Wappett et al. BMC Genomics (2016) 17:65
DOI 10.1186/512864-016-2375-1

Multi-omic measurement of mutually

BMC Genomics

@ CrossMark

exclusive loss-of-function enriches for
candidate synthetic lethal gene pairs

Mark Wappett', Austin Dulak?, Zheng Rong Yang®, Abdullatif Al-Watban®, James R. Bradford'*

and Jonathan R. Dry*"

Abstract

Background: Identification of synthetic lethal interactions in cancer cells could offer promising new therapeutic
targets. Large-scale functional genomic screening presents an opportunity to test large numbers of cancer synthetic
lethal hypotheses. Methods enriching for candidate synthetic lethal targets in molecularly defined cancer cell lines
can steer effective design of screening efforts. Loss of one partner of a synthetic lethal gene pair creates a
dependency on the other, thus synthetic lethal gene pairs should never show simultaneous loss-of-function. We
have developed a computational approach to mine large multi-omic cancer data sets and identify gene pairs with
mutually exclusive loss-of-function. Since loss-of-function may not always be genetic, we look for deleterious
mutations, gene deletion and/or loss of MRNA expression by bimodality defined with a novel algorithm BiSEp.

Results: Applying this toolkit to both tumour cell line and patient data, we achieve statistically significant
enrichment for experimentally validated tumour suppressor genes and synthetic lethal gene pairings. Notably
non-reliance on genetic loss reveals a number of known synthetic lethal relationships otherwise missed,
resulting in marked improvement over genetic-only predictions. We go on to establish biological rationale
surrounding a number of novel candidate synthetic lethal gene pairs with demonstrated dependencies in

published cancer cell line shRNA screens.

Conclusions: This work introduces a multi-omic approach to define gene loss-of-function, and enrich for
candidate synthetic lethal gene pairs in cell lines testable through functional screens. In doing so, we offer an
additional resource to generate new cancer drug target and combination hypotheses. Algorithms discussed
are freely available in the BiSEp CRAN package at http://cran.r-project.org/web/packages/BiSEp/index.html.
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Background

Tumour suppressor gene defects drive progression of
many cancer types [1, 2], but are poorly served by ther-
apies typically targeting activated oncogenes. Synthetic
lethality, defined as a lethal combination of two or more
individually non-lethal molecular loss/inhibition-of-func-
tion events, offers the potential to exploit tumour sup-
pressor loss therapeutically. Mutations causing loss of
function of BRCA1/2 genes, for example, can lead to a
deficiency of double strand DNA repair by the
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homologous recombination pathway and create an ex-
quisite dependency on single strand repair by PARP1/2,
resulting in sensitivity to PARP1/2 inhibitors [3, 4].
Functional genomic screening approaches such as
CRISPR [5] enable testing of large numbers of synthetic
lethal (SL) hypotheses, however methods to enrich for
candidate targets linked to inherent molecular deficien-
cies in cell lines can steer more efficient experimental
design. Data driven approaches inferring synthetic lethal
gene pairs through mutually exclusive loss-of-function
[6] often focus on genetic loss alone using data from a
single platform. However loss-of-function may not
always manifest at the genetic level for both genes, for
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example PARP1/2 do not show genetic loss in tumours
[7]. Other approaches assume the non-deleted gene will
show a reciprocal genetic increase [8], however this is
not necessary for manifestation of a dependency. Ap-
proaches to uncover mutually exclusive loss-of-function
by considering all levels at which loss can be inferred
could therefore compliment published approaches and
increase the proportion of synthetic lethal pairings de-
tectable in large multi-omic data sets.

Established approaches exist to confidently call genetic
loss-of-function from sequencing or copy number data
[8, 9]. Defining functionally meaningful low’ mRNA ex-
pression, however, can be challenging since the profile
for many genes shows a normal distribution [10] and
tumour samples typically comprise a heterogeneous mix-
ture of cell types. Decreases in gene expression resulting
from a lack of transcription factor activation, changes in
cell state [11], complete or partial gene deletion, or point
mutation of a tumour suppressor gene, can result in loss
of a detectable mRNA product [12]. Outlier detection
methods are regularly applied to detect extreme in-
creases in expression caused by gene fusion events with
highly active transcription factors (ETV1-TMPRSS2 in
prostate cancer, [13]) or gene amplifications (ERBB2 in
breast cancer), but loss events can appear more subtly or
be masked by the background noise expected from ‘omic
platforms. PARP1, for example, does not show genetic
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loss in tumours but does display a markedly low mRNA
level in a number of patient tumor samples [7]. Bimodal-
ity and non-normality offer a route by which we may
identify more subtle changes in gene expression state
that remain prominent enough to clearly stratify and
classify patient samples [10], and thereby a useful tool to
infer loss-of-function through loss of expression.

We have developed a workflow to enrich for candidate
synthetic lethalities from multi-omic data for testing in
loss-of-function screens (Fig. 1). We present this work-
flow as a set of computational tools which enable the
user to detect gene-gene pairings with mutually exclu-
sive loss-of-function defined by pre-annotated deleteri-
ous mutation or gene deletion, and/or loss of mRNA
expression. To more comprehensively identify loss of
mRNA expression, we introduce a novel algorithm
BiSEp (Bimodality Subsetting Expression) to partition
low from high mRNA expression where visible as bimo-
dality or non-normality. We further enrich for candidate
synthetic lethality by filtering for gene pairs with bio-
logical functional redundancy, inferring one may com-
pensate for the other. We have applied this workflow to
publicly available data sets for large panels of tumour
cell lines [14, 15] and tumour patient datasets published
by the TCGA consortium [16]. Comparing to established
methodologies [8, 9] we show statistical enrichment be-
tween gene pairs found, but also uniquely identify
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candidate SL gene pairs of biological relevance. We
demonstrate accurate re-identification of known syn-
thetic lethal targets in cancer; nominate several novel
candidate synthetic lethal interactions involving at least
one tumour suppressor; show statistical enrichment of
gene pairs with experimental evidence of lethality in
yeast screens. Six interactions are further supported by
in vitro data from a large RNAi screen in human cancer
cell lines, and their biological rationale is discussed.

Methods

Algorithms described below are available as individual
functions available in the R toolkit BiSEp. For further in-
struction and examples, please see the vignette at http://
cran.r-project.org/web/packages/BiSEp/index.html.

Cell line and tumour patient data preparation

Affymetrix HG U133 plus 2 microarray gene expression
data for 811 cancer cell lines from the Cancer Cell Line
Encyclopedia (CCLE) dataset were downloaded from
the Gene Expression Omnibus (GSE36133). Analyses
were performed on cell lines derived from solid tu-
mours only. Multi-targeting probesets were removed
and normalization performed using the frozen RMA
approach [17]. Resulting probe-level signals were
summarized to the gene level in linear form and
scaled between 1 and 100 across cell lines prior to
transformation back to the log2 scale.

Exome sequencing mutation data from 442 Sanger cell
lines matched to a cell line from the CCLE was down-
loaded from COSMIC [15]. Genes with at least one het-
erozygous or homozygous mutation were classed as
mutated and assigned a “MUT” call. All other genes
were classed as wild type (“WT”), and then the results
formatted as a gene-by-sample matrix. The functional
consequence of all mutations is considered by default
to be loss, other than for silent mutation calls which
were removed. Gene-level copy number data for the
same cell lines were downloaded from the CCLE and
summarized to a “loss” or “normal” call where loss
was defined as <1 copy assuming the majority of cell
lines are diploid. These data were then combined with
the mutation data to generate a mutation/copy num-
ber matrix in which a gene with a mutation, and/or
evidence of copy number loss is assigned a “MUT”
call and “WT” otherwise.

RNA-Seqv2 gene-level expression data for 178 lung
adenocarcinoma tumour patient samples were down-
loaded from TCGA and RSEM [18] normalized expres-
sion values were formatted to a gene-by-sample matrix.
TCGA exome sequencing mutation data for the same
samples were also downloaded from the Firehose re-
source using the MAF dashboard (January 2014). The
variants were pre-computed and summarised as above.
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Defining expression loss with BiSEp (Bimodal Subsetting
of Expression)

The BiSEp tool is comprised of two separate components -
the published Bimodality Index algorithm [10] and a novel
algorithm called BIG.

The Bimodality Index (BI) [10]

Given a gene expression profile across a population
of samples, the Bimodality Index algorithm attempts
to detect the mixture of two normally distributed
populations. It reports back the mean expression level
of each of the two populations, the distribution of
samples across the two populations (i), the distance
between the two populations (§) and an overall meas-
ure of bimodality (BI). The larger the values of BI,
the easier the bimodal populations are to distinguish
from each other [10].

Bimodality In Genomics (BIG)

The focus of BIG is to accurately detect the midpoint
of the bimodal distributed genes, including those
whose bimodality may be diluted (as likely in a het-
erogeneous cell population) to a more non-normal
profile. In order to do this we first sort expressions
of each gene. Based on the sorted expressions, we
then calculated the distance between every pair of
consecutive sorted expressions. This process generated
a vector of distances between sorted expressions,
which was again sorted leading to a working vector
(see Additional file 1 for full methodology). The point
of maximum distance leads to the mid-point call for
each bimodal / non-normal gene.

The BISEP tool therefore combines BI, m and §
values with the distribution midpoint value derived by
BIG to detect both bimodal and non-normal expres-
sion profiles. This provides the user with more con-
trol over the shape of the bimodal distribution, and
enables the dynamic partitioning of samples into high
and low populations.

Determining thresholds separating high vs. low bimodal
expression

Four default parameter settings are available, ‘cell line;
‘cell_line_low, ‘patient; ‘patient_low, that change the bi-
modal expression filters (Bl score and J) to reflect the
differences between homogeneous cell lines and more
heterogeneous patient populations, as well as sample
power. Based on these prior assumptions, ‘patient’ pa-
rameters result in less stringent bimodality filters to ac-
count for dilution of bimodal signals (and resulting
overlap of modes or non-normality) expected in hetero-
geneous samples, and “_low” parameters should be ap-
plied to datasets with fewer than 200 samples in order
to reduce the false positive rate.
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Parameter Filters

cell_line: BI=07,6=25
cell_line_low: Bl=1.1,86=35
patient: BI=05,6=25
patient_low: BI=09, 6=30

The defaults are a guide and may be changed at the
user’s discretion.

For any bimodal gene determined by BiSEp, the
midpoint separating the two modal distributions (see
Additional file 1) is used to partition the samples into
“low” and “high” expressing classes. For most bimodal
genes the two ‘modes’ overlap (Additional file 1:
Figure S2), therefore the tool allows a window of up
to 5 % of the distance from the mid-point to the bot-
tom of the dynamic range in which samples are not
assigned a definitive high/low expression classification.
This window varies based on the balance of the bi-
modal distribution — if there are fewer samples with
a ‘low’ classification and higher likelihood of mode
overlap (‘patient’ like) then the window size will be
closer to 5 %, whereas if it is more balanced with
clearer separation between the two modes (‘cell_line’
like) then the window will tend towards 0 %.

Mutually Exclusive Mutations (MEMU)

To identify synthetic lethalities visible as genetic loss
alone, all possible gene pairs from the Sanger exome se-
quencing project [15] were evaluated for evidence of
mutually exclusive somatic mutation or gene deletion.
Pairs of genes were evaluated for mutual exclusivity
using a two-tailed fisher exact test, and only genes with
a mutation rate of greater than or equal to 5 % were
considered. An odds ratio of <2.5 and p value of < 0.05
(FDR of < 0.1) were used to define the mutually exclusive
population size.

Bimodal-low Gene Expression Exclusivity (BiGEE)

BiGEE takes the output from BiSEp in the form of a log,
expression data matrix of genes identified as significantly
bimodal. BiGEE iteratively assesses all pairwise combina-
tions of bimodal expression profiles for mutually exclu-
sive low expression as evidence of potential synthetic
lethality. For any gene pair, the midpoints of the two bi-
modal distributions (see Additional file 1) are used to
partition the data into four quadrants separating samples
with high and low expression of each gene respectively.
Gene pairs with less than 1 % of samples classified low’
for both genes around the adjusted midpoints are
classed as potentially synthetic lethal. The remaining
gene pairs are scored for synthetic lethality using a com-
bination of the § (distance between two expression
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modes), m (proportion of samples in each expression
mode) and BI variables calculated when detecting bimo-
dality using the following equation where x and y are
the members of the gene pair:

S= Zx(”)v (1), Zx(BI)7 y(BI), Zx(6)7 ¥(6)

Gene pairs that contain genes with greater distance be-
tween the high/low populations, and a more even bal-
ance in sample numbers between the two populations
will score more highly using this metric (Additional file 1:
Figure S2) although all gene pairs with a mutually exclu-
sive low signature are returned. The tool returns a matrix
containing gene pairs ranked according to S score,
although the primary measure of significance is mutual
exclusivity (all returned pairs).

Bimodal Expression Exclusive with Mutation (BEEM)

Gene mutations may result in loss of gene function
without loss of mRNA expression. We developed an
algorithm, BEEM, to evaluate all bimodal expression
profiles of genes for their relationship with all gene mu-
tation profiles. BEEM takes as input the output of BiSEp,
and a mutation data matrix of discreet ‘WT’ or ‘MUT’
mutation calls where rows are genes and columns are
samples. This may be based on presence or absence of
somatic mutation calls typically generated by data from
exome sequencing experiments [19], or a discreet call
for a gene level copy number deletion. As such, the most
appropriate datasets for use with BEEM should consist
of expression and mutation data types matched at the
sample level. The tool utilises the output from the BiSEp
method to identify bimodal expressed genes in the ex-
pression matrix and pre-filters the mutation matrix
based on a population-based frequency filter defined by
the user. Prevalence of mutation in each of the
remaining genes is assessed in both the low and high ex-
pression modes of the bimodally expressed genes. Sig-
nificance of enrichment is evaluated for mutation status
in the high expressing populations by iteratively populat-
ing a contingency table and performing a Fisher’s exact
test. To find candidate synthetic lethal gene pairs, muta-
tions that are enriched or entirely mutually exclusive
(p<0.25) where the gene expression population is
high (and exclusive to the low expression population)
are prioritized. This liberal threshold of p <0.25 is im-
plemented in order to maximize inclusion of mutually
exclusive gene pairs where the expression gene has a
small low expression mode. Output consists of a list
of gene pairs ranked according to significance (p-value),
with accompanying mutation frequency for the low and
high expression modes.
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Functional REdundancy between synthetic lethal genes
(FURE)

Assuming each gene in a truly synthetic lethal pair needs
to functionally compensate for the other, we aimed to
prioritize functionally redundant gene pairs. FuRE ac-
cepts user-defined ranked lists of potentially synthetic le-
thal gene pairs in the format output from either MEMU,
BiGEE or BEEM. These gene pairs are annotated with
Gene Ontology (GO) terms using a combination of the
GO database Bioconductor package GO.db [20] and the
Homo sapiens annotation Bioconductor package org.H-
s.eg.db [21], and their functional similarity calculated
using the Bioconductor package GOSemSim [22]. This
package enables the retrieval of all gene ontology infor-
mation associated with a gene pair, and highlights any
meaningful relationships based on this. Each gene pair is
assigned a semantic similarity score between 0 and 1,
with higher scores indicating a greater similarity. Output
consists of a list of gene pairs ranked by synthetic lethal-
ity potential from BiGEE/BEEM marked-up with seman-
tic similarity score.

Evaluation of output from synthetic lethality enrichment
workflows

Yeast synthetic-lethal-screen validation

As relatively few human synthetic lethal pairs have been
confirmed and released into the public domain, we used
a set of 24,407 synthetic sick/lethal interactions found in
yeast [23, 24] as a surrogate for an equivalent human
set. Yeast gene pairs were mapped to their human ortho-
logues resulting in a final set of 121,194 human gene
pairs referred to as the ‘yeast SL set’. These gene pairs
were then overlapped with outputs from the MEMU/
BiGEE/BEEM/FuRE workflows where at least one gene
from the SL candidate pairs mapped to the yeast SL set.
Significance was calculated using a random permutation
test in which x gene pairs were drawn at random 10000
times from all possible gene pairs in the human genome
where x is equivalent to the number of gene pairs pre-
dicted as synthetic lethal by the outputs from the
MEMU, BiGEE or BEEM workflows.

Human synthetic-lethal screen validation

Two recent publications have identified sets of candidate
synthetic lethal interactions from large-scale cancer gen-
omics data using complementary methods [8, 9]. Lu et
al. [9] report > 590,000 candidate synthetic lethal interac-
tions that we compare to the BIGEE/BEEM/FuRE work-
flow ouput using the same permutation method
described above. The “DAISY” approach reported by
Jerby-Arnon et al. [8] reports a more concise list of
2,816 candidate synthetic lethal pairs and 3,635
synthetic-dosage lethal pairs. Here we have looked for
enrichment of bimodal genes featuring in our gene pairs
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in the DAISY synthetic lethal and synthetic-dosage lethal
gene lists using a fisher exact test.

RNAi in silico validation

We use epigenetic RNAi screen data from human cancer
cell lines to further assess the validity of the predictions
made by the MEMU/BIGEE/BEEM/FuRE workflows
[25, 26]. ATARIS solutions were generated by running
the ATARIS algorithm [25] on normalized and aggre-
gated epigenetic RNAI screening data with default pa-
rameters. Data reports provide the relative dependency, or
phenotype score, of a cell line for a given gene silencing in
the context of a second gene mutation. The Hoffman epi-
genetic screen included the analysis of 260 genes, and 57
cell lines that overlapped with CCLE. This overlap sup-
plied enough statistical power to test many of the epigen-
etic gene pairs nominated by our toolkit. Where at least
one gene from the predicted SL pair matched a gene from
RNAI, we looked for evidence of significant correlation
between mutation, copy number or expression loss and,
Hoffman screen phenotype score using a Wilcoxon rank
sum test and a p <0.05. In other words where there is
integrated-genomic loss of one gene, there is greater de-
pendency upon knock-down of the partner derived using
our workflows — adding confidence to the gene pairs as
candidate synthetic lethal. The script used to perform
RNA.I validation is provided as Additional file 2.

Functional prioritization

Following the precedent for synthetic lethality in DNA
repair and metabolic signaling, and the clinical oppor-
tunity for synthetic lethal partners to tumor suppressor
genes, we sought to prioritize respective output from the
BiGEE/BEEM/FuRE workflows. We mapped to all
tumour suppressor genes [27], all known DNA repair
genes (GO:0006281), and finally all cell metabolism
genes [28]. A Fisher’s exact test was used to measure the
enrichment of these functional gene lists in the output
from the pipelines.

Results

Overview of synthetic lethality enrichment workflows

We hypothesized that synthetic lethal gene pairs, where
loss of one gene creates an exquisite dependency on the
other, will show functional redundancy and mutual ex-
clusivity of loss-of-function characteristics. We further
hypothesized that relevant loss-of-function may not
always be determined by a genetic event, and that gene
mutation may cause loss-of-function without loss of an
mRNA product. Finally we hypothesized that loss-of-
function may be inferred by low mRNA expression
where clearly differentiated through bimodality or non-
normality with the algorithm BiSEp. To enrich for candi-
date synthetic lethal gene pairs, data-driven workflows
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were created to identify mutually exclusive loss-of-
function defined as either deleterious mutation, copy
number loss, and/or low mRNA expression:

1. Genetic-only workflow: searches for mutual
exclusivity of genetic (mutation and/or copy number)
loss using a combination of MEMU and FuRE.

2. Integrated-genomic workflow: searches for loss of
expression, mutually exclusive to mutation and/or
copy number loss using a combination of BiSEp,
BEEM and FuRE.

3. Expression-only workflow: uses exclusively gene
expression data searches for mutually exclusive loss
of expression through a combination of BiSEp,
BiGEE and FuRE.

A schematic illustrating these workflows is shown in
Fig. 1.

BiSEp is sensitive to delineating expression in both
homogenous and heterogeneous cell populations

Using LDOC1 and PARP3 as examples, we tested the
sensitivity of BiSEp in detecting the mid-point of distri-
butions from two populations with different degrees of
bimodality. LDOC1 (leucine-zipper down-regulated in
cancer) is a tumour suppressor gene that is expressed in
most normal tissue, but lost in some cancers [29].
LDOCI1 is involved in negative regulation of cell prolifer-
ation through the transcription factor NF-KB (critical to
the epithelial - mesenchymal transition) and is often lost
in cell lines [29]. In the homogeneous cell line dataset
from the CCLE [14], LDOCI1 displays a classic bimodal
distribution with two almost equally distributed popula-
tions (Fig. 2a). In the more heterogeneous lung adeno-
carcinoma dataset from TCGA, the bimodality is not as
clear, presenting as a non-normal distribution (Fig. 2b)
and reflecting the effect of mixed clonality on tumour
expression datasets. Nevertheless, BiSEp is still able to
correctly detect the boundary between the two popu-
lations in the patient data. As a second example, it is
important that BiSEp is capable of detecting genes
like PARP3 with non-normal distributions and a small
population within the low expressing group, a likely
profile of genes in synthetic lethal relationships. BiSEp
nominates a midpoint of the non-normal distribution
of PARP3 cell line expression data, even when non-
obvious (Fig. 2c). These results not only highlight the
importance of in vitro homogeneous cell populations
in modeling specific cancer cell states, but also the
sensitivity of the BiSEp approach in delineating both
homogenous and heterogeneous sample populations
and addressing the challenges of identifying bimodal
gene expression distributions driven by only one or a
few cell types.
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BiSEp bimodal-low expression correctly enriches for
tumour suppressor genes

Synthetic lethal pairings to known tumor suppressors
are of particular importance as they may present the op-
portunity to prosecute a tumour suppressor population
(as in the case of BRCA / PARP). Since multiple tumor
suppressors are lost through gene deletion, one would
expect an enriched detection when looking for loss of
mRNA expression, thus both the expression-only and
integrated-genomic workflows were of interest. Analysis
of the cell line expression-only workflow results revealed
194 gene pairs where both members are a confirmed
tumour suppressor gene and a further 8,777 where at
least one of the members is a confirmed tumour
suppressor gene (and matches the BiSEp bimodality
criteria). Analysis of the cell line integrated-genomic
workflow results revealed 413 gene pairs where both
members are a confirmed tumour suppressor gene and a
further 11,090 where at least one of the members is a
confirmed tumour suppressor gene. We assessed the en-
richment of tumour suppressor pairs in the outcomes of
the expression-only and integrated-genomic workflows
by comparing the number of tumour suppressors within
gene pairs with those not in gene pairs. The enrichment
p value for the expression-only workflow is<1 x 10-9,
and for the genomic workflow is < 0.008 (Additional file 1:
Figure S3c). To test the ability of the toolkit to detect
tumour suppressor genes in tumour data we performed a
similar comparison on the outputs of expression-only and
integrated-genomic workflow runs in the TCGA lung
adenocarcinoma dataset (Additional file 1: Figure S3d,
Additional file 3: Tables S8 and S9). The enrichment
p value for the lung adenocarcinoma genomic analysis
is <0.007. For the expression analysis, although there
is a higher percentage of tumour suppressors within
the gene pairs it does not reach statistical significance
(p value <0.21). The enrichment of tumor suppressor
genes identified with bimodal-low expression by BiSEp
corroborates the relevance of this approach to detect
meaningful loss-of-function.

Comparison of workflows to enrich for synthetic lethality
in yeast screens

A typical approach to predicting SL pairs is to identify
mutually exclusively mutated gene pairs. For all individ-
ual genes with mutations in greater than or equal to 5 %
of samples from the Sanger exome sequencing project
[15] we performed a genetic-only workflow, evaluating
all possible gene pairs achieving a for evidence of mutu-
ally exclusive somatic mutation using a two-tailed Fisher
exact test. Gene pairs achieving an odds ratio >2.5 and
p <005 were classed as mutually exclusive, enabling
capture of candidate mutual exclusivity in a population
where most gene pairs are double wild-type. 84,305 gene
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Fig. 2 Detecting genes with different expression modalities. a The log2 expression density distribution of LDOC1 across 811 CCLE cell lines.
LDOC1 has a strong on/off state typical of tumour suppressor genes in homogeneous cell populations. Additionally LDOC1 has been linked as a
regulator to NF-KB which in turn promotes the epithelial-mesenchymal transition. b The log2 expression density distribution of LDOC1 across
101 TCGA lung adenocarcinoma patients. LDOC1 has a diluted, non-normal profile - a reflection of the heterogeneity of the tumour tissue. BiSEp can
still detect this diluted profile in tumour data. ¢ The log2 expression density distribution of PARP3 across 811 CCLE cell lines

pairs met the threshold, only 8 of which were classed as
SL in the Costanzo [23] yeast synthetic lethal screen
(p =0.07; Fig. 3, Additional file 1: Figure S4).

We next applied an integrated-genomic workflow
using mRNA expression and mutation data across 442
cell lines and revealed 82,756 gene pairs with enrich-
ment or exclusivity of the mutant gene in samples de-
fined as highly expressed by BiSEp. Comparison with the
Yeast SL set resulted in a significant overlap of 33 gene
pairs (p <0.0001; Fig. 3; Additional file 3: Table S1).
Running the same workflow using both copy number
loss and mutation to classify a gene as “MUT” re-
vealed 76,267 gene pairs, 113 of which overlapped
with the Yeast SL set (p<0.0001, Fig. 3, Additional
file 3: Table S3).

Finally we applied an expression-only workflow across
811 cell lines to identify 98,261 gene pairs that are never
expressed at low levels (as determined by BiSEp) to-
gether, and demonstrating significant overlap with the
Yeast SL set (167 gene pairs, p < 0.0001; Fig. 3; Additional
file 3: Table S2). Taken together, these results strongly
suggest that the reduction in search space by ~99.9 %
from ~380 million gene pairs to <100,000 by either of
these approaches leads to an improved enrichment of true
synthetic lethal pairs, and that inclusion of loss-of-

function inferred by bimodal-low mRNA expression fur-
ther improves this enrichment complimenting the more
typical approach of identifying mutually exclusive genetic
loss only. When prioritized gene pairs are partitioned into
target genes aligned to cell lines harboring the paired mo-
lecular loss, these data present reasonable numbers for
further hypothesis testing in rationally designed siRNA or
CRISPR loss-of-function screens

Comparison of workflows to enrich for synthetic lethality
in Human screens
First we compared the 82,756 gene pair output from
the integrated-genomic workflow and performed a
comparison with the long-list output from Lu et al.
[9]. A significant overlap of 76 gene pairs (p <0.018;
Additional file 1: Figure S5; Additional file 3: Table S7)
was seen when compared to 10,000 random samplings of
gene pairs. Similarly the 98,261 gene pair output from the
expression-only workflow showed a significant overlap of
420 gene pairs (p <0.0001; Additional file 1: Figure S5;
Additional file 3: Table S6) to the long-list from Lu
et al. [9] when compared to 10,000 random gene pair
samplings.

Little gene pair overlap was seen to results reported
by Jerby-Arnon et al. To test similarity of individual

Yeast Mapped

BEEM(Copy)

Fig. 3 Evaluating toolkit performance with permutation analysis. aThe gene pair outputs of mutually exclusive mutation analysis (MEMU), the
expression workflow (BiGEE), and the genomic workflow (BEEM) (with and without discreet copy number calls), are overlapped with the human
orthologues of synthetic lethal yeast gene pairs. b In each case, this intersect is compared to 10,000 random samplings of the same size of the
gene pair outputs to establish how the workflows perform when compared to chance
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gene coverage amongst candidate synthetic lethal gene
pairs, we examined enrichment between the 1,007
genes found in the 98,261 gene pairs reported by the
expression-only workflow to genes reported in the
Jerby-Arnon et al. synthetic lethal (SL) and synthetic-
dosage lethal (SDL) genesets (Additional file 1: Figure S5).
A significant enrichment is seen to both the SL (p < 1.08E-
25) and the SDL genesets (p<7.03E-16). Finally we
examined the enrichment of the 1,268 genes found in
the 82,756 integrated-genomic workflow gene pairs,
similarly finding a significant enrichment of the inte-
grated genomic workflow gene pairs in both the
Jerby-Arnon et al. SL (p < 1.09E-42) and SDL (p < 7.03E-
35) genesets.

Analysis workflow output validates existing DNA repair
gene pairs and identifies a compelling new pair: ERCC4
and XRCC1
To further add confidence to the approach outlined
above, included in the outputs were well-established
synthetic lethality relationships between the homolo-
gous recombination protein BRCA and the base exci-
sion repair PARP protein family [3]. This was visible
as a mutually exclusive loss of gene expression be-
tween BRCA1l and PARP3 using the expression-only
workflow (Fig. 4a). The integrated-genomic workflow
also indicated that BRCA2 is wild type in samples
with low levels of PARP3 expression suggesting both
of these genes cannot be lost simultaneously and in-
ferring that a synthetic lethality relationship exists
(Fig. 4b).

We next studied the outputs of the integrated-
genomic and expression-only workflows for enrichment

of DNA Repair genes using the using the term GO:
0006281 (Additional file 1: Figure S3a). Analysis of the
expression-alone workflow reveals 22 DNA repair genes
overlap with the output (p = 0.059). Analysis of the gen-
omic workflow reveals an overlap of 33 DNA repair
genes with the output (p = 0.21).

The most compelling gene pair involving two DNA re-
pair genes was ERCC4 and XRCCI1 (S =0.24, Additional
file 1: Figure S3b). XRCC1 is a recognized tumour
suppressor gene lost in breast cancer. It is integral to
single-strand DNA repair by the base excision repair
pathway. ERCC4 is a member of the nucleotide exci-
sion repair pathway that complexes with ERCC1 and
is involved in the removal of platinum adducts.
ERCC4 has been shown to have a key role in the ini-
tiation of double-strand break repair, caused by stalled
replication [30] common in XRCC1 deficient cells
[31]. We postulate that loss of single-strand DNA re-
pair capacity through XRCC1 deletion in breast can-
cers creates a dependency on nucleotide excision
repair by ERCC4.

In silico validation of nominated pairs using publically-
available epigenetic shRNA screen data: expression-only
workflow

Inhibiting various components of the epigenetic ma-
chinery can restore chromatin function affected by
abnormalities in epigenetic genes in cancer [26].
Therefore, there is significant interest in identification
of new therapeutic targets with a synthetic lethal hy-
pothesis associated with epigenetics. To explore the
potential of the BiSEp toolkit to generate epigenetic-
relevant synthetic lethal candidates, output from the
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expression-only workflow were overlapped with the
260 genes from the Hoffman epigenetic screen. There
were 5,213 gene pairs that included at least one epi-
genetic gene and 54 pairs where both members were
epigenetic genes (Additional file 3: Table S5). These
outputs were combined with the RNAi dependency
data from the Hoffman yeast screen to identify the
most compelling candidate synthetic lethal targets.
Four gene pairs were investigated in further detail
and are described below.

SMARCA1 and SMARCA4

SMARCALI is a tumour suppressor gene whose function
is to facilitate the perturbation of chromatin structure.
SMARCA4 is an epigenetic transcriptional co-activator.
Both are SNF2 chromatin remodeling ATPases [32] and
there exists a large amount of functional redundancy
between the pair (GO terms including chromatin re-
modeling and chromatin binding). SMARCA4 has also
previously been described as synthetic lethal to another
SNF2 chromatin remodeling ATPase — SMARCA2
[26]. The SMARCA1l / SMARCA4 genes are never
expressed at low levels together (Fig. 5a, S=6.49),
and the integrated-genomic workflow revealed that
mutation / loss of SMARCA4 occurs at much lower
frequency where there are low levels of SMARCA1
expression (Fig. 5b, p =0.12). Here we see that in two
of the three ATARIS solutions for SMARCA4, the
phenotype dependency score is significantly lower
where there is a low expression level of SMARCA1
(Fig. 5¢, p=0.02).

SETD1A and TGFB1

SETDI1A is a histone methyltransferase and important
epigenetic target that forms part of the control mech-
anism for chromatin structure and gene expression
[33]. TGFBLI is a growth factor with known linkage to
histone methyltransferase targets [34]. Cell lines are
significantly more dependent on SETDIA in the
absence of TGFB1 at the gene expression level
(Additional file 1: Figure S6, S=4.36). Two SETD1A
ATARIS solutions return a significant p value for this
interaction (Additional file 3: Table S2, p=0.006 &
p=0.01) and have a significantly lower ATARIS
phenotype score.

SUV39H2 and NPDC1

SUV39H2 is a histone methyltransferase whose function
is to generate a trimethylation tag for epigenetic tran-
scriptional repression [35, 36]. NPDC1 is a transcrip-
tional regulator of growth and proliferation in brain and
lung tissue. In the absence of NPDCI1 cell lines are
significantly more dependent on SUV39H2 (Additional
file 3: Table S2, S =2.05), and two published SUV39H2

Page 10 of 15

ATARIS solutions return a significant p value for this gene
pair (Additional file 3: Table S5, p=0.01 & p=0.02).
Loss of SUV39H2 could lead to changes in epigenetic
silencing and cell differentiation, and a lower level of
transcriptional repression leading to growth and pro-
liferation of cells.

SETD1A and PRMT6

The methyltransferase SETD1A is also involved in a
second compelling pairing with the epigenetic target
gene PRMT6. PRMT6 is a methyltransferase that acts
as a transcriptional repressor of genes such as TP53,
and regulates base excision repair. Both genes are
involved in the GO processes of chromatin re-
organisation and assembly. This was the only gene pair
where both members are epigenetic and present in
both the CCLE cell line analysis (S=1.49, Additional
file 3: Table S2) and independently in the TCGA lung
adenocarcinoma analysis (S =2.63, Additional file 3:
Table S9). Whilst overlap was insufficient between the
cell lines used in our analysis and those used in the
Hoffman screen to power the RNAi dependency test
(52 of 54 available cell lines are in the high expression
mode) (Additional file 1: Figure S7), it is nevertheless
a compelling functionally redundant epigenetic pairing.

In silico validation of nominated pairs using publically-
available epigenetic shRNA screen data: integrated-
genomic workflow

4,768 gene pairs from the integrated-genomic workflow
included at least one epigenetic gene (Additional file 3:
Table S4) and 41 pairs where both members were epi-
genetic genes.

CHD8 and FANCM

CHDB8 is a DNA helicase that acts to suppress p53 medi-
ated apoptosis as a transcription factor and a chromatin
remodeling factor. FANCM is an ATPase required for
the ubiquitination of FANCD2 and is important for repair
of single strand breaks in DNA. The BEEM analysis data
shows that where CHD8 mutation is completely mutually
exclusive with loss of FANCM expression (Additional
file 3: Table S1, p=0.23). In the epigenetic RNAIi
screen, where FANCM expression is lost, cell lines
show a greater dependency on CHDS8 (p = 0.009).

NSD1 and KLHL9

The highest scoring gene pair from the genomic work-
flow epigenetic analysis output (Fig. 6). NSD1 is a his-
tone methyltransferase that acts as a transcriptional
intermediary factor that regulates transcription [37].
KLHL9 is an adaptor of the BCR ubiquitin protein ligase
complex that mediates the ubiquitination of AURKB.
NSD1 is not expressed at low levels when KLHLY is
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mutated (Additional file 3: Table S1, p =0.15) and in the
RNAi screen where NSDI is expressed at low levels,
cells are more dependent on KLHLY (p=9.48x107>,
Fig. 6).

Discussion

Detection of synthetic lethalities between cancer tumor
suppressors and potential drug targets offers great po-
tential to advance therapeutic options in patients poorly
served by therapies targeting activated oncogenes. To
identify candidate synthetic lethal interactions, we con-
sidered inference of loss-of-function through low mRNA
expression apparent in bimodal and non-normal gene
expression distributions alongside, and as an alternative
to, genetic loss of function. We have developed three
workflows, presented as a collection of computational
tools, to enrich for synthetic lethal gene-pair hypotheses
through analysis of multi-omic datasets. Our approach

focuses on the identification of synthetic lethal gene
pairs, however readers should consider that further syn-
thetic lethalities may exist involving larger collections of
genes. We focus on mutual exclusivity of loss-of-
function as a true measure of synthetic lethality, and
assess pan-cancer data sets to avoid relationships contra-
dicted in different tumor types.

Bimodality in gene expression may be driven by gen-
etic deletion, activation or dependency present in a
population of tumour cells. A heterogeneous tumour
sample typical of a patient tumour biopsy, however, may
comprise multiple cell populations. It is reasonable,
therefore, to expect bimodality in such samples to be di-
luted and visible only as a non-normal distribution
(Fig. 2). Non-normal gene expression distributions may
also occur in homogeneous cell populations when you
have high / low populations with vastly different sample
size, as is often the case for tumour suppressor
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populations. BiSEp can accurately detect the mid-point
of distributions between two (high and low expressing)
populations regardless of whether it is manifested as
clear bi-modality or as non-normality in shape. This en-
ables genes with both characteristics to be included in
the synthetic lethal analysis using the expression and
mutation workflows.

Most prior attempts to predict synthetic lethalities in
molecular data have focused on identifying mutually ex-
clusive loss determined by genetic mutation or copy
number alone. These approaches have shown some suc-
cess identifying dependencies between genes in parallel
pathways, or genes with similar or housekeeping func-
tions, but miss many well validated examples of syn-
thetic lethality where at least one gene in the pair does
not show genetic loss in tumours. This can include the
only clinically prosecuted synthetic lethal pairing where
genetic loss of BRCA1/2 leads to sensitivity to PARP1/2

inhibition with Lynparza (Olaparib, AZD2281), since
PARP1/2 are not reported to show genetic loss in tu-
mours. We have shown that by comparing loss inferred
from bimodal gene expression, either directly or to gen-
etic loss (mutation and/or gene deletion), we can extend
our ability to identify validated synthetic lethal gene
pairs beyond comparisons of genetic data alone. We
have supplemented our validation by highlighting the
ability of the toolkit to identify the gold standard known
synthetic lethal pairing between BRCA / PARP (Fig. 4),
and show with statistical significance that we find en-
richment of tumour suppressor gene pairs (Additional
file 1: Figure S3). Furthermore, and considering the pre-
cedent for synthetic lethality impacting cancer metabol-
ism [8], using a published archive of established cancer
metabolism genes [28] we found significant enrichment
evident in the output of our expression-only (p < 0.002)
and integrated-genomic workflows (p < 3.51 x 107).
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A lack of a sizeable number of clinically (or experi-
mentally) validated true positive synthetic lethal gene
pairs in each human cancer setting makes it difficult to
obtain a true measure of specificity and sensitivity of the
prediction methods. To address this we used several data
sets to assess if our workflows had enriched for validated
synthetic lethalities, including overlap with (a) a set of
synthetic sick/lethal pairs originally identified in yeast
[23], (b) two sets of candidate synthetic lethal gene pairs
from human cancer settings [8, 9], (c) RNAIi data from a
genome wide epigenetic screen [26] and (d) a known set
of tumour suppressor genes [27]. In yeast, large screens
have been performed to inhibit large numbers of gene
pairs systematically, providing a set of inferred synthetic
lethal/sick relationships to compare to. This is not an
ideal validation dataset due to the significant divergence
of the yeast and human genomes, and a fair assumption
would be that many of the associations that were rele-
vant in yeast are likely to be at best, less meaningful in
human cell populations. None-the-less, highly significant
overlap with these datasets suggests that we are enrich-
ing for biologically validated synthetic lethal pairs (Fig. 3).
To build on this finding we demonstrated a significant
overlap of our results to candidate synthetic lethal
genesets from Lu et al. [9] and Jerby-Arnon et al. [8]
(Additional file 1: Figure S5), but also an important com-
plimentarity where validated synthetic lethal gene pairs
were uniquely found by each method alone.

The principal goal of our approach is to sufficiently
enrich for synthetic lethal hypotheses to enable rational
testing in loss-of-function shRNA/CRISPR screens.
Although our methods reduce the search space for can-
didate synthetic lethality very significantly by 99.98 %,
this still leaves tens of thousands of putative pairwise
synthetic lethal interactions. Certain steps may be taken
to further prioritize hypotheses for testing relevant to a
particular research interest. For example analyses were
run on pan-cancer cell line data to avoid relationships
contradicted in different tumor types, however since a
number of cancer pathway and gene’s function is limited
to certain tumor types this may have introduced false
positive results. To further prioritize relevant to a dis-
ease of interest it would be pertinent to focus on mo-
lecular relationships reproducible in patient samples
from that disease, as we have demonstrated in lung can-
cer with the TCGA data. Alternatively hypotheses may
be reduced to those aligned to a biological area of focus
using the gene functional annotation provided, as dem-
onstrated for DNA repair and epigenetics. Furthermore
our characterization in tumor cell lines, and respective
annotation, presents an opportunity to rationally design
a functional-genomic screen by identifying the cell line
with a specific molecular deficiency in gene 1 and the
associated gene 2 pairings predicted synthetic lethal.
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Candidates overlapping to dependencies found in
human cancer cell RNAi data were further investi-
gated for functional redundancy and a firm biological
rationale. The clinical success seen exploiting syn-
thetic lethalities to prosecute DNA repair deficiencies
led us to study the enrichment of DNA repair genes
in the outputs from the integrated-genomic and
expression-only workflows. We identify marginal en-
richment of these genes in our toolkit and discovery
a compelling gene pairing from within the geneset;
ERCC4 / XRCC1. There is some rationale for these
targets as a synthetic lethal pairing as up-regulation
of ERCC4 may enable XRCC1 deficient cells to main-
tain viability. Conversely cells deficient in ERCC4 may
rely on up-regulation of XRCC1 in order to reduce
the likelihood of replication fork stalls.

Identifying new therapeutic targets with a synthetic le-
thal hypothesis in the epigenetic space offers similar po-
tential. Inhibiting various components of the epigenetic
machinery may help restore normal chromatin function,
which has been found to be affected by abnormalities in
epigenetic genes in cancer. To address this we combined
gene pairs nominated by the pure gene expression and
expression/mutation workflows with RNAi data from
the Hoffman screen. This approach has enabled us to
validate gene pairs nominated by the in silico methods
and to prioritise those that look more biologically com-
pelling as candidate synthetic lethal genes. We have dis-
covered compelling evidence for synthetic lethality
between several different gene pairs involving epigenetic
target genes. SMARCA1 / SMARCA4 are both ATP
dependent helicase genes that are members of the SWI/
SNF family of proteins and share a common functional
domain structure (Fig. 5d). They both share a common
function as transcriptional co-activators and the evidence
the toolkit has highlighted at the molecular level is strong
and backed up by the greater dependency seen on
SMARCA4 in cell lines that have expression loss of
SMARCAL1 (Fig. 5a), indicative of a synthetic lethal inter-
action. In addition, SMARCA1 and SMARCA4 are one of
a small number of gene pairs that overlap with interacting
gene pairs retrieved from the BioGrid resource ([34],
Additional file 1: Figure S3e). We have found evi-
dence for two synthetic lethal interactions involving
SETD1A - with TGFB1, and SETD1A and PRMTS6.
PRMT6 and SETDI1A are both epigenetic methyl-
transferase genes with a direct functional redundancy,
whereas TGFB1 is a well-known growth factor that
has been linked to transcription of methyltransferase
genes. The SETD1A / TGFBI1 relationship is suggest-
ive of redundancy during activation of epigenetic gene
expression. The top hit from the genomic workflow
output and epigenetic screen output is the pairing of
NSD1 and KLHL9 (Fig. 6). The molecular and RNAi
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data are very compelling but there is little existing
biological information to suggest why these two genes
would be synthetic lethal. NSD1 has been implicated
in cancers of the brain such as glioma and neuro-
blastoma [37] and there has been extensive work
done on characterization of the NSD family including
crystal structures for each of NSD1 / NSD2 and NSD3
[38]. KLHL9 has not been implicated in cancer, but highly
homologous members of the KLHL family have such
as KEAP1 and KLHL20 — both of which are notable
tumour suppressors [39]. Despite the lack of evident
biology for this pair, the relationship is so strong
enough in the data that it should be considered for
further validation. The other compelling pairing from
the genomic workflow output is the pairing CHD8
and FANCM; both with links to DNA damage repair
in the p53 signaling axis and a working hypothesis
that if both genes are lost a cell may be pushed to-
wards p53 mediated apoptosis, making inhibition of
one where the other is lost an attractive therapeutic
strategy.

Conclusions

This work has been undertaken to provide a compu-
tational toolkit enriching for candidate signatures of
dependency and synthetic lethality in large pan-
molecular datasets, steering further validation towards
the nomination of new targets for cancer therapy.
Whilst there will be no substitute for gold-standard
validation, it is hoped that this work can be a source
of a reduced set of hypotheses testable through exper-
iments using techniques such as siRNA or CRISPR.
Notably the molecular nature of the relationship iden-
tified also facilitates identification of disease models
and patients for this testing. We hope this work and
these methods will ultimately lead to identification of
new targets, contributing to therapies for patients
with tumor suppressor driven cancers.
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