtained results have general relevance 
given the substantial overlap between EV protein identi-
ties found here and the ExoCarta EV proteome database. 
Moreover, the hypoxic response is a universal phenom-
enon of high-grade gliomas as well as other highly malig-
nant tumors. Clearly, future studies will have to further 
assess the generalizability of the present data, including 
validation in primary GBM cell models as well as in vivo.

LFQ has now become a widely accepted analytical 
approach for comparison of the relative abundance of pro-
teins across multiple samples [40–42]. The possibility to 
analyse untreated proteins or peptides in a large number 
of samples makes LFQ a preferred protocol over other 
relative quantification approaches. However, previous 
studies have shown that sample preparation for the LFQ 
approach is highly susceptible to variability [43]. There-
fore, to reduce this variability, we used 9 replicates of 
normoxia and 12 replicates of hypoxia samples for LFQ. 

In addition, the conforming pattern of differential levels of 
most proteins analyzed in LFQ (Supplementary Table 6) 
and PRM (Supplementary Table 8), suggest a high degree 
of sample preparation consistency. In support of EV pro-
teomics data, immunoblotting showed an enrichment of 
top candidates of the HYPSIGNATURE, and gene array anal-
ysis showed increased expression of IGFBP3, F3, CA9, 
SLC2A1 and PGRMC1 mRNA in hypoxic as compared 
with normoxic U87-MG cells. We were unable to detect 
other candidate proteins (NCL, SLC16A1, SPP1, ANXA5) 
in EVs by immunoblotting analysis, either from normoxia 
or hypoxia, and did not detect a hypoxic enrichment of 
these proteins in U87-MG cells. A potential explanation 
to the discrepancy between an induction of these proteins 
in EVs collected over a cumulative time period of 48 h of 
hypoxia, and cells analyzed at a fixed time-point, is the 
well-known temporal dynamics of the hypoxic response.

Several previous studies have associated tumor cell 
expression of HYPSIGNATURE proteins with increased 
GBM aggressiveness. For example, F3 expression was 
demonstrated to be hypoxia-dependent in highly aggres-
sive P7 GBM cells, leading to increased F3 activity [44], 
and F3-positive EVs were shown to induce angiogenesis 
[20]. Hypoxia also induced increased SLC16A1 plasma 
membrane expression in glioma cells, both in in vitro and 
in vivo models [45]. Additionally, SLC16A1 plasma mem-
brane expression was associated with HIF-1α and CA9 
positivity in hypoxic regions. Further, SLC16A1 was 
found to be upregulated in GBM as compared with normal 
tissues [46]. NCL was also found to be overexpressed in 
patient-derived GBM tumors and cells as compared with 
normal brain [47]. ANXA5 has been found to promote 
invasion and chemoresistance to the alkylating drug temo-
zolomide in GBM cells [48]. Since hypoxic cells and com-
ponents in the hypoxic niche have been increasingly impli-
cated in resistance to temozolomide [49], it is conceivable 
that ANXA5 is associated with the hypoxic component 
of drug resistance. SPP1 was shown to be induced by 
hypoxia both in vitro and in vivo [50] and is predominantly 
observed in the microvasculature of GBM [51]. Several 
studies have implicated SPP1 with crucial roles in invasion 
[52] and malignant gliomas [53]. In several glioma cell 
models, CA9 strongly co-localized with HIF-1α, indicat-
ing its induction in hypoxic regions of this tumor type. 
Clinically, CA9 is minimally expressed in normal brain tis-
sue, whereas its high expression in brain tumors strongly 
correlated with the level of malignancy [54]. SLC2A1 is 
another well-established hypoxia-induced protein that has 
been associated with hypoxic regions of GBM [55]. These 
studies support a functional role of HYPSIGNATURE protein 
expression in tumor cells, and future studies that define the 
tumor promoting role of these proteins when associated 
with EVs, especially in the context of e.g. pH regulation 
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(CA9), metabolite transport (SLC2A1, SLC16A1), and 
coagulation activation (F3), will be of high interest.

To conclude, our data strongly support that a specific 
subset of mostly membrane intercalated EV proteins could 
define the hypoxic status of high-grade glioma cells. The 
proteins identified as part of the HYPSIGNATURE warrant 
further clinical examination using a targeted approach to 
validate their capacity to differentiate the highly heterogene-
ous nature of high-grade glioma tumors from e.g. low grade 
gliomas and other brain lesions that are challenging to define 
by imaging alone. This proof-of-principle study to noninva-
sively define the glioma hypoxic status utilizing advanced 
proteomics is a significant step in this direction.

Materials and methods

Cells

U87-MG cells were newly purchased from ATCC. Cells 
were routinely cultured in DMEM medium, supplemented 
with 10% foetal bovine serum (FBS), 2 mM L-glutamine, 
100 U/mL penicillin and 100 μg/mL streptomycin (growth 
medium). All cells were grown in humidified 5% CO2 
incubator at 37 °C. For hypoxia experiments, cells were 
incubated in humidified Sci-tive NN Hypoxia workstation 
(Ruskinn Technology) set at 5% CO2, 1% O2, and 37 °C.

EV isolation

Normoxic or hypoxic EVs were isolated in parallel from 
U87-MG cells at a particular passage by standard proce-
dures, using differential ultracentrifugation [20]. Routinely 
cultured U87-MG cells at sub-confluency were grown in 
DMEM supplemented with 1% BSA at normoxic or hypoxic 
conditions for 48 h. Conditioned media were collected after 
48 h and centrifuged at 300×g twice to eliminate cell debris. 
Supernatant fractions were then centrifuged at 100,000×g 
for 2 h to pellet EVs, followed by washing twice with PBS at 
100,000×g for 2 h. EVs were then resuspended in 6 M Urea 
for downstream proteomics experiments.

Immunoblotting

U87-MG cells or EV protein lysate were mixed with 
NuPAGE 4 × LDS Sample Buffer (Life Technologies) and 
heated for 10 min at 80 °C. Equal amount of proteins was 
resolved in a NuPage 4–12% Bis Tris gel (Life Technologies) 
at non-reducing or reducing conditions and then transferred 
onto a polyvinylidene fluoride (PVDF) membrane (Immo-
bilon-FL), followed by blocking in TBS containing 0.05% 
Tween 20, 5% nonfat dry milk or 3% BSA for 1 h at RT. 
To probe for CD9, CD63, CD81, Flotillin-1, IGFBP3, and 

CA9, the membrane was incubated with the following anti-
bodies in TBST containing 5% nonfat dry milk overnight 
at 4 °C: anti-CD9 (1:2000; ab92726, Abcam), anti-CD63 
(1:100; ab8219, Abcam), anti-CD81 (1:1000; ab109201, 
Abcam), anti-flotillin-1 (1 µg/mL; ab41927, Abcam), Rab-
bit anti-IGFBP3 (1:80; PAAJ1, GroPep), M75 anti-CA9 
(1:300; M75, Bioscience Slovakia), Mouse anti-NCL 
(1:1000, ab13541, Abcam), Rabbit anti-SLC16A1 (1:1000, 
ab179832, Abcam), Mouse anti-SPP1 (1:500, ab166709, 
Abcam), and Rabbit anti-ANXA5 (1:500, ab14196, Abcam). 
After washing, the membrane was incubated with HRP-
conjugated anti-mouse IgG (1:10,000) (A9044, Sigma-
Aldrich) or anti-rabbit secondary antibody (1:3000) (7074, 
Cell Signaling Technology). Protein bands were visualized 
by enhanced chemiluminescence western blotting substrate 
(Pierce).

Nanoparticle Tracking Analysis, Transmission Electron 
Microscopy, Trypsin digestion and peptide preparation, 
Discovery LC–MS/MS, label free quantification, and quan-
titative LC-PRM-MS/MS were performed as described in 
Supplementary Materials and Methods.

Data analysis

The Gene Ontology functional classification of Hsignificant 
proteins was performed using PANTHER (https​://www.
panth​erdb.org/). Enriched pathways of EVHYP signature 
proteins were determined using ConsensusPathDB-human 
interaction database (https​://cpdb.molge​n.mpg.de/). Wil-
coxon test was employed for pathway enrichment analysis 
with a P value cut-off of 0.01.

Gene expression data on different GBM subtypes were 
obtained from The Cancer Genome Atlas (TCGA) via the 
GlioVis portal (https​://gliov​is.bioin​fo.cnio.es/), as well as 
from the Human Glioma Cell Cultures (HGCC) database 
(https​://www.hgcc.se/).

For HYPSIGNATURE comparison in U87-MG cell-derived 
EVs, the Z scores of 9 HYPSIGNATURE candidates were indi-
vidually calculated for their protein levels with the respec-
tive normoxic values as reference as shown by the formula 
below:

where “EVHYP” is the mean protein level measured in 
hypoxic EVs; “EVNORM” is the mean protein level meas-
ured in normoxic EVs; and “SD EVNORM” is the standard 
deviation value of the protein level measurements in nor-
moxic EVs. Generation of a cumulative score was done by 
arithmetic mean of Z scores of all 9 HYPSIGNATURE proteins.

For Z score calculation on the TCGA dataset, subtype 
classification of GBM patients was performed with GlioVis 
portal, and gene expression values for all 9 HYPSIGNATURE 
candidates were downloaded. Low Grade Glioma (LGG) 

Z-score =
(

EVHYP−EVNORM

)

∕
(

SD EVNORM

)

https://www.pantherdb.org/
https://www.pantherdb.org/
https://cpdb.molgen.mpg.de/
https://gliovis.bioinfo.cnio.es/
https://www.hgcc.se/
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expression data of the 9 HYPSIGNATURE protein genes was 
downloaded and used as reference value for Z score calcula-
tions, as indicated in the formula below:

where “GBM subtype” is the mean gene expression value 
in subtypes such as Classical, Mesenchymal, or Proneural 
GBM; “TCGA-LGG” is the mean gene expression value for 
the corresponding gene in LGG patients; and “SD TCGA-
LGG” is the standard deviation value of the analyzed gene 
among the LGG patients. Generation of cumulative score for 
each GBM subtype was done by arithmetic mean of Z scores 
of all 9 HYPSIGNATURE candidates.

For HGCC data analysis, the gene expression Z score for 
each HYPSIGNATURE candidate in subtypes (Classical, Mes-
enchymal, Proneural, or Neural) was directly extracted from 
the HGCC database. Cumulative Z score was generated as 
described for TCGA dataset.

Statistical analyses

Data are expressed as mean ± STDEV. Statistical analyses 
were done using unpaired Student t test. All values with 
P < 0.05 were considered to be statistically significant.
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