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Abstract 

Background:  Divide-and-conquer methods, which divide the species set into overlapping subsets, construct a tree 
on each subset, and then combine the subset trees using a supertree method, provide a key algorithmic framework 
for boosting the scalability of phylogeny estimation methods to large datasets. Yet the use of supertree methods, 
which typically attempt to solve NP-hard optimization problems, limits the scalability of such approaches.

Results:  In this paper, we introduce a divide-and-conquer approach that does not require supertree estimation: we 
divide the species set into pairwise disjoint subsets, construct a tree on each subset using a base method, and then 
combine the subset trees using a distance matrix. For this merger step, we present a new method, called NJMerge, 
which is a polynomial-time extension of Neighbor Joining (NJ); thus, NJMerge can be viewed either as a method for 
improving traditional NJ or as a method for scaling the base method to larger datasets. We prove that NJMerge can 
be used to create divide-and-conquer pipelines that are statistically consistent under some models of evolution. We 
also report the results of an extensive simulation study evaluating NJMerge on multi-locus datasets with up to 1000 
species. We found that NJMerge sometimes improved the accuracy of traditional NJ and substantially reduced the 
running time of three popular species tree methods (ASTRAL-III, SVDquartets, and “concatenation” using RAxML) with-
out sacrificing accuracy. Finally, although NJMerge can fail to return a tree, in our experiments, NJMerge failed on only 
11 out of 2560 test cases.

Conclusions:  Theoretical and empirical results suggest that NJMerge is a valuable technique for large-scale phylog-
eny estimation, especially when computational resources are limited. NJMerge is freely available on Github (http://
githu​b.com/ekmol​loy/njmer​ge).
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Introduction
Estimating evolutionary trees, called phylogenies, from 
molecular sequence data is a fundamental problem in 
computational biology, and building the Tree of Life is 
a scientific grand challenge. It is also a computational 
grand challenge, as many of the most accurate phylogeny 
estimation methods are heuristics for NP-hard optimi-
zation problems. Species tree estimation can be further 
complicated by biological processes (e.g., incomplete 

lineage sorting, gene duplication and loss, and horizon-
tal gene transfer) that create heterogeneous evolutionary 
histories across genomes or “gene tree discordance” [1].

Incomplete lineage sorting (ILS), which is modeled 
by the Multi-Species Coalescent (MSC) model [2, 3], 
has been shown to present challenges for phylogenomic 
analyses [4]. In addition, while the standard approach for 
multi-locus species tree estimation uses maximum likeli-
hood methods (e.g., RAxML) on the concatenated multi-
ple sequence alignment, recent studies have established 
that even exact algorithms for maximum likelihood are 
not statistically consistent methods for multi-locus spe-
cies tree estimation under the MSC model (see [5] for a 
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proof for unpartitioned maximum likelihood and [6] for 
fully partitioned maximum likelihood).

Because concatenation analyses using maximum likeli-
hood are provably not statistically consistent in the pres-
ence of incomplete lineage sorting, new methods have 
been developed that are provably statistically consistent 
under the MSC model. Bayesian methods that co-esti-
mate gene trees and species trees (e.g., [7, 8]) are statisti-
cally consistent and expected to be the highly accurate; 
however, such methods are also prohibitively expensive 
on large datasets. More efficient approaches have been 
developed that are statistically consistent under the MSC 
model, including “gene tree summary methods”, which 
take a collection of gene trees as input and then compute 
a species tree from the gene trees using only the gene tree 
topologies. For example, NJst [9] runs Neighbor Joining 
(NJ) [10] on the “average gene tree internode distance” 
(AGID) matrix, and ASTRAL [11] finds a quartet-
median tree (i.e. a species tree that maximizes the total 
quartet tree similarity to the input gene trees) within a 
constrained search space. However, gene tree summary 
methods can have reduced accuracy when gene tree esti-
mation error is high, which is a problem for many phy-
logenomic datasets (see discussion in [12]).

Because of the impact of gene tree estimation error, 
alternative approaches that bypass gene tree estimation, 
called “site-based” methods, have been proposed. Per-
haps the best known site-based method is SVDquartets 
[13], which estimates quartet trees from the concate-
nated sequence alignments (using statistical properties of 
the MSC model and the sequence evolution model) and 
then combines the quartet trees into a tree on the full set 
of species using quartet amalgamation methods that are 
heuristics for the Maximum Quartet Consistency prob-
lem [14]. Other examples of site-based methods include 
computing Jukes-Cantor [15] or log-det [16] distances 
from the concatenated alignment and then running NJ 
on the resulting distance matrix. Such approaches can 
be statistically consistent under the MSC model when 
the sequence evolution models across genes satisfy some 
additional assumptions (e.g., a relaxed molecular clock) 
[17, 18].

Many of these methods (e.g., ASTRAL, SVDquartets, 
and concatenation using RAxML) are heuristics for NP-
hard optimization problems. Such methods can have dif-
ficulties scaling to datasets with large numbers of species, 
and divide-and-conquer approaches have been devel-
oped to scale methods to larger datasets (e.g., the family 
of disk covering methods [19–24]). Such methods oper-
ate by dividing the species set into overlapping subsets, 
constructing trees on the subsets, and then merging the 
subset trees into a tree on the entire species set. The last 
step of this process, called “supertree estimation”, can 

provide good accuracy (i.e., retain much of the accuracy 
in the subset trees) if good supertree methods are used. 
Notably, the supertree compatibility problem is NP-com-
plete [25], and the preferred supertree methods attempt 
to solve NP-hard optimization problems (e.g., the Robin-
son–Foulds supertree problem [26], the Maximum Quar-
tet Consistency problem [14], the Matrix Representation 
with Parsimony problem [27], and the Matrix Represen-
tation with Likelihood problem [28]). In summary, none 
of the current supertree methods provide both accuracy 
and scalability to datasets with large numbers of species 
(see [29] for further discussion).

In this paper, we introduce a new divide-and-conquer 
approach to scaling phylogeny estimation methods to 
large datasets: we divide the species (or leaf ) set into pair-
wise disjoint subsets, construct a tree on each of the sub-
sets, and then assemble the subset trees into a tree on the 
entire species set. Supertree methods cannot be used to 
combine trees on pairwise disjoint leaf sets, and we pre-
sent a new polynomial-time method, called NJMerge, for 
this task. We prove that NJMerge can be used in statis-
tically consistent divide-and-conquer pipelines for both 
gene tree and species tree estimation and evaluate the 
effectiveness of using NJMerge in the context of multi-
locus species tree estimation. We found, using an exten-
sive simulation study, that NJMerge sometimes improved 
the accuracy of traditional NJ and that NJMerge provided 
substantial improvements in the running time for three 
methods (ASTRAL-III [30], SVDquartets [13], and con-
catenation using RAxML [31]) without sacrificing accu-
racy. Furthermore, NJMerge enabled SVDquartets and 
RAxML to run on large datasets (e.g., 1000 taxa and 1000 
genes), on which SVDquartets and RAxML would other-
wise fail to run when limited to 64 GB of memory. While 
NJMerge is not guaranteed to return a tree; the failure 
rate in our experiments was low (less than 1% of tests). 
In addition, NJMerge failed on fewer datasets than either 
ASTRAL-III, SVDquartets, or RAxML—when given the 
same computational resources: a single compute node 
with 64  GB of physical memory, 16 cores, and a maxi-
mum wall-clock time of 48 h. Together, these results sug-
gest that NJMerge is a valuable technique for large-scale 
phylogeny estimation, especially when computational 
resources are limited.

NJMerge
Neighbor Joining (NJ) [10], perhaps the most widely used 
polynomial-time method for phylogeny estimation, esti-
mates a tree T from a dissimilarity matrix D; NJMerge 
is a polynomial-time extension of NJ to impose a set of 
constraints on the output tree T (Fig. 1). More formally, 
NJMerge takes as input a dissimilarity matrix D on leaf 
set S = {s1, s2, . . . , sn} and a set T = {T1,T2, . . . ,Tk} of 
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unrooted binary trees on pairwise disjoint subsets of the 
leaf set S and returns a tree T that agrees with every tree 
in T  (Definition 1). Note that the output tree T is a com-
patibility supertree for T  and that because the trees in T  
are on pairwise disjoint subsets of the leaf set S, a compat-
ibility supertree always exists. NJMerge does not require 
that the input constraint trees T  to form clades in T. For 
example, the caterpillar tree on {A,B,C ,D,E, F ,G,H} 
obtained by making a path with the leaves hanging off 
it in alphabetical order is a compatibility supertree for 
T = {AC|EG, BD|FH} , and yet the trees in T  do not 
form clades within the caterpillar tree (Fig. 2). Of course, 
other compatibility supertrees exist for T  , and, in some 
of them, the input constraint trees will form clades. The 
objective is to find a tree that is close to the true (but 
unknown) tree from the set of all compatibility super-
trees for T  , and NJMerge tries to achieve this objective 
by using the dissimilarity matrix D.

Definition 1  Let T be a tree on leaf set S, and let T ′ be 
a tree on leaf set R ⊆ S . We say that T ′ agrees with T if 
restricting T to leaf set R induces a binary tree that (after 
suppressing the internal nodes of degree 2) is isomorphic 
to T ′.

Here we briefly describe the NJ algorithm by Saitou 
and Nei [10]. NJ has an iterative design that builds the 
tree from the bottom up, producing a rooted tree that is 
then unrooted. Initially, all n leaves are in separate com-
ponents. When a pair of leaves is selected to be siblings, 
the pair of leaves is effectively replaced by a rooted tree 
on two leaves, and the number of components is reduced 
by one. This process repeats until there is only one com-
ponent: a tree on the full leaf set. At each iteration, NJ 
updates D based on the new sibling pair, derives a new 
matrix Q from D, and uses Q to determine which pair of 
the remaining nodes to join. Specifically, NJ accepts sib-
linghood proposal (i, j) such that Q[i, j] is minimized. The 
same formulas used by NJ [10] to update D and compute 
Q are also used by NJMerge; however, NJMerge can make 
different siblinghood decisions than NJ—based on the 
input constraint trees.

After each siblinghood decision, NJMerge updates 
the constraint trees. Specifically, when two leaves are 
made siblings, they are replaced by a new leaf, and the 
constraint trees are relabeled. For example, if x is a leaf 
in Ti and y is a leaf in Tj , then the siblinghood proposal 
z = (x, y) requires that x and y are replaced with z in 
Ti and Tj , respectively. Because siblinghood decisions 
change the set of leaves in the constraint trees, they can 
result in the constraint trees no longer being disjoint 
(Fig.  3). Thus, siblinghood decisions have the potential 
to make the set of constraint trees incompatible. Deter-
mining whether or not a set of unrooted phylogenetic 

Fig. 1  NJMerge input/output example. In this example, NJMerge is 
given two constraint trees ( Ti and Tj ) and a distance matrix Dij that 
is additive for the tree (((A, B), (C, D)), E, (F, (G, H))). NJMerge returns a 
compatibility supertree, called Tij , for the two constraint trees ( Ti and 
Tj ). Note that Neighbor Joining (NJ) applied to the distance matrix 
Dij would return (((A, B), (C, D)), E, (F, (G, H))) [37]; however, NJMerge 
rejects the siblinghood proposal (G, H), because it violates constraint 
tree Tj . Instead, NJMerge makes G and F siblings

Fig. 2  Compatibility supertree example. In this example, two 
compatibility supertrees for T = {Ti , Tj} are shown. Note that 
the trees in T  form clades in T ′ but do not form clades in T. Other 
compatibility supertrees for T  exist

Fig. 3  NJMerge siblinghood proposal example. In this example, 
NJMerge evaluates the siblinghood proposal (C, D). Because C ∈ Ti 
and D ∈ Tj , NJMerge first updates the constraint trees Ti and Tj based 
on the proposed siblinghood to get T ′i  and T ′j  . Specifically, both 
C ∈ Ti and D ∈ Tj are replaced by X, representing the siblinghood (C, 
D). The compatibility of the updated constraint trees can be tested 
by rooting the trees at leaf X and using the algorithm proposed in 
[34]. Because the updated constraint trees ( T ′i  and T ′j  ) are indeed 
compatible, NJMerge will accept siblinghood proposal (C, D). 
Importantly, when NJMerge evaluates the next siblinghood proposal, 
the two constraint trees will no longer be on disjoint leaf sets
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trees is compatible is an NP-complete problem [32, 33], 
so NJMerge uses a polynomial-time heuristic. In each 
iteration, NJMerge sorts the entries of the Q from least to 
greatest and accepts the first siblinghood proposal (x, y) 
that satisfies the following properties:

1.	 If x and y are both in some constraint tree Ti , then 
they are siblings in Ti.

2.	 If x or y are in more than one constraint trees, then 
replacing x and y with a new leaf z = (x, y) in all con-
straint trees does not make any pair of constraint 
trees incompatible, i.e., a compatibility supertree 
exists for every pair of updated constraint trees.

Because pairwise compatibility of unrooted trees does 
not guarantee that the entire set of constraint trees is 
compatible, it is possible for NJMerge to accept a sibling-
hood decision that will eventually cause the algorithm 
to fail when none of the remaining leaves can be joined 
without violating the pairwise compatibility of constraint 
trees. Although the “pairwise compatibility heuristic” can 
fail, it is easy to see that if NJMerge returns a tree, then 
it is a compatibility supertree for the input set T  of con-
straint trees.

To determine if some pair of constraint trees becomes 
incompatible after making x and y siblings, it suffices to 
check only those pairs of constraint trees that contain at 
least one of x and y; all other pairs of trees are unchanged 
by accepting the siblinghood proposal and are pairwise 
compatible by induction. Because the leaves in the two 
trees labeled x or y have been relabeled by the new leaf 
z = (x, y) , they can be treated as rooted trees by rooting 
them at z. Testing the compatibility of rooted trees is eas-
ily accomplished in polynomial time using [34]. In fact, 
instead of testing pairs of constraint trees, the entire set 
of trees in T  containing the new leaf z = (x, y) can be 
tested for compatibility in polynomial time using [34]. 
Furthermore, if at least one leaf exists in all constraint 
trees, then the compatibility of T  can be determined 
in polynomial time. Finally, note the input matrix was 
referred to as a dissimilarity matrix (and not a distance 
matrix), because estimated distances between species 
may not satisfy the triangle inequality [24]; however, 
this matrix is more commonly referred to as a distance 
matrix, and we use this term henceforth.

Divide‑and‑conquer pipelines for phylogeny estimation
NJMerge can be used in divide-and-conquer pipelines for 
phylogeny estimation as shown in Fig.  4 and described 
below. In order to run this pipeline, the user must select 
a method for decomposing the leaf set into pairwise dis-
joint subsets (step 2), a maximum subset size (step 2), a 
method for computing a distance matrix MD (step 1), and 

a method MT for computing subset trees (step 3); thus, 
the user can select MD and MT to be appropriate for gene 
tree estimation or species tree estimation. The pipeline 
then operates as follows.

1.	 Estimate distances between pairs of leaves using 
method MD.

2.	 Decompose the leaf set into pairwise disjoint subsets.

	 2a.	 Compute a starting tree by running NJ on the 
distance matrix computed in Step 1.

	 2b.	 Decompose the starting tree into pairwise 
disjoint subsets of leaves with a prede-
fined maximum subset size (e.g., using the 
centroid tree decomposition described in 
PASTA [35]).

3.	 Build a tree on each subset using method MT , thus 
producing the set T  of constraint trees. Note that con-
straint trees can be estimated in serial or in parallel, 
depending on the computational resources available.

4.	 Run NJMerge on the input pair ( T  , D).

Finally, although not explored in this study, this pipeline 
can be run in an iterative fashion by using the tree pro-
duced in step 4 to define the next subset decomposition.

Statistical consistency
Neighbor Joining (NJ) has been proven to be statisti-
cally consistent [36–38] under models of evolution for 
which pairwise distances can be estimated in a statisti-
cally consistent manner. This includes standard models 
of sequence evolution (e.g., the Generalized Time Revers-
ible (GTR) model [39], which contains other models of 
sequence evolution, including Jukes-Cantor [15]). More 
recently, NJ has been used on multi-locus datasets to esti-
mate species trees under the Multi-Species Coalescent 
(MSC) model; specifically, the method, NJst [9] estimates 
a species tree by running NJ on the average gene tree 
internode distance (AGID) matrix, calculated by averag-
ing the topological distances between pairs of species in 
the input set of gene trees. Allman et al. [40] showed that 
the AGID matrix converges to an additive matrix for the 
species tree, and so NJst and some other methods (e.g., 
ASTRID [41]) that estimate species trees from the AGID 
matrix are statistically consistent under the MSC model.

We now prove that NJMerge can be used in statis-
tically consistent divide-and-conquer pipelines for 
estimating gene trees and species trees. These results 
follow from Theorem 3 that shows NJMerge will return 
the tree T ∗ when given a nearly additive distance matrix 
(Definition 2) for T ∗ and a set T  of constraint trees that 
agree with T ∗ (Definition 1).
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Definition 2  Let T be a tree with positive weights on 
the edges and leaves labeled 1, 2, . . . , n . We say that an 
n× n matrix M is nearly additive for T if each entry 
M[i,  j] differs from the distance between leaf i and leaf j 
in T by less than one half of the shortest branch length 
in T.

Theorem  3  Let T = {T1,T2, . . . ,Tk} be a set of trees, 
and let D be a distance matrix on S =

⋃

i Si , where Si is 
the set of leaves in Ti . Let T ∗ be a tree on leaf set S. If D is 
a nearly additive matrix for T ∗ and if Ti agrees with T ∗ 
for all i ∈ {1, . . . , k} , then NJMerge applied to input (T ,D) 
returns T ∗.

Proof  NJ applied to a nearly additive distance matrix for 
T ∗ will return T ∗ [37]. Because all trees in T  agree with 
T ∗ , the siblinghood proposals suggested by NJ will never 
violate the trees in T  or the compatibility of T  . Thus, 
NJMerge applied to (T ,D) will return the same output as 
NJ applied to D, which is T ∗ . � �

We now define statistical consistency in the context 
of gene tree estimation (Definition 4) and show that 
NJMerge can be used to create statistically consistent 
divide-and-conquer pipelines for gene tree estimation 
(Corollary 5).

Definition 4  Let (T ,�) be a GTR model tree with 
topology T and numerical parameters � (e.g., substitu-
tion rate matrix, branch lengths, etc). A method M for 
constructing gene trees from DNA sequences is statis-
tically consistent under the GTR model if, for all ǫ > 0 , 
there exists a constant l > 0 such that, given sequences 
of length at least l, M returns T with probability at least 
1− ǫ.

Corollary 5  NJMerge can be used in a gene tree estima-
tion pipeline that is statistically consistent under the GTR 
model of sequence evolution.

Proof  Let (T ∗,�) be a GTR model tree, let MD be 
a method for calculating distances between pairs of 
sequences, and let MT be a method for constructing trees 
from DNA sequences. Suppose that

•	 the divide-and-conquer pipeline produces k pair-
wise disjoint subsets of sequences

•	 Neighbor Joining (NJ) applied to a matrix of pair-
wise distances calculated using MD is a statisti-
cally consistent method for constructing gene trees 
under the GTR model (e.g., the log-det distance 
[16])

Fig. 4  Divide-and-conquer pipeline using NJMerge. We present a divide-and-conquer pipeline that operates by (1) estimating distances between 
pairs of species using method MD , (2) decomposing the species set into pairwise disjoint subsets, (3) building a tree on each subset using method 
MT  , and (4) merging trees together using the distance matrix using NJMerge. Step 2 can be performed by estimating a tree from the distance matrix 
(e.g., using NJ) and then decomposing this tree into pairwise disjoint subsets of species (shown in blue). Although not explored in this study, this 
pipeline can be run in an iterative fashion by using the tree produced in Step 4 to define the next subset decomposition. In this schematic, sets of 
species are represented by circles, distance matrices are represented by squares, and trees are represented by triangles
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•	 MT  is statistically consistent under the GTR model 
(e.g., maximum likelihood [42, 43])

Now let ǫ > 0 , and select ǫD, ǫT > 0 such that 
ǫD + kǫT < ǫ . By Definition 4, there exists a constant 
lD such that NJ applied to matrix D computed from 
sequences of length at least lD returns T ∗ with probabil-
ity at least 1− ǫD , and there exists a constant lT such that 
MT given DNA sequences of length at least lT returns 
T ∗ with probability at least 1− ǫT . If a distance matrix D 
is calculated using MD and a set T  of  k constraint trees  
are constructed using MT , given sequences of length at 
least max{lD, lT } , then the probability that NJ applied to 
D returns T ∗ and that MT returns a tree that agrees with 
T ∗ for all k constraint trees in T  is at least 1− ǫ , as

Then, by Theorem 3, NJMerge applied to the input (T ,D) 
will return the T ∗ with probability at least 1− ǫ , and by 
Definition 4, NJMerge is statistically consistent under the 
GTR model. � �

Finally, we define statistical consistency in the context 
of species tree estimation (Definition 7) and show that 
NJMerge can be used to create statistically consistent 
divide-and-conquer pipelines for species estimation 
(Corollary 7).

Definition 6  Let (T ,�) be an MSC model tree with 
topology T and numerical parameters � (e.g., substitution 
rate matrix, branch lengths, etc). A method M for con-
structing species trees from true gene trees is statistically 
consistent under the MSC model if, for all ǫ > 0 , there 
exists a constant m > 0 such that, given at least m true 
gene trees, M returns T with probability at least 1− ǫ.

Corollary 7  NJMerge can be used in a species tree esti-
mation pipeline that is statistically consistent under the 
MSC model.

Proof  Let (T ∗,�) be an MSC model tree, let MD be a 
method for calculating distances between pairs of species 
from a set of gene trees, and let MT be a method for con-
structing species trees from a set of gene trees. Suppose that

•	 the divide-and-conquer pipeline produces k pairwise 
disjoint subsets of sequences

(1− ǫD)(1− ǫT )
k ≥ (1− ǫD)(1− kǫT )

by Bernoulli’s Inequality [45]

= 1− ǫD − kǫT + kǫDǫT

> 1− (ǫD + kǫT ) > 1− ǫ

•	 Neighbor Joining (NJ) applied to a matrix of pairwise 
distances calculated using MD is a statistically con-
sistent method for constructing species trees under 
the MSC model (e.g., the average topological distance 
between species in the input set of gene trees [40])

•	 MT is statistically consistent under the MSC model 
(e.g., ASTRAL [11, 45])

Now let ǫ > 0 , and select ǫD, ǫT > 0 such that 
ǫD + kǫT < ǫ . By Definition 6, there exists a constant mD 
such that NJ applied to matrix D computed from at least 
mD gene trees returns T ∗ with probability at least 1− ǫD , 
and there exists a constant mT such that MT given at least 
mT gene trees returns T ∗ with probability at least 1− ǫT . 
If a distance matrix D is calculated using MD and a set 
T  of k constraint trees are constructed using MT , both 
given at least max{mD,mT } gene trees, then the probabil-
ity that NJ applied to D returns T ∗ and that MT returns 
a tree that agree with T ∗ for all k constraint trees in T  
is at least 1− ǫ . Then, by Theorem  3, NJMerge applied 
to the input (T ,D) will return the T ∗ with probability at 
least 1− ǫ , and by Definition 6, NJMerge is statistically 
consistent under the MSC model. � �

Performance study
Our study evaluated the effectiveness of using NJMerge 
to estimate species trees on large multi-locus datasets, 
simulated for this study using the protocol presented 
in [45]. Our simulation produced model conditions, 
described by two numbers of taxa (100 and 1000) and 
two levels of ILS (low/moderate and very high), each 
with 20 replicate datasets. Datasets included both 
exon-like sequences and intron-like sequences with 
exon-like sequences (“exons”) characterized by slower 
rates of evolution across sites (less phylogenetic signal) 
and intron-like sequences (“introns”) characterized by 
faster rates of evolution across sites (greater phyloge-
netic signal). The 100-taxon datasets were analyzed 
using 25, 100, and 1000 genes, and the 1000-taxon data-
sets were analyzed using 1000 genes; note that exons 
and introns were always analyzed separately. For each 
of these 320 datasets, we constructed distance matrices 
using two different methods and constraint trees using 
four different methods. This provided 2560 different 
tests on which to evaluate NJMerge. NJMerge failed on 
11/2560 tests, so the failure rate (in our experiments) 
was less than 1%. Species tree methods were evaluated 
in terms of species tree estimation error (computed 
using normalized Robinson–Foulds (RF) distances [46]) 
and running time. All software commands are provided 
in Additional file 1.
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Simulated datasets
True species and true gene trees
Datasets, each with a true species tree and 2000 true gene 
trees, were simulated using SimPhy version 1.0.2 [47]. All 
model conditions had deep speciation (towards the root) 
and 20 replicate datasets. By holding the effective popu-
lation size constant (200K) and varying the species tree 
height (in generations), model conditions with different 
levels of ILS were generated. For species tree heights of 
10M and 500K generations, the average distance between 
the true species tree and the true gene trees (as measured 
by the normalized RF distance) was 8–10% and 68–69% 
respectively. Thus, we referred to these levels of ILS as 
“low/moderate” and “very high” respectively.

True sequence alignments
Sequence alignments were simulated for each true gene 
tree using INDELible version 1.03 [48] under the GTR+Ŵ 
model of evolution without insertions or deletions. For 
each gene, the parameters for the GTR+Ŵ model of evo-
lution (base frequencies, substitution rates, and alpha) 
were drawn from distributions based on estimates of 
these parameters from the Avian Phylogenomics Data-
set [49]; distributions were fitted for exons and introns, 
separately (Additional file 1: Table S1). For each dataset 
(with 2000 genes), 1000 gene sequences were simulated 
with parameters drawn from the exon distributions, and 
1000 gene sequences were simulated with parameters 
drawn from the intron distributions. Note that exons and 
introns were analyzed separately. The sequence lengths 
were also drawn from a distribution (varying from 300 to 
1500 bp).

Estimated gene trees
Maximum likelihood gene trees were estimated using 
FastTree-2 [50] under the GTR+CAT model of evolu-
tion. The average gene tree estimation error across all 
replicate datasets ranged from 26 to 51% for introns and 
38 to 64% for exons and thus was higher for exon datasets 
(Additional file 1: Table S2). Note that gene tree estima-
tion error was computed by the normalized symmetric 
difference between true and estimated gene trees, aver-
aged across all gene trees (the normalized symmetric 
difference equals the normalized RF distance when both 
input trees are binary).

Estimated species trees
For each model condition (described by number of taxa 
and level of ILS), species trees estimation methods were 
run on the exon-like genes and the intron-like genes, 
separately. Species trees were estimated on 25, 100, or 
1000 genes for the 100-taxon datasets and 1000 genes for 

the 1000-taxon datasets using three species tree estima-
tion methods: ASTRAL-III [11, 30, 45] (as implemented 
in version 5.6.1), SVDquartets [13] (as implemented in 
PAUP* version 4a161 [51]), and concatenation using 
unpartitioned maximum likelihood under the GTR+Ŵ 
model of evolution (as implemented in RAxML [31] ver-
sion 8.2.12 with pthreads and SSE3).

NJMerge
Distance matrices
Distance matrices were created using two different 
approaches.

•	 DAGID refers to the average gene tree internode dis-
tance (AGID) matrix [9], computed from estimated 
gene trees using ASTRID [41] version 1.1.

•	 DLD refers to the log-det distance matrix [16], com-
puted from concatenated alignment using PAUP* 
[51] version 4a163.

Recall that NJ applied to the AGID matrix (i.e., NJst [9]) 
was proven to be statistically consistent method under 
the MSC model [40] and that NJ applied to the log-det 
distance matrix was proven to be statistically consist-
ent under the MSC model when the sequence evolution 
models across genes satisfy some additional assumptions 
(e.g., a relaxed molecular clock) [18].

Subset decomposition
We decomposed the species set into subsets as indi-
cated by the blue dashed arrows in Fig.  4. Specifically, 
the NJ tree was computed for each distance matrix using 
FastME [52] version 2.1.5 and then the centroid tree 
decomposition (described in PASTA [35]) was used to 
create disjoint subsets of taxa from the NJ tree. Data-
sets with 100 species were decomposed into 4–6 subsets 
with a maximum subset size of 30 taxa, and datasets with 
1000 species were decomposed into 10–15 subsets with a 
maximum subset size of 120 taxa.

Constraint trees
Constraint trees were created using four different 
approaches.

•	 Ttrue refers to constraint trees computed by restrict-
ing the true species tree to each subset of species.

•	 TAST refers to constraint trees computed by running 
ASTRAL-III on each subset, i.e., on the estimated 
gene trees restricted to each subset of species.

•	 TSVD refers to constraint trees computed by running 
SVDquartets on each subset, i.e., on the concate-
nated alignment restricted to each subset of species.
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•	 TRAX refers to constraint trees computed by running 
RAxML on each subset, i.e., on the concatenated 
alignment restricted to each subset of species.

Notation
We often specify the inputs to NJ and NJMerge using the 
following notation: NJ(D) and NJMerge(T  , D). For exam-
ple, NJMerge(TRAX , DLD ) refers to NJMerge given the 
RAxML constraint trees and the log-det distance matrix 
as input, whereas NJMerge(TRAX , D) refers to NJMerge 
given the RAxML constraint trees and either the AGID or 
the log-det distance matrix as input.

Evaluation
Species tree estimation error
Species tree estimation error was measured as the RF 
error rate, i.e., the normalized RF distance between the 
true and the estimated species trees both on the full spe-
cies set. Since both trees were fully resolved or binary, the 
RF error rate is the proportion of edges in the true tree 
that are missing in the estimated tree. RF error rates were 
computed using Dendropy [53].

Running time
All computational experiments were run on the Blue 
Waters supercomputer, specifically, the XE6 dual-
socket nodes with 64 GB of physical memory and two 
AMD Interlagos model 6276 CPU processors (i.e., 
one per socket each with 8 floating-point cores). All 
methods were given access to 16 threads with 1 thread 
per bulldozer (floating-point) core. SVDquartets and 
RAxML were explicitly run with 16 threads; however, 
ASTRAL-III and NJMerge were not implemented with 
multi-threading at the time of this study. All methods 
were restricted to a maximum wall-clock time of 48 h.

Running time was measured as the wall-clock time 
and recorded in seconds for all methods. For ASTRAL, 
SVDquartets, and RAxML, the timing data was 
recorded for running the method on the full dataset 
as well as running the method on subsets of the data-
set (to produce constraint trees for NJMerge). RAxML 
did not complete within the maximum wall-clock time 
of 48 h on datasets with 1000 taxa, so we used the last 
checkpoint file to evaluate species tree estimation error 
and running time. Specifically, running time was meas-
ured as the time between the info file being written and 
the last checkpoint file being written.

We approximated total running time of the NJMerge 
pipeline by combining the running timing data for esti-
mating the distance matrix, estimating the subset trees, 
and combining the subset trees using NJMerge. If a 

user only had access to one compute node, then subset 
trees would need to be estimated in serial. In this case, 
the running time of the NJMerge pipeline tP would be 
approximated as

where k is the number of subsets, tD is time to estimate a 
distance matrix with method MD , tT (i) is the time to esti-
mate a species tree on subset i with method MT , and tM 
is the time to run NJMerge given the distance matrix and 
the subset trees as input. The average running times for 
tT and tM are shown in Additional file 1: Tables S9, S10. 
The time to estimate the NJ tree from the distance matrix 
is not included, as this took less than a minute even for 
datasets with 1000 species. Note that given access to mul-
tiple compute nodes (at least 6 for the 100-taxon datasets 
and at least 15 for the 1000-species datasets), the subset 
trees could be estimated in parallel, as shown in [54].

It is worth noting that running ASTRAL-III and com-
puting the AGID matrix requires gene trees to be esti-
mated. Using the same experimental set-up (a single 
Blue Waters compute node with 64 GB of memory and 
16 floating-point cores), FastTree-2 took on average 
18± 2 min to estimate 1000 gene trees for datasets with 
100 species and on average 217± 20 min to estimate 
1000 gene trees for datasets with 1000 species (Addi-
tional file  1: Tables S4, S5). The amount of time for 
gene tree estimation can vary greatly, depending on the 
method used and the analysis performed (e.g., model 
of sequence evolution, bootstrapping, etc.); we did not 
include the time to estimate gene trees in the reported 
running times.

Results
Pipelines using NJMerge can be thought of in two ways: 
(1) as techniques for potentially improving the accu-
racy of NJ (hopefully without a large increase in running 
time) or (2) as techniques for potentially improving the 
scalability or speed of the method MT used to compute 
constraint trees (hopefully without sacrificing accuracy). 
When distance-based species tree estimation is not as 
accurate as some other species tree methods, we would 
predict that NJMerge (when given constraint trees esti-
mated using highly accurate species tree methods) would 
be more accurate than traditional NJ. Because NJMerge, 
like NJ, is typically faster than other species tree meth-
ods, we would predict that NJMerge would improve the 
running time of more computationally intensive methods 
(such as RAxML) used to estimate constraint trees, hope-
fully without sacrificing accuracy.

(1)tP = tD +

k
∑

i=1

tT (i)+ tM
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Thus, we compared the accuracy of the NJMerge pipe-
line to traditional NJ, and we also compared the accuracy 
and running time of the NJMerge pipeline to running 
MT on the full dataset, where MT is the method used to 
estimate the constraint trees for NJMerge. Results are 
shown here for intron-like datasets; results for exon-like 
datasets are shown in Additional file 1. Unless otherwise 
noted, results were similar for both sequence types; how-
ever, species trees estimated on the exon datasets had 
slightly higher error rates than those estimated on the 
intron datasets. This is expected, as the exons had slower 
rates of evolution (and thus less phylogenetic signal) than 
the introns.

How do pipelines using NJMerge compare to Neighbor 
Joining (NJ)?
In this section, we report results on the effectiveness of 
using NJMerge as compared to NJ in terms of accuracy.

Impact of estimated distance matrix
We compared the accuracy of the NJMerge pipeline to 
traditional NJ on distance matrices estimated from data-
sets with 100 taxa and varying numbers of genes (Fig. 5; 

Additional file  1: Figure S1). Because the accuracy of 
NJMerge also depends on error in the input constraint 
trees, we considered an idealized case where NJMerge 
was given true constraint trees (i.e., constraint trees 
that agree with the true species tree). We found that 
NJMerge(Ttrue , D) was more accurate than NJ(D) for all 
model conditions and that the difference in error was 
especially large when the number of genes was small and 
the level of ILS was very high (e.g., the difference in mean 
error was greater than 15% when matrices were esti-
mated from 25 introns but was closer to 5% when matri-
ces were estimated from 1000 introns). A similar trend 
was observed for matrices computed using the log-det 
distance. Interestingly, both NJ(D) and NJMerge(Ttrue , 
D) were more accurate when given the AGID matrix 
rather than the log-det distance matrix as input—even 
when the level of ILS was low/moderate. In summary, 
NJMerge(Ttrue , D) was always more accurate than NJ(D), 
but the improvement in accuracy was greater under chal-
lenging model conditions, suggesting that NJMerge(Ttrue , 
D) was more robust to error in the distance matrix than 
NJ(D).

Fig. 5  Impact of estimated distance matrix on Neighbor Joining (NJ) and NJMerge. Neighbor Joining (NJ) was run with two different distance 
matrices, and NJMerge was run with two different distance matrices and constraint trees that agreed with the true species tree (see “Performance 
study” section for more information on the notation). Datasets had two different levels of incomplete lineage sorting (ILS) and numbers of genes 
varying from 25 to 1000. Species tree estimation error is defined as the normalized Robinson–Foulds (RF) distance between true and estimated 
species trees. Lines represent the average over replicate datasets, and filled regions indicate the standard error
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Impact of estimated constraint trees
We compared traditional NJ to the NJMerge pipeline 
given estimated constraint trees on datasets with 1000 
taxa and 1000 genes (Fig. 6; Additional file 1: Figure S2). 
When the level of ILS was low/moderate, NJMerge out-
performed NJ regardless of the method used to estimate 
species trees. For intron-like datasets with low/moder-
ate ILS, the use of constraint trees reduced the median 
species tree error from 11–14% (NJ) to less than 3–6% 
(NJMerge); however, when the level of ILS was very 
high, the performance of NJMerge varied greatly with 
the species tree method. Specifically, NJMerge(TSVD , D) 
and NJMerge(TRAX , D) were less accurate than NJ(D) by 
0–4% on average, whereas NJMerge(TAST , D) was more 
accurate than NJ(D) by 0–1% on average (Additional 
file  1: Tables S7, S8). These trends were consistent with 
the relative performance of methods on the 100-taxon 
datasets (Fig. 7 and Additional file 1: Figure S3); specifi-
cally, when the level of ILS was very high, SVDquartets 
and RAxML performed worse than running NJ on either 
the AGID matrix or the log-det distance matrix. In sum-
mary, NJMerge was highly impacted by the quality of 
the constraint trees—so that accurate constraint trees 
resulted in NJMerge being more accurate than NJ, but 
inaccurate constraint trees resulted in NJMerge being 
less accurate than NJ.

How do pipelines using NJMerge compare to ASTRAL‑III, 
SVDquartets, and RAxML?
In this section, we compare the running time and the 
accuracy of the NJMerge pipeline to running MT on 
the full dataset, where MT is the method used to esti-
mate constraint trees for NJMerge. Because NJMerge 
was more accurate when given the AGID matrix (Fig. 5; 
Additional file  1: Figure S1), results for NJMerge given 
the AGID distance matrix are shown here, and results for 
NJMerge given the log-det distance matrix are shown in 
Additional file 1.

ASTRAL‑III vs. NJMerge
Both NJMerge(TAST , DAGID ) and NJMerge(TAST , DLD ) 
provided running time advantages over ASTRAL-III 
under some model conditions. While ASTRAL-III 
completed on all the low/moderate ILS datasets with 
1000 taxa and 1000 genes in less than 9 h on average, 
ASTRAL-III failed to complete within the maximum 
wall-clock time of 48 h on 23/40 datasets with 1000 taxa, 
1000 genes, and very high ILS (Table  1). On the other 
17/40 datasets, ASTRAL-III ran for more than 2000 min 
(approximately 33  h). This difference between the low/
moderate ILS and the very high ILS datasets is notewor-
thy (see discussion). In contrast, NJMerge(TAST , DAGID ) 

completed in under 300 min (approximately 5 h) on aver-
age, including the time it took to estimate the distance 
matrix and the ASTRAL-III subset trees in serial (Fig. 8, 
Additional file  1: Figure S4). Note that NJMerge(TAST , 
DAGID ) failed on 0 datasets, and NJMerge(TAST , DLD ) 
failed on 2 datasets (Table 1). In summary, NJMerge sub-
stantially reduced the running time of ASTRAL-III on 
the 1000-taxon, 1000-gene datasets with very high ILS.

ASTRAL-III and NJMerge(TAST , DAGID ) achieved simi-
lar levels of accuracy with the mean species tree error 
within 0–2% for both intron and exon datasets (Fig.  8; 
Additional file 1: Figure S4, Table S7). Trends were simi-
lar for NJMerge(TAST , DLD ) except when the level of ILS 
was very high; under these conditions, the mean error 
of NJMerge(TAST , DLD ) was 2–6% greater than that 
of ASTRAL-III (Additional file  1: Figures  S7 and S8, 
Table S8).

Fig. 6  Impact of estimated constraint trees on NJMerge. Neighbor 
Joining (NJ) was run with two different distance matrices, and 
NJMerge was run with two different distance matrices and four 
different sets of constraint trees (see “Performance study” section for 
more information on the notation). Species tree estimation error is 
defined as the normalized Robinson–Foulds (RF) distance between 
true and estimated species trees. Note that gray bars represent 
medians, gray squares represent means, gray circles represent 
outliers, box plots are defined by quartiles (extending from the first 
to the third quartiles), and whiskers extend to plus/minus 1.5 times 
the interquartile distance (unless greater/less than the maximum/
minimum value)
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NJMerge vs. SVDquartets
Species trees can be estimated with SVDquartets using 
the full set of 

(n
4

)

 quartet trees or a subset of quartet trees. 
Based on a prior study [55], which showed that the best 
accuracy was obtained when using all quartet trees, we 
computed all 

(n
4

)

 quartet trees for 100-taxon datasets. 
However, on datasets with 1000 taxa, SVDquartets was 
run using a random subset of quartet trees (without 
replacement), because the maximum number of quartets 
allowed by SVDquartets (as implemented by PAUP*) was 
4.15833× 1010 . Running PAUP* resulted in a segmenta-
tion fault for all 1000-taxon datasets, i.e., SVDquartets 
failed on 40/40 datasets with 1000 taxa and 1000 genes. 
In contrast, NJMerge(TSVD , DAGID ) failed on 0 datasets, 
and NJMerge(TSVD , DLD ) failed on 3 datasets (Table 1).

NJMerge also improved running time on datasets with 
100 taxa; for example, SVDquartets completed in 19–81 
min on average, whereas NJMerge(TSVD , DAGID ) com-
pleted in less than 2 min on average for datasets with 100 
taxa and 1000 genes (Fig. 9; Additional file 1: Figure S5). 
This running time comparison does not take into account 

the time needed to estimate gene trees, which required 
on average 18 min using FastTree-2 on datasets with 100 
taxa and 1000 genes.

NJMerge(TSVD , DAGID ) typically produced species trees 
with less error than SVDquartets. The difference between 
methods was typically small (between 0 and 2%) when 
the level of ILS was low/moderate but could be larger 
than 10% when the level of ILS was very high. Similar 
trends were observed for NJMerge(TSVD , DLD ) (Addi-
tional file 1: Figures S9, S10).

NJMerge vs. RAxML
NJMerge(TRAX , DAGID ) and NJMerge(TRAX , DLD ) 
reduced the running time of RAxML by more than 
half—even though RAxML was run on the subset trees 
in serial (Fig.  10 and Additional file  1: Figure S6). For 
the 1000-taxon datasets, the final checkpoint was writ-
ten by RAxML after more than 2250 min ( ∼ 37.5 h) on 
average. In comparison, when RAxML was run on sub-
sets in serial, the average running time of NJMerge(TRAX , 
DAGID ) was between 500 (approximately 8.5 h) and 1500 

Fig. 7  Comparison of species tree methods. All methods were run on the full dataset (i.e., not subsets) with 100 species. Neighbor Joining (NJ) was 
run with two different distance matrices (“Performance study” section for more information on the notation). Species tree estimation error is defined 
as the normalized Robinson–Foulds (RF) distance between true and estimated species trees. Note that gray bars represent medians, gray squares 
represent means, gray circles represent outliers, box plots are defined by quartiles (extending from the first to the third quartiles), and whiskers 
extend to plus/minus 1.5 times the interquartile distance (unless greater/less than the maximum/minimum value)
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min (approximately 25 h). Although these running times 
for NJMerge do not include the time to estimate gene 
trees, recall that it took on average 217 min (less than 4 h) 
to estimate 1000 gene trees on datasets with 1000 species 
using FastTree-2.

While NJMerge can fail to return a tree, NJMerge failed 
less frequently than RAxML—when both methods were 
given the same computational resources. NJMerge(TRAX , 
DAGID ) failed on 1 dataset, and NJMerge(TRAX , DLD ) 
failed on 2 datasets. In contrast, for datasets with 1000 
taxa, RAxML failed to run on 38 intron-like datasets and 
3 exon-like datasets due to “Out of Memory” (OOM) 
errors (Table  1); the difference between the number of 
intron-like versus the number of exon-like datasets is 
noteworthy (see discussion).

For datasets with low/moderate levels of ILS, RAxML 
produced species trees with less error (0–3% on aver-
age) than NJMerge(TRAX , DAGID ); however, for datasets 
with very high levels of ILS, NJMerge(TRAX , DAGID ) pro-
duced species trees with less error (0–4% on average) 
than RAxML (Fig. 10; Additional file 1: Figure S6). Simi-
lar trends were observed for NJMerge(TRAX , DLD ) (Addi-
tional file 1: Figures S11, S12).

Discussion
Remarks on the utility of pipelines using NJMerge
Pipelines using NJMerge can be viewed either as tech-
niques for improving traditional NJ or as techniques for 
scaling a computationally-intensive base method (previ-
ously referred to as MT ) to larger datasets. Thus, in order 
to maximize the utility of NJMerge, users should select a 
base method that is both more accurate and more com-
putationally-intensive than NJ. Our results show that 
selecting base methods for NJMerge may not be trivial 
when analyzing phylogenomic datasets—because both 
accuracy and running time were impacted by the level 
of ILS. For example, ASTRAL-III was very fast when 
the level of ILS was low/moderate but was substantially 
slower when the level of ILS was very high. Similarly, 
SVDquartets and RAxML were both more accurate than 
NJ(DAGID ), i.e., NJst, when the level of ILS was low/mod-
erate but were less accurate than these methods when the 
level of ILS was very high; note that this trend is consist-
ent with results from [12] (also see the review paper by 
[56]). Overall, our results suggest that constraint trees 
should be estimated using RAxML when the level of ILS 
is low/moderate and using ASTRAL-III when the level of 

Fig. 8  ASTRAL-III vs. NJMerge given ASTRAL-III constraint trees and average gene tree internode distance (AGID) matrix. Subplots on top row show 
species tree estimation error (defined as the normalized RF distance between true and estimated species trees); note that gray bars represent 
medians, gray squares represent means, gray circles represent outliers, box plots are defined by quartiles (extending from the first to the third 
quartiles), and whiskers extend to plus/minus 1.5 times the interquartile distance (unless greater/less than the maximum/minimum value). 
Subplots on bottom row show running time (in minutes); bars represent means and error bars represent standard deviations across replicate 
datasets. NJMerge running times are for computing the subset trees “in serial”; see Eq. (1) in the main text for more information. The numbers of 
replicates on which the methods completed is shown on the x-axis, e.g., N = X , Y indicates that ASTRAL-III completed on X out of 20 replicates and 
that NJMerge(TAST ,DAGID ) completed on Y out of 20 replicates. ASTRAL-III did not complete within the maximum wall-clock time of 48 h on 4/40 
intron-like datasets with 1000 taxa and very high ILS
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Table 1  The number of datasets on which methods failed is indicated below by model condition

ASTRAL-III failed due to running beyond the maximum wall clock time of 48 h; SVDquartets failed due to segmentation faults; RAxML failed due to running out of 
memory; NJMerge failed due to being unable to find a legal siblinghood. Note that NJMerge is described by the input set T  of constraint trees and input distance 
matrix D; see “Performance study” section for more information on the notation

# of taxa # of genes ILS level Sequence type Method # of failures 
(out of 20)

100 25 Very high Exon NJMerge(Ttrue , DLD) 1

100 25 Very high Exon NJMerge(TRAX , DAGID) 1

100 25 Very high Intron NJMerge(Ttrue,DAGID) 1

1000 1000 Low/moderate Exon SVDquartets 20

1000 1000 Low/moderate Exon RAxML 3

1000 1000 Low/moderate Intron NJMerge(TAST  , DLD) 1

1000 1000 Low/moderate Intron SVDquartets 20

1000 1000 Low/moderate Intron RAxML 20

1000 1000 Very high Exon ASTRAL-III 19

1000 1000 Very high Exon NJMerge(Ttrue , DLD) 1

1000 1000 Very high Exon NJMerge(TAST  , DLD) 1

1000 1000 Very high Exon NJMerge(TSVD , DLD) 2

1000 1000 Very high Exon NJMerge(TRAX , DLD) 2

1000 1000 Very high Exon SVDquartets 20

1000 1000 Very high Intron ASTRAL-III 4

1000 1000 Very high Intron NJMerge(TSVD ,DLD) 1

1000 1000 Very high Intron SVDquartets 20

1000 1000 Very high Intron RAxML 19

Fig. 9  SVDquartets vs. NJMerge given SVDquartet constraint trees and average gene tree internode distance (AGID) matrix. Subplots on top row 
show species tree estimation error (defined as the normalized RF distance between true and estimated species trees); note that gray bars represent 
medians, gray squares represent means, gray circles represent outliers, box plots are defined by quartiles (extending from the first to the third 
quartiles), and whiskers extend to plus/minus 1.5 times the interquartile distance (unless greater/less than the maximum/minimum value). Subplots 
on bottom row show running time (in minutes); bars represent means and error bars represent standard deviations across replicate datasets. 
NJMerge running times are for computing the subset trees “in serial”; see Eq. (1) in the main text for more information. The numbers of replicates 
on which the methods completed is shown on the x-axis, e.g., N = X , Y indicates that SVDquartets completed on X out of 20 replicates and that 
NJMerge(TSVD ,DAGID ) completed on Y out of 20 replicates. SVDquartets did not run any datasets with 1000 taxa due to segmentation faults
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ILS is very high, and thus, determining the level of ILS 
in a given phylogenomic datasets is an important area 
of future research. Finally, we note that NJMerge, when 
given constraint trees that agreed with the true species 
tree, was very accurate (less than 2% error on average) 
even when the level of ILS was very high, suggesting that 
NJMerge is a promising technique for scaling Bayes-
ian methods (e.g., Starbeast2 [8]) and future species tree 
methods to larger datasets.

Although NJMerge can fail, this should not discour-
age potential users, as NJMerge failed on fewer datasets 
than ASTRAL-III, SVDquartets, or RAxML—when all 
methods were given the same computational resources, 
including a maximum wall-clock time of 48 h. In our 
experiments, NJMerge failed on only 11/2560 test cases 
from running NJMerge on 320 datasets with two differ-
ent types of distance matrices and four different types of 
constraint trees (Table 1).

Importantly, in all our experiments, NJMerge was run 
within the divide-and-conquer pipeline shown in Fig. 4, 
specifically, with subsets of taxa derived from decompos-
ing the NJ tree (blue dashed lines). Because NJMerge was 
always given inputs generated by this pipeline, our results 

on the accuracy, the failure rate, and the running time of 
NJMerge may not generalize to arbitrary inputs.

Remarks on other results
Impact of distance matrix on NJ
Our results showed that on average NJ(DAGID ) was either 
as accurate or else more accurate than NJ(DLD ). Notably, 
there was a clear difference between these two methods 
on datasets with 100 taxa and low/moderate levels of ILS; 
specifically NJ(DAGID ) produced trees with less than 5% 
error on average, whereas NJ(DLD ) produced trees with 
greater than 10% error on average). However, on the exact 
same model condition but with 1000 taxa, NJ(DAGID ) and 
NJ(DLD ) produced trees with similar levels of accuracy. 
This may be due to the difference between the median 
branch length between low/moderate ILS datasets with 
100 taxa and 1000 taxa (Additional file 1: Table S3); fur-
thermore, it is possible that branch length and other fac-
tors that limit the accuracy of NJ(DLD ) in the context of 
gene tree estimation would also apply in the context of 
species tree estimation. However, it is interesting to note 
that NJ(DLD ) was more accurate than either SVDquartets 
or RAxML when the level of ILS was very high, providing 

Fig. 10  RAxML vs. NJMerge given RAxML constraint trees and and average gene tree internode distance (AGID) matrix. Subplots on top row show 
species tree estimation error (defined as the normalized RF distance between true and estimated species trees); note that gray bars represent 
medians, gray squares represent means, gray circles represent outliers, box plots are defined by quartiles (extending from the first to the third 
quartiles), and whiskers extend to plus/minus 1.5 times the interquartile distance (unless greater/less than the maximum/minimum value). Subplots 
on bottom row show running time (in minutes); bars represent means and error bars represent standard deviations across replicate datasets. 
NJMerge running times are for computing the subset trees “in serial”; see Eq. (1) in the main text for more information. The numbers of replicates 
on which the methods completed is shown on the x-axis, e.g., N = X , Y indicates that RAxML completed on X out of 20 replicates and that 
NJMerge(TRAX ,DAGID ) completed on Y out of 20 replicates. RAxML was only able to run on 1/40 intron-like datasets with 1000 taxa due to “Out of 
Memory” errors
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support for Allman et al.’s statement, “The simplicity and 
speed of distance-based inference suggests log-det based 
methods should serve as benchmarks for judging more 
elaborate and computationally-intensive species trees 
inference methods” [18].

Impact of ILS and sequence type on ASTRAL‑III
Our results showed that ASTRAL-III was much faster on 
the low/moderate ILS datasets than on the very high ILS 
datasets. This finding makes sense in light of ASTRAL-
III’s algorithm design. ASTRAL-III operates by search-
ing for an optimal solution to its search problem within 
a constrained search space that is defined by the set X  of 
bipartitions in the estimated gene trees, and in particu-
lar, ASTRAL-III’s running time scales with |X |1.726 [30]. 
The set of gene trees will become more heterogeneous for 
higher levels of ILS, and thus, the size of X  will increase, 
as every gene tree could be different when the level of ILS 
is very high. In addition, gene tree estimation error can 
also increase the size of X  , explaining why ASTRAL-III 
failed to complete on exon datasets more often than on 
intron datasets (Table 1, Additional file 1: Table S2).

Impact of sequence type on RAxML
Our results showed that RAxML failed on more intron-
like datasets than exon-like datasets. This finding makes 
sense in light of RAxML’s implementation. RAxML uses 
redundancy in site patterns to store the input alignment 
compactly, so that the memory scales with the number 
of unique site patterns. The intron datasets had more 
unique site patterns than the exon datasets (i.e., greater 
phylogenetic signal and lower gene tree estimation error), 
which explains why RAxML required more memory 
when analyzing introns.

Remarks on the statistical consistency of pipelines using 
NJMerge
Although NJMerge can fail to return a tree, by statisti-
cal consistency under the MSC model (Corollary 7), the 
probability that NJMerge fails goes to zero as the number 
of true gene trees goes to infinity. In fact, NJMerge was 
designed to have this theoretical guarantee via the selec-
tion of the heuristic for determining whether or not to 
accept a siblinghood proposal. It is easy to think of other 
heuristics that prevent NJMerge from failing but do not 
have the guarantee of correctness (Theorem 3) and thus 
do not have the guarantee of statistical consistency (Cor-
ollary 7). Designing heuristics that prevent NJMerge 
from failing but have good theoretical properties is an 
area of future research.

As mentioned previously, our proof of statistical con-
sistency under the MSC model requires that the number 

of true gene trees goes to infinity, which is the equivalent 
of requiring that both the number of gene trees and the 
sequence length per gene tree go to infinity. Roch et  al. 
[6] recently showed that essentially all gene tree summary 
methods (e.g., NJst [40], and ASTRAL [11]) are not sta-
tistically consistent under the MSC if the sequence length 
per gene is fixed—and these theoretical results apply to 
NJMerge as well. The failure to be statistically consist-
ent when the sequence length per gene is bounded is not 
unique to gene tree summary methods or NJMerge, as 
Roch et al. also showed that fully partitioned maximum 
likelihood is not consistent under these conditions, and 
[5] had shown that unpartitioned maximum likelihood is 
also not consistent.

Conclusions
In this paper, we introduced a divide-and-conquer 
approach to phylogeny estimation that (1) decomposes 
a set of species into pairwise disjoint subsets, (2) builds 
trees on each subset of species using a base method, and 
(3) merges the subsets trees together using a distance 
matrix. For the merger step, we presented a new method, 
called NJMerge, and proved that some divide-and-con-
quer pipelines using NJMerge are statistically consistent 
under some models of evolution. We then evaluated pipe-
lines using NJMerge in the context of species tree estima-
tion, specifically using simulated multi-locus datasets 
with up to 1000 species and two levels of ILS. We found 
that pipelines using NJMerge provided several ben-
efits to large-scale species tree estimation. Specifically, 
under some model conditions, pipelines using NJMerge 
improved the accuracy of traditional NJ and substan-
tially reduced the running time of three popular species 
tree methods (ASTRAL-III, SVDquartets, and “concat-
enation” using RAxML) without sacrificing accuracy (see 
discussion for details as the results depended on the level 
of ILS). Finally, although NJMerge can fail to return a 
tree, in our experiments, pipelines using NJMerge failed 
on only 11 out of 2560 test cases. Together these results 
suggest that NJMerge is a promising approach for scaling 
highly accurate but computationally-intensive methods 
to larger datasets.

This study also suggests several different directions 
for future research. Since NJMerge uses a heuristic 
(which can fail) to test for tree compatibility (in deciding 
whether to accept a siblinghood proposal), a modifica-
tion to NJMerge to use an exact method for this problem 
would reduce the failure rate and—if sufficiently fast—
would still enable scalability to large datasets. In addi-
tion, all aspects of the divide-and-conquer pipeline could 
be modified and tested; for example, the robustness of 
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NJMerge to the starting tree and initial subset decom-
position could be evaluated. Finally, divide-and-conquer 
pipelines using NJMerge could be compared to tradi-
tional divide-and-conquer pipelines (e.g., Disk Covering 
Methods) when robust implementations become publicly 
available for species tree estimation. Other agglomerative 
techniques for merging disjoint subset trees are being 
developed (e.g., the agglomerative technique described in 
[57] for gene tree estimation has good theoretical prop-
erties but has not yet been implemented), and NJMerge 
should be compared to such techniques when they 
become publicly available.

Additional file

Additional file 1. Detailed methods section, including software com-
mands. 12 figures and 10 tables describing additional results, including 
those for exon-like datasets and those for analyses using log-det distance 
matrices.
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