
J Pathol Inform Editor-in-Chief:
 Anil V. Parwani ,	 Liron Pantanowitz,
 Pittsburgh, PA, USA	 Pittsburgh, PA, USA

For entire Editorial Board visit : www.jpathinformatics.org/editorialboard.asp

OPEN ACCESS
HTML format

Review Article

Custom software development for use in a clinical laboratory

John H. Sinard, Peter Gershkovich

Department of Pathology, Yale University School of Medicine, New Haven, CT, USA

E-mail: *John H. Sinard - john.sinard@yale.edu
*Corresponding author

Received: 04 September 12	 Accepted: 01 October 12	 Published: 20 December 12

INTRODUCTION

Facing Unmet Needs
Computer software is an integral part of the day-to-day
operation of any clinical laboratory. The major nidus for
this activity is the laboratory information system (LIS),
typically a suite of integrated modules purchased from a
single vendor and designed specifically for the operation
of the laboratory. LISs have matured substantially over
the past few decades, providing greater operational
efficiency and improving patient safety.

Yet, even the most advanced LISs do not fully meet
the needs of every laboratory. Although some labs may
be able to function adequately on their LIS, larger labs
and labs providing specialty services typically can identify
information management needs which are not met
by their LIS. This is because LIS vendors build their
software to meet the needs common to the majority of
the labs in their current or intended client base rather
than to meet the needs of a particular lab, and every
lab has some unique needs due to their size, subtleties
of their local environment, people, and the clinical focus

Copyright: © 2012 Sinard JH. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are credited.

This article may be cited as:
Sinard JH, Gershkovich P. Custom software development for use in a clinical laboratory. J Pathol Inform 2012;3:44.

Available FREE in open access from: http://www.jpathinformatics.org/text.asp?2012/3/1/44/104906

Abstract

In-house software development for use in a clinical laboratory is a controversial issue.
Many of the objections raised are based on outdated software development practices,
an exaggeration of the risks involved, and an underestimation of the benefits that can
be realized. Buy versus build analyses typically do not consider total costs of ownership,
and unfortunately decisions are often made by people who are not directly affected
by the workflow obstacles or benefits that result from those decisions. We have been
developing custom software for clinical use for over a decade, and this article presents
our perspective on this practice. A complete analysis of the decision to develop or
purchase must ultimately examine how the end result will mesh with the departmental
workflow, and custom-developed solutions typically can have the greater positive impact
on efficiency and productivity, substantially altering the decision balance sheet. Involving
the end-users in preparation of the functional specifications is crucial to the success of
the process. A large development team is not needed, and even a single programmer
can develop significant solutions. Many of the risks associated with custom development
can be mitigated by a well-structured development process, use of open-source tools,
and embracing an agile development philosophy. In-house solutions have the significant
advantage of being adaptable to changing departmental needs, contributing to efficient
and higher quality patient care.

Key words: Buy versus build, clinical use, custom software, in-house development,
open source

Access this article online
Website:
www.jpathinformatics.org

DOI: 10.4103/2153-3539.104906

Quick Response Code:

J Pathol Inform 2012, 3:44	 http://www.jpathinformatics.org/content/3/1/44

of their clients. Thus, a needed functionality is lacking,
either because it does not exist at all in the LIS, or
because it exists in a way that does not mesh well with
the workflow in the lab.

When the LIS functionality falls short of an identified
need, labs have a choice: (1) make do with what they
have, perhaps adjusting their workflow to accommodate;
(2) contract with the LIS vendor to add the needed
functionality to their LIS, or to modify it to meet their
workflow needs; (3) purchase third-party software which
meets the need, (4) develop their own custom software
in-house, or (5) purchase a new LIS. Purchasing a new
LIS is a huge undertaking and outside of the scope of
this discussion. In fact, most labs choose to go with
option 1. There can be many ways to accomplish a task
in the lab, and labs can adapt to what their LIS is able
to do. If the need is great and funds can be identified,
option 2 may be chosen. Having your LIS vendor develop
integrated customizations assures compatibility with the
rest of the LIS, but this can be an expensive and time-
consuming process. Nonetheless, LIS vendors rely on
at least some clients choosing this option because this
funds enhancements to their product. When laboratory
science or the regulatory environment creates a general
need, the client with the lowest threshold, greatest need,
and available capital funds the development of the
solution with their vendor. This client has the advantage
of dictating how the workflow for the new feature will
be designed. After delivery and testing (and payment),
the vendor typically incorporates the new feature into a
subsequent version of the LIS software, either as a free
enhancement or available for an additional charge.

Third-party solutions can be a good option, and certainly
should be investigated. If your lab has an unmet need,
others probably have a similar need. There are a number
of smaller companies that are more nimble than the
major LIS vendors and that can respond more quickly to
a need and provide a solution. The less specific the need
is to pathology (e.g., transcription, image acquisition), the
more likely it is that there will be multiple solutions from
which to choose. If the solution can operate independent
of the LIS, there are no integration concerns. If it needs
to be integrated, the company may be able to handle it
themselves, unless modifications are needed to the LIS
system, in which case the third-party company will then
likely have to enter into some sort of agreement with the
LIS vendor. There are many examples of successful third-
party solutions, the most common of which is “middleware”
in the clinical laboratories, which manages communication
between analytical instruments and the LIS.

However, if the need is novel or specific for your environment,
third-party products that adequately meet that need are
often simply not available. In this situation, in-house custom
software development may be the best solution.

OUR EXPERIENCE

At our institution, the pathology department provides
anatomic pathology services only (laboratory medicine
is a separate department). We have our own Pathology
Informatics Unit that provides both operational services
(i.e., information technology services) and software
development. We also have three other full-time faculty
members with academic informatics programs, but they are
not involved in the software development for clinical use.
Our clinical development team has developed a variety of
clinical applications that are used every day in our anatomic
pathology practice. Some of these solutions are integrated
into and/or interact with our LIS, and some are standalone
solutions. Our development team consists of three people.
One is a pathologist, who also has other significant clinical
and administrative needs and thus spends only about 20%
of his time on software development. His primary role is
in specification development and in programming the
department’s LIS to interact with the custom software
(we have a unique arrangement without LIS vendor which
allows us to introduce our own customizations into the
commercial software, which was nicely designed to allow for
this process). Another developer handles the user interface
creation (according to the provided specifications) and
also handles deployment, user training, and initial support
of the custom applications. The third developer spends
approximately two-thirds of his time on development,
predominantly the business logic of the standalone
components of the application, with the other third spent
on management of the operational informatics unit in the
department. Thus, in total, this represents about 1.6 FTEs
(full-time equivalents) of true development resources. Our
LIS is Cerner CoPathPlus. Our standalone components are
developed in Java, predominantly as web applications.

Over the past several years, solutions we have developed
and deployed include: Digital image file management,[1]
scanned document file management,[2] dictation/
transcription management,[3] an outreach support system
for orders and report delivery, an outreach client interface
system, a repetitive task scheduling engine,[4] frozen
section management and diagnosis communication to
operating rooms,[5] histology asset tracking,[6,7] trainee
diagnosis tracking and evaluation,[8] and numerous
databases to support trainee interviewing and recruitment,
graduate trainee tracking, computer hardware tracking,
research histology, and graphics services billing. This
article is based on our collective experience with this
development and deployment process.

BUY VERSUS BUILD

Medical institutions operate around a number of
philosophies, some codified in actual policies, but most
driven by the experiences and/or preferences of the

J Pathol Inform 2012,, 3:44	 http://www.jpathinformatics.org/content/3/1/44

institutional leadership. In the information technology
(IT) departments, one of the most prevalent dichotomies
is the preference to buy or build: When an unmet IT need
arises, does one buy a commercially available solution or
invest in building/developing a custom solution? Although
there is a lot of software commercially available, it is
generally not designed for some of the specialty medical
uses and may not mesh well with the existing workflow.
In many environments, the task of assessing the suitability
of available software to meet a specific need is often
relegated to IT staff who are not that familiar with the
clinical workflow. A solution is purchased and installed
which does not fit quite right. Since the “off-the-shelf”
software is generally not modifiable by the end-user,
departments then find themselves adjusting their
workflow to match what the software can do. Advocates
for the “build” philosophy argue that computers are a tool
that should be adapted to the user’s workflow rather than
dictating a particular workflow to its users.

Advocates for the “buy” philosophy raise a number
of common objections to development of software
in-house. These, along with counter arguments, are
listed in Table 1. In addressing any unmet software
need, it is always prudent to explore what solutions
might be commercially available, either through your
LIS vendor or from a third-party. There is a lot of
software available commercially from a large number of
vendors. How “thorough” of an investigation one does
depends, of course, on the need and potential benefits,
since exploring options can be time-consuming. If your
need is unique, however, there may simply be nothing
available which comes close. We experienced that
when we developed the specifications for our Frozen
Section Management and Diagnosis Communication
software.[5] The buy versus build cost/benefit analysis
needs to consider the true cost of ownership, not simply
the difference between the purchase cost and the
development cost. On the buy side, one must include

the costs of installing and setting up the new software,
included in the cost of most large vendor offerings, but
sometimes an additional charge from smaller vendors. Are
there additional hardware costs associated with the new
software, like workstation upgrades? Are there expenses
associated with integrating the new software into your
workflow, including any workflow changes and perhaps
personnel changes? Does the solution require purchasing
specific consumables such as a particular vendor’s labels,
cassettes, or slides? There may also be subsequent annual
support costs, which often run 22-25% of the initial
purchase price. Collaborating with your LIS vendor to
develop the solution as part of the LIS is an option,
but can be expensive, and there will almost certainly be
annual support cost increases. Additionally, the vendor
will be limited by the technology used to develop the
LIS, often technology that is a decade old. Determining
the cost of developing software in-house can be difficult,
but it usually comes down to people and time—the faster
you need the software completed, the more people it may
take. The more people you hire, the more expensive it is,
and then there is the issue of what are you going to do
with those people after the software has been developed?
(This is discussed further later)

On the other side of the balance sheet, determining a
“return on investment” for any software implementation
is very difficult because the software typically does not
generate new income but rather improves the operational
efficiency of the entire clinical service. Even if one
could objectively measure staff efficiency, productivity,
or frustration levels, there are many other variables that
contribute those practice characteristics. However, the
greatest benefits to staff efficiency are obtained when
there is a very high compatibility between the software
and your “ideal” workflow. For third-party solutions,
how good is the fit between what the software was
designed to do and what you need it to do? For solutions
developed in collaboration with your LIS vendor, how

Table 1: Buy versus build: Point/counterpoint

Advocates of “buy” Advocates of “build”

Anything you might want, someone has already
written something pretty close

Do you adapt your workflow to match the software or design the software to
match your workflow?

Anything we develop will not be as good as what
our vendor can do for us

Vendor customizations are expensive and take time; they are constrained by
the capabilities of the tools they chose to develop their product; having mature
products, they are often less inclined to innovation

Custom development is too expensive Increased efficiency and productivity from software designed for your specific
environment can save money; need to consider total cost of ownership

Software development requires too many people Software development requires the right person/people; can be done with one
person

We are not in the business of software development We are in the business of technology development and adoption
What if the person who develops it leaves after a
few years?

(a) You got a few good years out of it
(b) If it fails the day they leave, it was probably too expensive to maintain anyway
(c) �If it is useful and saves money, hire someone else to maintain it and/or

rewrite it using even newer technology

J Pathol Inform 2012, 3:44	 http://www.jpathinformatics.org/content/3/1/44

well can you articulate your needs in the form of
specifications? The primary advantage of custom software
development is that it is likely to result in the greatest
efficiency improvements because it can be specifically
tailored for your unique environment, which may include
consideration of issues such as preferred and supported
platforms, level of IT support available, other institutional
systems and policies, idiosyncrasies of the users, and
specific elements of the workflow. Additionally, unlike
most commercially acquired software, software developed
in-house can be adapted and modified as the needs
become better defined through use and/or change over
time. In other words, your custom solution will become
an up-to-date reflection of your operational strategy. You
will also likely find that once a solution to a problem has
been developed and deployed, other related problems can
be addressed by adding incremental functionality to that
solution. For example, in our environment, we discovered
that our in-house developed solution for digital image
file management could be extended to semi-automate
the management of scanned documents. This answers
the question about what your developers are going to do
once they have developed the solution you hired them to
develop.

One of the most common arguments against software
development is the feeling that it requires too many
people to do it right. This is not true. Significant
improvements in workflow can be obtained with even
just one person. Ultimately, it is an issue of scope and
time—how large is the project and how quickly does it
need to be done? Remember that very little even custom
software is written from scratch any more. There are
a variety of software frameworks, libraries, and other
components available, many for free, some for a small
fee, which perform a wide variety of tasks, and most of
what the software developer is doing is building a wrapper
around these components which ties them together into
an integrated system which meshes with the workflow in
the department. Software development is not so much
about finding enough people but rather about finding the
right people with complementary skills that interact in a
synergistic fashion. While it is true that having a large
number of developers increases the chances that some of
them will be the right people, in the end you only really
need the right ones. Finding the right people, however, is
not easy. Several studies have shown that the individual
productivity of software developers with comparable
levels of experience can vary by a factor of 10.[9] Many
individuals who market themselves as “programmers”
are really more super-users than programmers. Be sure to
require any applicants to submit examples of things they
have written, and do a quick web-check to be sure it is
not simply something they downloaded from someone
else. Ultimately, however, their performance in your
environment and in the pathology domain will be the key

determinant, but it often takes longer than the standard
probationary period to determine whether or not a
particular person is right for the team. Over the years,
our team has had five other individuals who were either
full-time or part-time “programmers” before settling on
the current team of three. Shortcoming of those no longer
on the team included lack of problem-solving skills, poor
attention to detail, and in more than one case simply an
inability to understand and adapt to the clinical workflow
of an academic pathology department.

Many laboratories will claim that they do not engage
in custom software development because they are “not
in the business of writing software.” However, every
high-end clinical laboratory, especially those at “cutting
edge” academic medical centers, explores new testing
technology when it becomes available. When what
is commercially available lags behind new scientific
developments, many of these labs will either collaborate
with vendors to develop the needed technology or
develop and validate it themselves as a “laboratory-
developed test.” This is because pathology laboratories are
in the business of technology adoption and development
in order to make the most modern diagnostic testing
available to enhance patient care. Software is simply
another technology—a part of the laboratory’s strategy
to provide better clinical services – and as such falls well
within the scope of “the business” of laboratories.

Finally, one of the most common arguments made
against developing clinical software in-house is the
concern over who will support the software if the person
who developed it leaves the institution. Clinical labs have
a responsibility not only to their financial health but also
to the patients on whose specimens they perform testing,
and the clinicians who care for those patients. To assure
longer term stability, most healthcare IT directors prefer
to restrict the source of software for clinical purposes
to large commercial vendors who have been around
for years and are likely to continue to be around for
additional years. Smaller third-party vendors offering
acceptable solutions raise concern about the company’s
stability, especially in the current environment of
numerous technology company failures. Custom software
development is often discouraged. In fact, for a number
of years after the creation of the informatics unit at our
institution, we resisted going down the path of custom
software development precisely to preserve external
supportability. However, after many years of struggling
with workflow inefficiencies caused by insufficient
software, we ultimately decided that even if we only got a
few years of use out of a custom solution, the efficiency
gains during those few years would be sufficient to justify
the development costs. Our vulnerability to the possible
unexpected departure of a custom solution developer
has been lessened by the extensive use of open-source
software (OSS) (see discussion below) and by developing

J Pathol Inform 2012,, 3:44	 http://www.jpathinformatics.org/content/3/1/44

our software using a team approach, as it is unlikely
that the entire team would leave simultaneously. In
reality, even if a key developer were to leave, the existing
software does not stop functioning. If it does, that would
suggest it required constant maintenance, and then it
was probably too expensive to maintain anyway. If it is
a very valuable piece of software, a “quick repair” could
be subcontracted to get the solution working again while
other or new developers are hired to either support the
existing software or redevelop it using newer development
tools, likely resulting in a superior end result.

CUSTOM SOFTWARE DEVELOPMENT
PROCESS

There is no one right way to develop custom software,
but there are some standard processes that tend to yield
superior results. The step-by-step process is summarized
in Table 2.

Functional Specification
The most important part of custom software
development is preparation of the specifications
document(s). These are often divided into functional
specs and technical specs, but ideally can be combined
into a single document depending on the scope of the
project and the breath of knowledge of the individuals
involved. If done sequentially, the functional specification
has to come first, and is the more important of the
two. If the functional specifications are not complete,
thorough, and well conceived, a lot of wasted effort and
re-engineering will be required later in the development
process. The functional specs describe the look and
feel of the software to be developed. It requires a
clear understanding of what problem the software is
supposed to solve, and how the solution will be used in
the workflow. It is best if this document is prepared by
a pathologist rather than by an “IT” person. It should
not be a “high-level” document, but rather should be
very specific, ideally down to diagrams of the screens
and a description of what should happen when the user
interacts with each control (button, checkbox, drop-down
list, etc.) on the screen. End-users may not be able to
conceptualize the application at this level. Rather, they
will provide “use-cases”, descriptions of when they would
use the software and what they need it to do. The author
of the functional specification then needs to take these
use-cases into account, assimilate the information, and
design an application that meets user’s needs. The design
should take into account where the software will be
used (screen size, processor and memory requirements,
space for other resources such as keyboard, mouse, and
scanners). Finally, appropriate consideration needs to be
given to whom the primary users are going to be, and
that includes their likely skill set and personalities. What
are the users willing to do? For example, if the designed

software requires too many mouse clicks, too much
typing, or has delays that routinely exceed half a second,
many pathologists will be very resistant to adoption, and
the solution may fail simply because users avoid using it.
It is very useful if multiple potential users can review and
have input on the functional specification, both to help
assure the solution is general enough to be usable across
multiple subspecialties (if appropriate) and to obtain
greater buy-in from the user base.

Technical Specification
When the functional specs are completed, the document
can be handed-off to IT staff to develop the technical
specification. Depending upon the scope of the project,
multiple technical individuals with different areas of
expertise may be appropriate (e.g., application developer
and database designer). During this phase, the data
structures will be developed and the overall architecture
of the application will be designed. The most appropriate

Table 2: Custom software development process
Specification development – Functional specification

Based on use‑cases
Needs – What does it need to accomplish?
Workflow integration – How is it going to be used?
Environmental integration – Where is it going to be used?
Personnel integration – Who is going to use it and what are
they likely to do?

Specification development – Technical specification
Storage – What will the database structures look like?
Software architecture – How will the software be structured
and delivered to users?
Scalability – How will it hold up to increasing use and users?
Maintenance – How much maintenance will it require and who
is going to do that?

Software development
Tools – What programming tools will be used to build it?
Open‑source options
Test environment – Need a development environment to
protect production system
Validation – Assuring that the software performs as expected
Documentation – What documentation requirements are there?

Deployment
Transfer to production – Can the deployed software be kept
isolated?
Pilot phase – Selection and training of initial users
Fine tuning – Get feedback from users and adjust software as
needed
Back‑out plan – Can you go back to where you were if it does
not work?
General training and deployment
Post‑deployment assessment

Updates and enhancements
Bug detection and correction
Future enhancements
“Scope‑creep” and expansion to related problems

J Pathol Inform 2012, 3:44	 http://www.jpathinformatics.org/content/3/1/44

application delivery method (e.g., desktop application,
client-server, web application) needs to be determined
since this will affect the structure of the application.
Typically, splitting the solution into modules is desirable,
especially if the modules are independent enough that
they can be developed and deployed gradually. The
technical design phase also has to take into account the
scalability of the application. How many total and/or
simultaneous users will there be? How much data will the
application accumulate? These issues have implications
for database table structure, indexing, memory
requirements, etc. Finally, it might be a good idea, even
at this phase, to consider the maintenance needs of the
application. How much ongoing maintenance will be
needed, and who will do it? For example, a solution that
automatically files a high volume of material but requires
manual intervention to process failed filing events will
need ongoing resources for the manual processing.

In our environment, the majority of the specifications are
combined, functional and technical, and are prepared by
a pathologist with informatics experience. Specification
documents can vary in length significantly based on
the scope of the application, and ours have ranged
from about five pages to over 100. The specification
document(s), particularly the technical components,
should be considered a dynamic document, and may
have to be modified as the application is developed to
fine-tune the final product.

Software Development
The actual software writing is the most variable part of the
development process. Individual programmers will have
different skills, and different preferences for development
platforms (operating system as well as integrated
development environments) and programming languages.
The use and integration of open-source frameworks and
components can substantially facilitate this process, as
well as mitigate many of the risks often associated with
custom software development. OSS is software developed
by self-selected groups of programmers and made available
to the public for use, modification, and incorporation
into their own solutions. Many OSS projects have some
management infrastructure and follow formal process
(e.g., Free Software Foundation, Apache Foundation,
Mozilla Foundation, etc.). Typically, this software is
available for free, but may carry some restrictions about
future commercialization, which is usually not a problem
for pathology departments developing custom solutions to
problems because there is no intention to subsequently
commercialize the product. There are thousands of
OSS projects available for download at GNU Savannah
(savannah.gnu.org), sourceforge.net, Google code, etc.
Well-written solutions are very popular, and as such are
extremely well tested and debugged by multiple users,
and updates with new features and some bug fixes are
routinely produced. OSS can include fully operational

solutions (e.g., Linux operating system, MySQL database,
Apache Web Server, Apache Tomcat), development
tools (e.g., Eclipse integrated development environment,
Google Web Toolkit), as well as frameworks (Sprint,
Hybernate, Quartz, etc.), component libraries and
application programming interfaces (e.g., HAPI application
programming interface, iText, jFreeChart, Apache
Commons) that can be integrated into custom software
such as HL7 engines, pdf generation, scheduling engines,
and charting/graphing solutions. Use of open-source
components substantially mitigates the risks of custom
software development because it markedly reduces the
volume of code to be written, expedites development, and
minimizes bugs and errors because significant portions of
the solution have already been tested by a large number
of users. You retain the ability to modify the software to
meet your current or future needs.

There is substantial literature on Rapid Application
Development, and various methodologies have been used
to improve productivity and deliver working code to the
end-user in the shortest amount of time, maintaining
a balance between development time and the quality
of the end product. The essence of these approaches
is outlined in the Agile Software Development
Manifesto.[10,11] It was critical for us to adopt these Agile
Principles in our development process because the speed
of implementation of new functionality is one of the key
benefits of in-house code development. Open source,
with its philosophy of “release early, release often,” feeds
well into this methodology.[12] This philosophy is typically
well received in medical environments because users can
see ongoing improvements and more importantly can
provide feedback and input which may alter the direction
of the project toward a superior final product.

Finally, developing custom software for clinical use
obviously requires a “test environment.” The clinical
mission of the department must go on, and cannot
be compromised by the occasional runaway process
and/or system crash that invariably occurs during software
development. As much as possible, the test environment
should mimic the production environment.

Validation
Custom software for clinical use should be treated like
any other laboratory-developed test and appropriately
validated before it is used in a clinical setting. Validation
(not to be confused with autovalidation of test results)
may be governed by regulatory statutes, and those need
to be considered carefully (Note that while we hope
the discussion here proves helpful, it should not in any
way be considered a comprehensive evaluation of the
current legal and regulatory environment surrounding
software development for clinical use). The Food and
Drug Administration (FDA) of the United States Federal
Government has oversight responsibility and authority

J Pathol Inform 2012,, 3:44	 http://www.jpathinformatics.org/content/3/1/44

for “medical devices.” Software integrated into medical
devices has always, therefore, been regulated by the
FDA. The FDA does consider LISs in general to be
medical devices, but these have been exempt from the
510(k) approval process since June of 1988.[13] In contrast,
because of its charge to regulate blood products, the FDA
in March of 1994 determined that any software used in
healthcare “for the maintenance of data that personnel
use in making decisions regarding the suitability of
donors and the release of blood or blood components for
transfusion” is required to undergo the 510(k) approval
process.[14] Given this requirement, development of
any custom software that touches on blood product
management should be approached cautiously. It is worth
noting that in 2011, the FDA issued a new regulation
pertaining to what they define as “Medical Device
Data Systems” (MDDSs).[15] This includes standalone
software which stores and/or displays data derived from
medical devices. This new regulation reclassifies MDDSs
from Class III devices to Class I devices, substantially
softening the regulatory requirements for bringing these
systems to market. Developers of such software, including
healthcare facilities, are required to register and list with
the FDA. With respect to custom software development
for in-house use only, however, the Code of Federal
Regulation which governs the operation of the FDA
specifically defines as “exempt from registration” any
“licensed practitioners, including physicians, dentists, and
optometrists, who manufacture or otherwise alter devices
solely for use in their practice” (21 CFR 807.65(d)).[16]
Thus, there does not appear to be any current requirement
to notify the FDA if you are developing software for use
within your own institution, but this does not exempt
the developers from validating their software. Moreover,
as laboratorians, pathologists recognize the value and
need for good quality control practices in the generation
and distribution of any data used for patient care. The
FDA does provide some useful guidance in this regard.
In their Laboratory Manual of Quality Policies under Test
Methods and Validation, they state “5.4.7.2 Computer
Use:  When computers or automated equipment are
used for the acquisition, processing, recording, reporting,
storage or retrieval of test data, if computer software is
developed by the user, its development is documented
in detail and algorithms are validated.”[17] Additionally,
in 2002, the FDA released a guidance document entitled
“General Principles of Software Validation.”[18] This
document defines software validation as: “Confirmation
by examination and provision of objective evidence
that software specifications conform to user needs and
intended uses, and that the particular requirements
implemented through software can be consistently
fulfilled (Section 3.1.2).” The guidance document
acknowledges that determining how much testing is
“enough” is difficult and that a developer “cannot
test forever.” Rather, the goal is to achieve a “level of

confidence that the [software] meets all requirements
and user expectations.”

From a very practical standpoint, the extent of the
validation needed depends on what the software does.
Does it create new data, or does it simply display data
already captured/created from other validated systems in
a new way? Will it be immediately obvious to the user if
the software is not functioning properly, or is there a risk
that using the software could result in an inappropriate
clinical action? The greater the risk, the more extensive
the validation activities need to be. For low-risk solutions,
end-users can be part of the validation process via pilot
phases. Users typically will not “accept” software that
does not do what it is supposed to do, especially if they
know that that software was developed in-house and thus
could be fixed. Finally, an important part of the validation
process is documentation. This includes the initial design
specifications, documentation within the code itself,
documentation of testing, and detailed instructions of
what changes are needed to the production environment
for deployment.

Solution Deployment
Deployment strategies for custom software can vary
significantly and are dependent upon the scope of the
solution developed. Is the code a standalone solution,
an integrated solution, or are there components of both?
What kind of concurrency is required between the two? For
example, if you have engineered a composite solution with
some standalone software and some software integrated
into your LIS, can the standalone component exist
without the presence of the LIS integrated component, or
do they both have to be deployed simultaneously? Once
deployed, is use of the software optional (e.g., an alternate
way of doing something) or is it integral (it now becomes
the only way to do something)? Either way, the code
ultimately needs to be transferred to and set up in the
production environment, and this is a great opportunity
to double-check the documentation you have developed
to make sure it is complete. The documentation should
include all the components of the solution and any
changes needed in the production environment for the
software to operate properly.

If the software can be kept somewhat isolated (i.e., its use
is not required in the workflow), a pilot phase is strongly
recommended. In this phase of the process, a select group
of users is chosen to try out the software for some or all
of their cases for a period of time. Whenever possible,
this should include those pathologists involved in the
functional design of the software. Important feedback can
be obtained from using the software “for real,” and this
may result in some modifications or update to improve
the synergy with the workflow.

If the software cannot be kept isolated (i.e. its use, upon
deployment, becomes required), then a back-out strategy

J Pathol Inform 2012, 3:44	 http://www.jpathinformatics.org/content/3/1/44

needs to be developed in advance. What will you do if
the software does not work as expected? It is usually not
feasible to simply stop all work in the department while
it is being fixed. There are times when deployment has
no practical back-out strategy (such as upgrading the LIS
to a new version), and in such instances it is typically
prudent to perform the deployment on a weekend when
there is less time pressure associated with returning the
system to a fully operational status.

For large development projects with multiple modules,
one may have to choose between deploying modules
individually or all at once. A staged deployment is
often preferable, since users seem to respond better to
smaller, incremental changes than to complete workflow
changes. One may also have to decide between applying
a workflow change to a subset of the specimens initially,
or to all of the specimens at the same time. While the
former may seem to carry less risk, remember that you
are then creating two different workflows (the new and
the old) which are operating side-by-side in the same
lab, and that can be more disruptive than applying the
change to all specimens from the start.

User training is always advisable in advance of any
deployment, although this can be harder to accomplish
in practice than in theory. Users do not typically have
a lot of spare time in their workday, and there can be
little incentive to learning something new that is not
immediately applicable. We have found it more effective
to simply inform everyone well in advance (about a
week), give the new users an overview of what the new
workflow will look like, perhaps allow them to choose
when would be the best day/time for the deployment,
and then provide significant on-site support at the time
of the roll-out, with the developers and ideally the pilot
users and functional designers present/available to help
answer questions (which often take the form of “why do I
have to do it this way?” rather than “what am I supposed
to do next?”).

Careful monitoring of the performance of the new
software is needed following deployment. Despite
extensive testing, there is no way to adequately
anticipate the variety of ways users will find to use the
new software, and this may uncover subtle deficiencies
in either the design or the development which have to
be addressed. Remember that many users are pretty
clever and may find ways around using the software
as intended, especially if it sometimes does not work
quite right. Users may identify problems, but simply
work around them rather than notifying anyone. We
have found it useful to remind users about a week after
deployment that the development team needs to be
informed of any unusual behavior or possible bugs. It is
not an infrequent occurrence at our institution where,
for example, a pathologist involved in the development

notices weeks later when they are on service an issue with
the software which, when queried, everyone acknowledges
having noticed but no one made any attempt to notify
the development team about.

Updates and Enhancements
Invariably, small bugs will be identified in any custom
software which need to be addressed, but the frequency
of detection does drop-off quickly after the software has
been used for a couple of weeks. Sometimes, developing
and deploying what is thought to be the ideal solution
provide a better understanding of the problem, and that
better understanding may suggest modifications to the
software to create a superior solution. More commonly,
an onslaught of suggestions for additional improvement
will arise, and this should be interpreted as a sign of great
success. Having seen what it is possible to accomplish
with custom software and the workflow improvements
that can result, users are inspired to think of additional
improvements that will provide even greater benefits.
It is important to have a process for aggregating these
suggestions, appropriately vetting them with the design
team. Is this a general improvement, or something that
satisfies the idiosyncrasies of an individual user? Does it
move the solution in the desired direction, or backward
closer to the original workflow? Is it a small change or
a large one that will require substantial re-engineering?
It is often valuable to allow the deployed software
to incubate with users for a while before rapidly
responding to requests for changes. However, once the
developed software has stabilized in the workflow, new
opportunities for even greater workflow enhancement
can be explored. Once a solution has been developed,
incremental additions can progressively expand the scope
of the solution to solve additional, related problems. This
flexibility and the capability to respond quickly as needs
become better-understood or change, or as additional
needs arise, without having to embark on a new series of
vendor negotiations is one of the true values of custom
software development.

From the developer perspective, there are two relatively
common pitfalls to be avoided, and these depend on the
personalities of the programmers. The first is to abandon
ownership of the application too early. Developers tend
to like to develop, not support. But support groups within
the department or institution will not understand the
new application. They will not know what it is supposed
to do, and what it can do. Integral involvement of at least
a portion of the development team with the initial users
can be critical to proper use and acceptance of the new
software. Additionally, if any unanticipated behavior of
the new solution is uncovered, it is an opportunity for the
developers to see that first hand within the real-life use
of the application. The second pitfall which developers
can fall into is to never abandon their application.
Developers can become attached to the product of

J Pathol Inform 2012,, 3:44	 http://www.jpathinformatics.org/content/3/1/44

their efforts, and may take to repeated reworking and
refactoring of their solution to make it a little better.
Perhaps a little redesign of a particular routine will make
it run a little faster, or make it a little more generalizable.
These activities, which typically affect the “back-end” of
the application but have no visible effect to the users
or the functionality, need to be examined critically with
respect to what value they are truly providing. Avoid the
trap of updating the application each time a new version
of a library or other tool becomes available because this
can consume significant resources with minimal yield.
Even after a number of years, some developers may wish
to cling to their initial code beyond its practical viability.
Five or so years after the initial writing, it may be faster,
cheaper, and more reliable to rewrite the solution from
scratch using new tools rather than trying to update
prior code. The logic for the solution has already been
developed and worked out and usually can be transferred
directly to a new development environment with minimal
modifications.

Project Leadership
One aspect of software development that has been
absent from this discussion is that of project leadership.
This is largely because the software development team in
our Pathology Informatics Unit is rather small (essentially
three people) and the decision-making hierarchy is clear.
For larger groups, however, it is important to have a single
individual ultimately responsible for the application.
This individual should approve any changes to the
specifications during the development process. They
need to understand all facets of the solution and the
workflow in which it will be used, and have the clarity of
thought to be able to anticipate the implications for how
modifications to one part of the application will affect
other parts.

CONCLUSION

Despite commonly voiced and exaggerated concerns
over the costs and risks associated with custom software
development, tremendous yields in productivity and
efficiency can be achieved with relatively modest
investments. Both the costs and the risks can be
mitigated by incorporating OSS into the solution, and
by having a well-structured development process. Having
the right people involved is far more important than the
number of people, and involvement of individuals with a
deep knowledge of the workflows which may be affected
is crucial to the success of the development process.
Ultimately, software is a tool. That tool needs to fit your
needs, your environment, and your workflow. That tool
needs to be adaptable in a time frame consistent with
the changing practice of clinical laboratories, and has to
strategically advance the mission of the lab to provide the
highest quality patient care. The focus should be not on

how the tool comes into existence, but on the benefits
obtained from its use. When commercially available
solutions fall short of the needs, custom software
development is a viable, often superior solution.

REFERENCES

1.	 Sinard JH, Mattie ME. Overcoming the limitations of integrated clinical
digital imaging solutions. Arch Pathol Lab Med 2005;129:1118-26.

2.	 Sinard JH, Gershkovich P. Semi-automated archiving of scanned requisition
documents in anatomic pathology. [Abstract: Advancing Practice,
Instruction and Innovation through Informatics, 13th Annual Meeting,
Pittsburgh, PA] Arch Pathol Lab Med 2009:133:1155.

3.	 Gershkovich P, Sinard J. Integrating digital dictation and anatomic pathology
LIS. [Abstract: Advancing Practice, Instruction and Innovation through
Informatics, 14th Annual Meeting, Pittsburgh, PA] Arch Pathol Lab Med
2010;134:938.

4.	 Sinard J, Gershkovich P, Freis W, Daley A. Use of a repetitive task scheduling
engine for workflow automation and rare event detection in a clinical
environment. [Abstract: Advancing Practice, Instruction and Innovation
through Informatics, 13th Annual Meeting, Pittsburgh, PA] Arch Pathol Lab
Med 2009;133:1155.

5.	 Gershkovich P, Mutnick N, Sinard JH. FSLink – Frozen section management
software with real-time communication with the OR. [Abstract: Association
of Pathology Informatics, 2010 Annual Meeting, Boston, MA] J Pathol Inform
2010;1:27-8.

6.	 Sinard JH, Mutnick N, Gershkovich P. Histology asset tracking: Hidden
practices and their consequences. [Abstract: Association of Pathology
Informatics, 2010 Annual Meeting, Boston, MA] J Pathol Inform 2010;1:4-5.

7.	 Sinard JH, Mutnick N, Gershkovich P. Histology asset tracking dashboard:
Real-time monitoring and dynamic work lists. [Abstract: Association of
Pathology Informatics, 2010 Annual Meeting, Boston, MA] J Pathol Inform
2010;1:6-7.

8.	 Sinard JH, Mutnick N, Gershkovich P. Facilitating feedback and education
on the hot seat rotation. [Abstract: Pathology Informatics, 2011 Annual
Meeting, Pittsburgh, PA]. J Pathol Inform 2011;2:43.

9.	 Mills, HD. Software productivity. Boston, MA: Little, Brown; 1983.
10.	 Beck K, Beedle M, Bennekum A, Cockburn A, Cunningham W, Fowler M,

et al. Manifesto for agile software development. Available from: http://www.
agilemanifesto.org/. [Last accessed on 2012 Sep 1].

11.	 Beck K. Test-driven development by example. Boston, MA: Pearson
Education Inc; 2003.

12.	 Raymond, ES. The cathedral and the bazaar. Available from: http://www.
catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/index.html. [Last
accessed on 2012 Aug 18].

13.	 US Department of Health and Human Services Food and Drug
Administration Center for Devices and Radiological Health. “Guidance for
Industry, FDA Reviewers, and Compliance on Off-The-Shelf Software Use
in Medical Devices”; September 9, 1999. p. 16. Available from: http://www.
fda.gov/medicaldevices/deviceregulationandguidance/guidancedocuments/
ucm073778.htm. [Last accessed on 2012 Sep 1].

14.	 US Department of Health and Human Services Food and Drug
Administration Center for Biologics Evaluation and Research. Software used
in blood establishments. Available from: http://www.fda.gov/downloads/
Biologics Blood Vaccines/Guidance Compliance Regulatory Information/
Other Recommendations for Manufacturers/Memorandum to Blood
Establishments/UCM062804.pdf. [Last accessed on 2012 Aug 18].

15.	 US Department of Health and Human Services Food and Drug Administration
Center for Devices and Radiological Health. Medical Devices: MDDS Rule.
Available from: http://www.fda.gov/Medical Devices/Productsand Medical
Procedures/General Hospital Devices and Supplies/Medical Device Data
Systems/ucm251897.htm. [Last accessed on 2012 Aug 18].

16.	 United States Code of Federal Regulations. Title 21. Part 807. Section 65.
Available from: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/
CFRSearch.cfm?fr=807.65. [Last accessed on 2012 Sept 1].

17.	 US Department of Health and Human Services Food and Drug Administration
Office of Regualtory Affairs, Division of Field Science. Vol. I. Section 5.4.7.2:

J Pathol Inform 2012, 3:44	 http://www.jpathinformatics.org/content/3/1/44

Laboratory Manual of Quality Policies for ORA Regulatory Laboratories;
2012. p. 33. Available from: http://www.fda.gov/Science Research/Field
Science/Laboratory Manual/default.htm. [Last accessed on 2012 Sep 1].

18.	 US Department of Health and Human Services Food and Drug Administration

Center for Devices and Radiological Health. : General Principles of Software
Validation; Final Guidance for Industry and FDA Staff; 2002. p. 6. Available
from: http://www.fda.gov/Medical Devices/Device Regulationand Guidance/
Guidance Documents/ucm085281.htm. [Last accessed on 2012 Sep 1].

