
Molloy and Warnow ﻿Algorithms Mol Biol (2019) 14:14
https://doi.org/10.1186/s13015-019-0151-x

RESEARCH

Statistically consistent divide‑and‑conquer
pipelines for phylogeny estimation using
NJMerge
Erin K. Molloy*  and Tandy Warnow 

Abstract 

Background:  Divide-and-conquer methods, which divide the species set into overlapping subsets, construct a tree
on each subset, and then combine the subset trees using a supertree method, provide a key algorithmic framework
for boosting the scalability of phylogeny estimation methods to large datasets. Yet the use of supertree methods,
which typically attempt to solve NP-hard optimization problems, limits the scalability of such approaches.

Results:  In this paper, we introduce a divide-and-conquer approach that does not require supertree estimation: we
divide the species set into pairwise disjoint subsets, construct a tree on each subset using a base method, and then
combine the subset trees using a distance matrix. For this merger step, we present a new method, called NJMerge,
which is a polynomial-time extension of Neighbor Joining (NJ); thus, NJMerge can be viewed either as a method for
improving traditional NJ or as a method for scaling the base method to larger datasets. We prove that NJMerge can
be used to create divide-and-conquer pipelines that are statistically consistent under some models of evolution. We
also report the results of an extensive simulation study evaluating NJMerge on multi-locus datasets with up to 1000
species. We found that NJMerge sometimes improved the accuracy of traditional NJ and substantially reduced the
running time of three popular species tree methods (ASTRAL-III, SVDquartets, and “concatenation” using RAxML) with-
out sacrificing accuracy. Finally, although NJMerge can fail to return a tree, in our experiments, NJMerge failed on only
11 out of 2560 test cases.

Conclusions:  Theoretical and empirical results suggest that NJMerge is a valuable technique for large-scale phylog-
eny estimation, especially when computational resources are limited. NJMerge is freely available on Github (http://
githu​b.com/ekmol​loy/njmer​ge).

Keywords:  Divide-and-conquer, Neighbor Joining, Species trees, Incomplete lineage sorting, Phylogenomics

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
Estimating evolutionary trees, called phylogenies, from
molecular sequence data is a fundamental problem in
computational biology, and building the Tree of Life is
a scientific grand challenge. It is also a computational
grand challenge, as many of the most accurate phylogeny
estimation methods are heuristics for NP-hard optimi-
zation problems. Species tree estimation can be further
complicated by biological processes (e.g., incomplete

lineage sorting, gene duplication and loss, and horizon-
tal gene transfer) that create heterogeneous evolutionary
histories across genomes or “gene tree discordance” [1].

Incomplete lineage sorting (ILS), which is modeled
by the Multi-Species Coalescent (MSC) model [2, 3],
has been shown to present challenges for phylogenomic
analyses [4]. In addition, while the standard approach for
multi-locus species tree estimation uses maximum likeli-
hood methods (e.g., RAxML) on the concatenated multi-
ple sequence alignment, recent studies have established
that even exact algorithms for maximum likelihood are
not statistically consistent methods for multi-locus spe-
cies tree estimation under the MSC model (see [5] for a

Open Access

Algorithms for
Molecular Biology

*Correspondence: emolloy2@illinois.edu
Department of Computer Science, University of Illinois at Urbana-
Champaign, 201 North Goodwin Avenue, Urbana, IL 61801, USA

https://orcid.org/0000-0001-5553-3312
http://orcid.org/0000-0001-7717-3514
http://github.com/ekmolloy/njmerge
http://github.com/ekmolloy/njmerge
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-019-0151-x&domain=pdf

Page 2 of 17Molloy and Warnow ﻿Algorithms Mol Biol (2019) 14:14

proof for unpartitioned maximum likelihood and [6] for
fully partitioned maximum likelihood).

Because concatenation analyses using maximum likeli-
hood are provably not statistically consistent in the pres-
ence of incomplete lineage sorting, new methods have
been developed that are provably statistically consistent
under the MSC model. Bayesian methods that co-esti-
mate gene trees and species trees (e.g., [7, 8]) are statisti-
cally consistent and expected to be the highly accurate;
however, such methods are also prohibitively expensive
on large datasets. More efficient approaches have been
developed that are statistically consistent under the MSC
model, including “gene tree summary methods”, which
take a collection of gene trees as input and then compute
a species tree from the gene trees using only the gene tree
topologies. For example, NJst [9] runs Neighbor Joining
(NJ) [10] on the “average gene tree internode distance”
(AGID) matrix, and ASTRAL [11] finds a quartet-
median tree (i.e. a species tree that maximizes the total
quartet tree similarity to the input gene trees) within a
constrained search space. However, gene tree summary
methods can have reduced accuracy when gene tree esti-
mation error is high, which is a problem for many phy-
logenomic datasets (see discussion in [12]).

Because of the impact of gene tree estimation error,
alternative approaches that bypass gene tree estimation,
called “site-based” methods, have been proposed. Per-
haps the best known site-based method is SVDquartets
[13], which estimates quartet trees from the concate-
nated sequence alignments (using statistical properties of
the MSC model and the sequence evolution model) and
then combines the quartet trees into a tree on the full set
of species using quartet amalgamation methods that are
heuristics for the Maximum Quartet Consistency prob-
lem [14]. Other examples of site-based methods include
computing Jukes-Cantor [15] or log-det [16] distances
from the concatenated alignment and then running NJ
on the resulting distance matrix. Such approaches can
be statistically consistent under the MSC model when
the sequence evolution models across genes satisfy some
additional assumptions (e.g., a relaxed molecular clock)
[17, 18].

Many of these methods (e.g., ASTRAL, SVDquartets,
and concatenation using RAxML) are heuristics for NP-
hard optimization problems. Such methods can have dif-
ficulties scaling to datasets with large numbers of species,
and divide-and-conquer approaches have been devel-
oped to scale methods to larger datasets (e.g., the family
of disk covering methods [19–24]). Such methods oper-
ate by dividing the species set into overlapping subsets,
constructing trees on the subsets, and then merging the
subset trees into a tree on the entire species set. The last
step of this process, called “supertree estimation”, can

provide good accuracy (i.e., retain much of the accuracy
in the subset trees) if good supertree methods are used.
Notably, the supertree compatibility problem is NP-com-
plete [25], and the preferred supertree methods attempt
to solve NP-hard optimization problems (e.g., the Robin-
son–Foulds supertree problem [26], the Maximum Quar-
tet Consistency problem [14], the Matrix Representation
with Parsimony problem [27], and the Matrix Represen-
tation with Likelihood problem [28]). In summary, none
of the current supertree methods provide both accuracy
and scalability to datasets with large numbers of species
(see [29] for further discussion).

In this paper, we introduce a new divide-and-conquer
approach to scaling phylogeny estimation methods to
large datasets: we divide the species (or leaf) set into pair-
wise disjoint subsets, construct a tree on each of the sub-
sets, and then assemble the subset trees into a tree on the
entire species set. Supertree methods cannot be used to
combine trees on pairwise disjoint leaf sets, and we pre-
sent a new polynomial-time method, called NJMerge, for
this task. We prove that NJMerge can be used in statis-
tically consistent divide-and-conquer pipelines for both
gene tree and species tree estimation and evaluate the
effectiveness of using NJMerge in the context of multi-
locus species tree estimation. We found, using an exten-
sive simulation study, that NJMerge sometimes improved
the accuracy of traditional NJ and that NJMerge provided
substantial improvements in the running time for three
methods (ASTRAL-III [30], SVDquartets [13], and con-
catenation using RAxML [31]) without sacrificing accu-
racy. Furthermore, NJMerge enabled SVDquartets and
RAxML to run on large datasets (e.g., 1000 taxa and 1000
genes), on which SVDquartets and RAxML would other-
wise fail to run when limited to 64 GB of memory. While
NJMerge is not guaranteed to return a tree; the failure
rate in our experiments was low (less than 1% of tests).
In addition, NJMerge failed on fewer datasets than either
ASTRAL-III, SVDquartets, or RAxML—when given the
same computational resources: a single compute node
with 64 GB of physical memory, 16 cores, and a maxi-
mum wall-clock time of 48 h. Together, these results sug-
gest that NJMerge is a valuable technique for large-scale
phylogeny estimation, especially when computational
resources are limited.

NJMerge
Neighbor Joining (NJ) [10], perhaps the most widely used
polynomial-time method for phylogeny estimation, esti-
mates a tree T from a dissimilarity matrix D; NJMerge
is a polynomial-time extension of NJ to impose a set of
constraints on the output tree T (Fig. 1). More formally,
NJMerge takes as input a dissimilarity matrix D on leaf
set S = {s1, s2, . . . , sn} and a set T = {T1,T2, . . . ,Tk} of

Page 3 of 17Molloy and Warnow ﻿Algorithms Mol Biol (2019) 14:14

unrooted binary trees on pairwise disjoint subsets of the
leaf set S and returns a tree T that agrees with every tree
in T (Definition 1). Note that the output tree T is a com-
patibility supertree for T and that because the trees in T
are on pairwise disjoint subsets of the leaf set S, a compat-
ibility supertree always exists. NJMerge does not require
that the input constraint trees T to form clades in T. For
example, the caterpillar tree on {A,B,C ,D,E, F ,G,H}
obtained by making a path with the leaves hanging off
it in alphabetical order is a compatibility supertree for
T = {AC|EG, BD|FH} , and yet the trees in T do not
form clades within the caterpillar tree (Fig. 2). Of course,
other compatibility supertrees exist for T  , and, in some
of them, the input constraint trees will form clades. The
objective is to find a tree that is close to the true (but
unknown) tree from the set of all compatibility super-
trees for T  , and NJMerge tries to achieve this objective
by using the dissimilarity matrix D.

Definition 1  Let T be a tree on leaf set S, and let T ′ be
a tree on leaf set R ⊆ S . We say that T ′ agrees with T if
restricting T to leaf set R induces a binary tree that (after
suppressing the internal nodes of degree 2) is isomorphic
to T ′.

Here we briefly describe the NJ algorithm by Saitou
and Nei [10]. NJ has an iterative design that builds the
tree from the bottom up, producing a rooted tree that is
then unrooted. Initially, all n leaves are in separate com-
ponents. When a pair of leaves is selected to be siblings,
the pair of leaves is effectively replaced by a rooted tree
on two leaves, and the number of components is reduced
by one. This process repeats until there is only one com-
ponent: a tree on the full leaf set. At each iteration, NJ
updates D based on the new sibling pair, derives a new
matrix Q from D, and uses Q to determine which pair of
the remaining nodes to join. Specifically, NJ accepts sib-
linghood proposal (i, j) such that Q[i, j] is minimized. The
same formulas used by NJ [10] to update D and compute
Q are also used by NJMerge; however, NJMerge can make
different siblinghood decisions than NJ—based on the
input constraint trees.

After each siblinghood decision, NJMerge updates
the constraint trees. Specifically, when two leaves are
made siblings, they are replaced by a new leaf, and the
constraint trees are relabeled. For example, if x is a leaf
in Ti and y is a leaf in Tj , then the siblinghood proposal
z = (x, y) requires that x and y are replaced with z in
Ti and Tj , respectively. Because siblinghood decisions
change the set of leaves in the constraint trees, they can
result in the constraint trees no longer being disjoint
(Fig. 3). Thus, siblinghood decisions have the potential
to make the set of constraint trees incompatible. Deter-
mining whether or not a set of unrooted phylogenetic

Fig. 1  NJMerge input/output example. In this example, NJMerge is
given two constraint trees ( Ti and Tj ) and a distance matrix Dij that
is additive for the tree (((A, B), (C, D)), E, (F, (G, H))). NJMerge returns a
compatibility supertree, called Tij , for the two constraint trees ( Ti and
Tj ). Note that Neighbor Joining (NJ) applied to the distance matrix
Dij would return (((A, B), (C, D)), E, (F, (G, H))) [37]; however, NJMerge
rejects the siblinghood proposal (G, H), because it violates constraint
tree Tj . Instead, NJMerge makes G and F siblings

Fig. 2  Compatibility supertree example. In this example, two
compatibility supertrees for T = {Ti , Tj} are shown. Note that
the trees in T form clades in T ′ but do not form clades in T. Other
compatibility supertrees for T exist

Fig. 3  NJMerge siblinghood proposal example. In this example,
NJMerge evaluates the siblinghood proposal (C, D). Because C ∈ Ti
and D ∈ Tj , NJMerge first updates the constraint trees Ti and Tj based
on the proposed siblinghood to get T ′i and T ′j  . Specifically, both
C ∈ Ti and D ∈ Tj are replaced by X, representing the siblinghood (C,
D). The compatibility of the updated constraint trees can be tested
by rooting the trees at leaf X and using the algorithm proposed in
[34]. Because the updated constraint trees ( T ′i and T ′j  ) are indeed
compatible, NJMerge will accept siblinghood proposal (C, D).
Importantly, when NJMerge evaluates the next siblinghood proposal,
the two constraint trees will no longer be on disjoint leaf sets

Page 4 of 17Molloy and Warnow ﻿Algorithms Mol Biol (2019) 14:14

trees is compatible is an NP-complete problem [32, 33],
so NJMerge uses a polynomial-time heuristic. In each
iteration, NJMerge sorts the entries of the Q from least to
greatest and accepts the first siblinghood proposal (x, y)
that satisfies the following properties:

1.	 If x and y are both in some constraint tree Ti , then
they are siblings in Ti.

2.	 If x or y are in more than one constraint trees, then
replacing x and y with a new leaf z = (x, y) in all con-
straint trees does not make any pair of constraint
trees incompatible, i.e., a compatibility supertree
exists for every pair of updated constraint trees.

Because pairwise compatibility of unrooted trees does
not guarantee that the entire set of constraint trees is
compatible, it is possible for NJMerge to accept a sibling-
hood decision that will eventually cause the algorithm
to fail when none of the remaining leaves can be joined
without violating the pairwise compatibility of constraint
trees. Although the “pairwise compatibility heuristic” can
fail, it is easy to see that if NJMerge returns a tree, then
it is a compatibility supertree for the input set T of con-
straint trees.

To determine if some pair of constraint trees becomes
incompatible after making x and y siblings, it suffices to
check only those pairs of constraint trees that contain at
least one of x and y; all other pairs of trees are unchanged
by accepting the siblinghood proposal and are pairwise
compatible by induction. Because the leaves in the two
trees labeled x or y have been relabeled by the new leaf
z = (x, y) , they can be treated as rooted trees by rooting
them at z. Testing the compatibility of rooted trees is eas-
ily accomplished in polynomial time using [34]. In fact,
instead of testing pairs of constraint trees, the entire set
of trees in T containing the new leaf z = (x, y) can be
tested for compatibility in polynomial time using [34].
Furthermore, if at least one leaf exists in all constraint
trees, then the compatibility of T can be determined
in polynomial time. Finally, note the input matrix was
referred to as a dissimilarity matrix (and not a distance
matrix), because estimated distances between species
may not satisfy the triangle inequality [24]; however,
this matrix is more commonly referred to as a distance
matrix, and we use this term henceforth.

Divide‑and‑conquer pipelines for phylogeny estimation
NJMerge can be used in divide-and-conquer pipelines for
phylogeny estimation as shown in Fig. 4 and described
below. In order to run this pipeline, the user must select
a method for decomposing the leaf set into pairwise dis-
joint subsets (step 2), a maximum subset size (step 2), a
method for computing a distance matrix MD (step 1), and

a method MT for computing subset trees (step 3); thus,
the user can select MD and MT to be appropriate for gene
tree estimation or species tree estimation. The pipeline
then operates as follows.

1.	 Estimate distances between pairs of leaves using
method MD.

2.	 Decompose the leaf set into pairwise disjoint subsets.

	 2a.	 Compute a starting tree by running NJ on the
distance matrix computed in Step 1.

	 2b.	 Decompose the starting tree into pairwise
disjoint subsets of leaves with a prede-
fined maximum subset size (e.g., using the
centroid tree decomposition described in
PASTA [35]).

3.	 Build a tree on each subset using method MT , thus
producing the set T of constraint trees. Note that con-
straint trees can be estimated in serial or in parallel,
depending on the computational resources available.

4.	 Run NJMerge on the input pair ( T  , D).

Finally, although not explored in this study, this pipeline
can be run in an iterative fashion by using the tree pro-
duced in step 4 to define the next subset decomposition.

Statistical consistency
Neighbor Joining (NJ) has been proven to be statisti-
cally consistent [36–38] under models of evolution for
which pairwise distances can be estimated in a statisti-
cally consistent manner. This includes standard models
of sequence evolution (e.g., the Generalized Time Revers-
ible (GTR) model [39], which contains other models of
sequence evolution, including Jukes-Cantor [15]). More
recently, NJ has been used on multi-locus datasets to esti-
mate species trees under the Multi-Species Coalescent
(MSC) model; specifically, the method, NJst [9] estimates
a species tree by running NJ on the average gene tree
internode distance (AGID) matrix, calculated by averag-
ing the topological distances between pairs of species in
the input set of gene trees. Allman et al. [40] showed that
the AGID matrix converges to an additive matrix for the
species tree, and so NJst and some other methods (e.g.,
ASTRID [41]) that estimate species trees from the AGID
matrix are statistically consistent under the MSC model.

We now prove that NJMerge can be used in statis-
tically consistent divide-and-conquer pipelines for
estimating gene trees and species trees. These results
follow from Theorem 3 that shows NJMerge will return
the tree T ∗ when given a nearly additive distance matrix
(Definition 2) for T ∗ and a set T of constraint trees that
agree with T ∗ (Definition 1).

Page 5 of 17Molloy and Warnow ﻿Algorithms Mol Biol (2019) 14:14

Definition 2  Let T be a tree with positive weights on
the edges and leaves labeled 1, 2, . . . , n . We say that an
n× n matrix M is nearly additive for T if each entry
M[i, j] differs from the distance between leaf i and leaf j
in T by less than one half of the shortest branch length
in T.

Theorem 3  Let T = {T1,T2, . . . ,Tk} be a set of trees,
and let D be a distance matrix on S =

⋃

i Si , where Si is
the set of leaves in Ti . Let T ∗ be a tree on leaf set S. If D is
a nearly additive matrix for T ∗ and if Ti agrees with T ∗
for all i ∈ {1, . . . , k} , then NJMerge applied to input (T ,D)
returns T ∗.

Proof  NJ applied to a nearly additive distance matrix for
T ∗ will return T ∗ [37]. Because all trees in T agree with
T ∗ , the siblinghood proposals suggested by NJ will never
violate the trees in T or the compatibility of T  . Thus,
NJMerge applied to (T ,D) will return the same output as
NJ applied to D, which is T ∗ . � �

We now define statistical consistency in the context
of gene tree estimation (Definition 4) and show that
NJMerge can be used to create statistically consistent
divide-and-conquer pipelines for gene tree estimation
(Corollary 5).

Definition 4  Let (T ,�) be a GTR model tree with
topology T and numerical parameters � (e.g., substitu-
tion rate matrix, branch lengths, etc). A method M for
constructing gene trees from DNA sequences is statis-
tically consistent under the GTR model if, for all ǫ > 0 ,
there exists a constant l > 0 such that, given sequences
of length at least l, M returns T with probability at least
1− ǫ.

Corollary 5  NJMerge can be used in a gene tree estima-
tion pipeline that is statistically consistent under the GTR
model of sequence evolution.

Proof  Let (T ∗,�) be a GTR model tree, let MD be
a method for calculating distances between pairs of
sequences, and let MT be a method for constructing trees
from DNA sequences. Suppose that

•	 the divide-and-conquer pipeline produces k pair-
wise disjoint subsets of sequences

•	 Neighbor Joining (NJ) applied to a matrix of pair-
wise distances calculated using MD is a statisti-
cally consistent method for constructing gene trees
under the GTR model (e.g., the log-det distance
[16])

Fig. 4  Divide-and-conquer pipeline using NJMerge. We present a divide-and-conquer pipeline that operates by (1) estimating distances between
pairs of species using method MD , (2) decomposing the species set into pairwise disjoint subsets, (3) building a tree on each subset using method
MT  , and (4) merging trees together using the distance matrix using NJMerge. Step 2 can be performed by estimating a tree from the distance matrix
(e.g., using NJ) and then decomposing this tree into pairwise disjoint subsets of species (shown in blue). Although not explored in this study, this
pipeline can be run in an iterative fashion by using the tree produced in Step 4 to define the next subset decomposition. In this schematic, sets of
species are represented by circles, distance matrices are represented by squares, and trees are represented by triangles

Page 6 of 17Molloy and Warnow ﻿Algorithms Mol Biol (2019) 14:14

•	 MT is statistically consistent under the GTR model
(e.g., maximum likelihood [42, 43])

Now let ǫ > 0 , and select ǫD, ǫT > 0 such that
ǫD + kǫT < ǫ . By Definition 4, there exists a constant
lD such that NJ applied to matrix D computed from
sequences of length at least lD returns T ∗ with probabil-
ity at least 1− ǫD , and there exists a constant lT such that
MT given DNA sequences of length at least lT returns
T ∗ with probability at least 1− ǫT . If a distance matrix D
is calculated using MD and a set T of k constraint trees
are constructed using MT , given sequences of length at
least max{lD, lT } , then the probability that NJ applied to
D returns T ∗ and that MT returns a tree that agrees with
T ∗ for all k constraint trees in T is at least 1− ǫ , as

Then, by Theorem 3, NJMerge applied to the input (T ,D)
will return the T ∗ with probability at least 1− ǫ , and by
Definition 4, NJMerge is statistically consistent under the
GTR model. � �

Finally, we define statistical consistency in the context
of species tree estimation (Definition 7) and show that
NJMerge can be used to create statistically consistent
divide-and-conquer pipelines for species estimation
(Corollary 7).

Definition 6  Let (T ,�) be an MSC model tree with
topology T and numerical parameters � (e.g., substitution
rate matrix, branch lengths, etc). A method M for con-
structing species trees from true gene trees is statistically
consistent under the MSC model if, for all ǫ > 0 , there
exists a constant m > 0 such that, given at least m true
gene trees, M returns T with probability at least 1− ǫ.

Corollary 7  NJMerge can be used in a species tree esti-
mation pipeline that is statistically consistent under the
MSC model.

Proof  Let (T ∗,�) be an MSC model tree, let MD be a
method for calculating distances between pairs of species
from a set of gene trees, and let MT be a method for con-
structing species trees from a set of gene trees. Suppose that

•	 the divide-and-conquer pipeline produces k pairwise
disjoint subsets of sequences

(1− ǫD)(1− ǫT)
k ≥ (1− ǫD)(1− kǫT)

by Bernoulli’s Inequality [45]

= 1− ǫD − kǫT + kǫDǫT

> 1− (ǫD + kǫT) > 1− ǫ

•	 Neighbor Joining (NJ) applied to a matrix of pairwise
distances calculated using MD is a statistically con-
sistent method for constructing species trees under
the MSC model (e.g., the average topological distance
between species in the input set of gene trees [40])

•	 MT is statistically consistent under the MSC model
(e.g., ASTRAL [11, 45])

Now let ǫ > 0 , and select ǫD, ǫT > 0 such that
ǫD + kǫT < ǫ . By Definition 6, there exists a constant mD
such that NJ applied to matrix D computed from at least
mD gene trees returns T ∗ with probability at least 1− ǫD ,
and there exists a constant mT such that MT given at least
mT gene trees returns T ∗ with probability at least 1− ǫT .
If a distance matrix D is calculated using MD and a set
T of k constraint trees are constructed using MT , both
given at least max{mD,mT } gene trees, then the probabil-
ity that NJ applied to D returns T ∗ and that MT returns
a tree that agree with T ∗ for all k constraint trees in T
is at least 1− ǫ . Then, by Theorem 3, NJMerge applied
to the input (T ,D) will return the T ∗ with probability at
least 1− ǫ , and by Definition 6, NJMerge is statistically
consistent under the MSC model. � �

Performance study
Our study evaluated the effectiveness of using NJMerge
to estimate species trees on large multi-locus datasets,
simulated for this study using the protocol presented
in [45]. Our simulation produced model conditions,
described by two numbers of taxa (100 and 1000) and
two levels of ILS (low/moderate and very high), each
with 20 replicate datasets. Datasets included both
exon-like sequences and intron-like sequences with
exon-like sequences (“exons”) characterized by slower
rates of evolution across sites (less phylogenetic signal)
and intron-like sequences (“introns”) characterized by
faster rates of evolution across sites (greater phyloge-
netic signal). The 100-taxon datasets were analyzed
using 25, 100, and 1000 genes, and the 1000-taxon data-
sets were analyzed using 1000 genes; note that exons
and introns were always analyzed separately. For each
of these 320 datasets, we constructed distance matrices
using two different methods and constraint trees using
four different methods. This provided 2560 different
tests on which to evaluate NJMerge. NJMerge failed on
11/2560 tests, so the failure rate (in our experiments)
was less than 1%. Species tree methods were evaluated
in terms of species tree estimation error (computed
using normalized Robinson–Foulds (RF) distances [46])
and running time. All software commands are provided
in Additional file 1.

Page 7 of 17Molloy and Warnow ﻿Algorithms Mol Biol (2019) 14:14

Simulated datasets
True species and true gene trees
Datasets, each with a true species tree and 2000 true gene
trees, were simulated using SimPhy version 1.0.2 [47]. All
model conditions had deep speciation (towards the root)
and 20 replicate datasets. By holding the effective popu-
lation size constant (200K) and varying the species tree
height (in generations), model conditions with different
levels of ILS were generated. For species tree heights of
10M and 500K generations, the average distance between
the true species tree and the true gene trees (as measured
by the normalized RF distance) was 8–10% and 68–69%
respectively. Thus, we referred to these levels of ILS as
“low/moderate” and “very high” respectively.

True sequence alignments
Sequence alignments were simulated for each true gene
tree using INDELible version 1.03 [48] under the GTR+Ŵ
model of evolution without insertions or deletions. For
each gene, the parameters for the GTR+Ŵ model of evo-
lution (base frequencies, substitution rates, and alpha)
were drawn from distributions based on estimates of
these parameters from the Avian Phylogenomics Data-
set [49]; distributions were fitted for exons and introns,
separately (Additional file 1: Table S1). For each dataset
(with 2000 genes), 1000 gene sequences were simulated
with parameters drawn from the exon distributions, and
1000 gene sequences were simulated with parameters
drawn from the intron distributions. Note that exons and
introns were analyzed separately. The sequence lengths
were also drawn from a distribution (varying from 300 to
1500 bp).

Estimated gene trees
Maximum likelihood gene trees were estimated using
FastTree-2 [50] under the GTR+CAT model of evolu-
tion. The average gene tree estimation error across all
replicate datasets ranged from 26 to 51% for introns and
38 to 64% for exons and thus was higher for exon datasets
(Additional file 1: Table S2). Note that gene tree estima-
tion error was computed by the normalized symmetric
difference between true and estimated gene trees, aver-
aged across all gene trees (the normalized symmetric
difference equals the normalized RF distance when both
input trees are binary).

Estimated species trees
For each model condition (described by number of taxa
and level of ILS), species trees estimation methods were
run on the exon-like genes and the intron-like genes,
separately. Species trees were estimated on 25, 100, or
1000 genes for the 100-taxon datasets and 1000 genes for

the 1000-taxon datasets using three species tree estima-
tion methods: ASTRAL-III [11, 30, 45] (as implemented
in version 5.6.1), SVDquartets [13] (as implemented in
PAUP* version 4a161 [51]), and concatenation using
unpartitioned maximum likelihood under the GTR+Ŵ
model of evolution (as implemented in RAxML [31] ver-
sion 8.2.12 with pthreads and SSE3).

NJMerge
Distance matrices
Distance matrices were created using two different
approaches.

•	 DAGID refers to the average gene tree internode dis-
tance (AGID) matrix [9], computed from estimated
gene trees using ASTRID [41] version 1.1.

•	 DLD refers to the log-det distance matrix [16], com-
puted from concatenated alignment using PAUP*
[51] version 4a163.

Recall that NJ applied to the AGID matrix (i.e., NJst [9])
was proven to be statistically consistent method under
the MSC model [40] and that NJ applied to the log-det
distance matrix was proven to be statistically consist-
ent under the MSC model when the sequence evolution
models across genes satisfy some additional assumptions
(e.g., a relaxed molecular clock) [18].

Subset decomposition
We decomposed the species set into subsets as indi-
cated by the blue dashed arrows in Fig. 4. Specifically,
the NJ tree was computed for each distance matrix using
FastME [52] version 2.1.5 and then the centroid tree
decomposition (described in PASTA [35]) was used to
create disjoint subsets of taxa from the NJ tree. Data-
sets with 100 species were decomposed into 4–6 subsets
with a maximum subset size of 30 taxa, and datasets with
1000 species were decomposed into 10–15 subsets with a
maximum subset size of 120 taxa.

Constraint trees
Constraint trees were created using four different
approaches.

•	 Ttrue refers to constraint trees computed by restrict-
ing the true species tree to each subset of species.

•	 TAST refers to constraint trees computed by running
ASTRAL-III on each subset, i.e., on the estimated
gene trees restricted to each subset of species.

•	 TSVD refers to constraint trees computed by running
SVDquartets on each subset, i.e., on the concate-
nated alignment restricted to each subset of species.

Page 8 of 17Molloy and Warnow ﻿Algorithms Mol Biol (2019) 14:14

•	 TRAX refers to constraint trees computed by running
RAxML on each subset, i.e., on the concatenated
alignment restricted to each subset of species.

Notation
We often specify the inputs to NJ and NJMerge using the
following notation: NJ(D) and NJMerge(T  , D). For exam-
ple, NJMerge(TRAX , DLD ) refers to NJMerge given the
RAxML constraint trees and the log-det distance matrix
as input, whereas NJMerge(TRAX , D) refers to NJMerge
given the RAxML constraint trees and either the AGID or
the log-det distance matrix as input.

Evaluation
Species tree estimation error
Species tree estimation error was measured as the RF
error rate, i.e., the normalized RF distance between the
true and the estimated species trees both on the full spe-
cies set. Since both trees were fully resolved or binary, the
RF error rate is the proportion of edges in the true tree
that are missing in the estimated tree. RF error rates were
computed using Dendropy [53].

Running time
All computational experiments were run on the Blue
Waters supercomputer, specifically, the XE6 dual-
socket nodes with 64 GB of physical memory and two
AMD Interlagos model 6276 CPU processors (i.e.,
one per socket each with 8 floating-point cores). All
methods were given access to 16 threads with 1 thread
per bulldozer (floating-point) core. SVDquartets and
RAxML were explicitly run with 16 threads; however,
ASTRAL-III and NJMerge were not implemented with
multi-threading at the time of this study. All methods
were restricted to a maximum wall-clock time of 48 h.

Running time was measured as the wall-clock time
and recorded in seconds for all methods. For ASTRAL,
SVDquartets, and RAxML, the timing data was
recorded for running the method on the full dataset
as well as running the method on subsets of the data-
set (to produce constraint trees for NJMerge). RAxML
did not complete within the maximum wall-clock time
of 48 h on datasets with 1000 taxa, so we used the last
checkpoint file to evaluate species tree estimation error
and running time. Specifically, running time was meas-
ured as the time between the info file being written and
the last checkpoint file being written.

We approximated total running time of the NJMerge
pipeline by combining the running timing data for esti-
mating the distance matrix, estimating the subset trees,
and combining the subset trees using NJMerge. If a

user only had access to one compute node, then subset
trees would need to be estimated in serial. In this case,
the running time of the NJMerge pipeline tP would be
approximated as

where k is the number of subsets, tD is time to estimate a
distance matrix with method MD , tT (i) is the time to esti-
mate a species tree on subset i with method MT , and tM
is the time to run NJMerge given the distance matrix and
the subset trees as input. The average running times for
tT and tM are shown in Additional file 1: Tables S9, S10.
The time to estimate the NJ tree from the distance matrix
is not included, as this took less than a minute even for
datasets with 1000 species. Note that given access to mul-
tiple compute nodes (at least 6 for the 100-taxon datasets
and at least 15 for the 1000-species datasets), the subset
trees could be estimated in parallel, as shown in [54].

It is worth noting that running ASTRAL-III and com-
puting the AGID matrix requires gene trees to be esti-
mated. Using the same experimental set-up (a single
Blue Waters compute node with 64 GB of memory and
16 floating-point cores), FastTree-2 took on average
18± 2 min to estimate 1000 gene trees for datasets with
100 species and on average 217± 20 min to estimate
1000 gene trees for datasets with 1000 species (Addi-
tional file 1: Tables S4, S5). The amount of time for
gene tree estimation can vary greatly, depending on the
method used and the analysis performed (e.g., model
of sequence evolution, bootstrapping, etc.); we did not
include the time to estimate gene trees in the reported
running times.

Results
Pipelines using NJMerge can be thought of in two ways:
(1) as techniques for potentially improving the accu-
racy of NJ (hopefully without a large increase in running
time) or (2) as techniques for potentially improving the
scalability or speed of the method MT used to compute
constraint trees (hopefully without sacrificing accuracy).
When distance-based species tree estimation is not as
accurate as some other species tree methods, we would
predict that NJMerge (when given constraint trees esti-
mated using highly accurate species tree methods) would
be more accurate than traditional NJ. Because NJMerge,
like NJ, is typically faster than other species tree meth-
ods, we would predict that NJMerge would improve the
running time of more computationally intensive methods
(such as RAxML) used to estimate constraint trees, hope-
fully without sacrificing accuracy.

(1)tP = tD +

k
∑

i=1

tT (i)+ tM

Page 9 of 17Molloy and Warnow ﻿Algorithms Mol Biol (2019) 14:14

Thus, we compared the accuracy of the NJMerge pipe-
line to traditional NJ, and we also compared the accuracy
and running time of the NJMerge pipeline to running
MT on the full dataset, where MT is the method used to
estimate the constraint trees for NJMerge. Results are
shown here for intron-like datasets; results for exon-like
datasets are shown in Additional file 1. Unless otherwise
noted, results were similar for both sequence types; how-
ever, species trees estimated on the exon datasets had
slightly higher error rates than those estimated on the
intron datasets. This is expected, as the exons had slower
rates of evolution (and thus less phylogenetic signal) than
the introns.

How do pipelines using NJMerge compare to Neighbor
Joining (NJ)?
In this section, we report results on the effectiveness of
using NJMerge as compared to NJ in terms of accuracy.

Impact of estimated distance matrix
We compared the accuracy of the NJMerge pipeline to
traditional NJ on distance matrices estimated from data-
sets with 100 taxa and varying numbers of genes (Fig. 5;

Additional file 1: Figure S1). Because the accuracy of
NJMerge also depends on error in the input constraint
trees, we considered an idealized case where NJMerge
was given true constraint trees (i.e., constraint trees
that agree with the true species tree). We found that
NJMerge(Ttrue , D) was more accurate than NJ(D) for all
model conditions and that the difference in error was
especially large when the number of genes was small and
the level of ILS was very high (e.g., the difference in mean
error was greater than 15% when matrices were esti-
mated from 25 introns but was closer to 5% when matri-
ces were estimated from 1000 introns). A similar trend
was observed for matrices computed using the log-det
distance. Interestingly, both NJ(D) and NJMerge(Ttrue ,
D) were more accurate when given the AGID matrix
rather than the log-det distance matrix as input—even
when the level of ILS was low/moderate. In summary,
NJMerge(Ttrue , D) was always more accurate than NJ(D),
but the improvement in accuracy was greater under chal-
lenging model conditions, suggesting that NJMerge(Ttrue ,
D) was more robust to error in the distance matrix than
NJ(D).

Fig. 5  Impact of estimated distance matrix on Neighbor Joining (NJ) and NJMerge. Neighbor Joining (NJ) was run with two different distance
matrices, and NJMerge was run with two different distance matrices and constraint trees that agreed with the true species tree (see “Performance
study” section for more information on the notation). Datasets had two different levels of incomplete lineage sorting (ILS) and numbers of genes
varying from 25 to 1000. Species tree estimation error is defined as the normalized Robinson–Foulds (RF) distance between true and estimated
species trees. Lines represent the average over replicate datasets, and filled regions indicate the standard error

Page 10 of 17Molloy and Warnow ﻿Algorithms Mol Biol (2019) 14:14

Impact of estimated constraint trees
We compared traditional NJ to the NJMerge pipeline
given estimated constraint trees on datasets with 1000
taxa and 1000 genes (Fig. 6; Additional file 1: Figure S2).
When the level of ILS was low/moderate, NJMerge out-
performed NJ regardless of the method used to estimate
species trees. For intron-like datasets with low/moder-
ate ILS, the use of constraint trees reduced the median
species tree error from 11–14% (NJ) to less than 3–6%
(NJMerge); however, when the level of ILS was very
high, the performance of NJMerge varied greatly with
the species tree method. Specifically, NJMerge(TSVD , D)
and NJMerge(TRAX , D) were less accurate than NJ(D) by
0–4% on average, whereas NJMerge(TAST , D) was more
accurate than NJ(D) by 0–1% on average (Additional
file 1: Tables S7, S8). These trends were consistent with
the relative performance of methods on the 100-taxon
datasets (Fig. 7 and Additional file 1: Figure S3); specifi-
cally, when the level of ILS was very high, SVDquartets
and RAxML performed worse than running NJ on either
the AGID matrix or the log-det distance matrix. In sum-
mary, NJMerge was highly impacted by the quality of
the constraint trees—so that accurate constraint trees
resulted in NJMerge being more accurate than NJ, but
inaccurate constraint trees resulted in NJMerge being
less accurate than NJ.

How do pipelines using NJMerge compare to ASTRAL‑III,
SVDquartets, and RAxML?
In this section, we compare the running time and the
accuracy of the NJMerge pipeline to running MT on
the full dataset, where MT is the method used to esti-
mate constraint trees for NJMerge. Because NJMerge
was more accurate when given the AGID matrix (Fig. 5;
Additional file 1: Figure S1), results for NJMerge given
the AGID distance matrix are shown here, and results for
NJMerge given the log-det distance matrix are shown in
Additional file 1.

ASTRAL‑III vs. NJMerge
Both NJMerge(TAST , DAGID ) and NJMerge(TAST , DLD )
provided running time advantages over ASTRAL-III
under some model conditions. While ASTRAL-III
completed on all the low/moderate ILS datasets with
1000 taxa and 1000 genes in less than 9 h on average,
ASTRAL-III failed to complete within the maximum
wall-clock time of 48 h on 23/40 datasets with 1000 taxa,
1000 genes, and very high ILS (Table 1). On the other
17/40 datasets, ASTRAL-III ran for more than 2000 min
(approximately 33 h). This difference between the low/
moderate ILS and the very high ILS datasets is notewor-
thy (see discussion). In contrast, NJMerge(TAST , DAGID )

completed in under 300 min (approximately 5 h) on aver-
age, including the time it took to estimate the distance
matrix and the ASTRAL-III subset trees in serial (Fig. 8,
Additional file 1: Figure S4). Note that NJMerge(TAST ,
DAGID ) failed on 0 datasets, and NJMerge(TAST , DLD )
failed on 2 datasets (Table 1). In summary, NJMerge sub-
stantially reduced the running time of ASTRAL-III on
the 1000-taxon, 1000-gene datasets with very high ILS.

ASTRAL-III and NJMerge(TAST , DAGID ) achieved simi-
lar levels of accuracy with the mean species tree error
within 0–2% for both intron and exon datasets (Fig. 8;
Additional file 1: Figure S4, Table S7). Trends were simi-
lar for NJMerge(TAST , DLD ) except when the level of ILS
was very high; under these conditions, the mean error
of NJMerge(TAST , DLD ) was 2–6% greater than that
of ASTRAL-III (Additional file 1: Figures S7 and S8,
Table S8).

Fig. 6  Impact of estimated constraint trees on NJMerge. Neighbor
Joining (NJ) was run with two different distance matrices, and
NJMerge was run with two different distance matrices and four
different sets of constraint trees (see “Performance study” section for
more information on the notation). Species tree estimation error is
defined as the normalized Robinson–Foulds (RF) distance between
true and estimated species trees. Note that gray bars represent
medians, gray squares represent means, gray circles represent
outliers, box plots are defined by quartiles (extending from the first
to the third quartiles), and whiskers extend to plus/minus 1.5 times
the interquartile distance (unless greater/less than the maximum/
minimum value)

Page 11 of 17Molloy and Warnow ﻿Algorithms Mol Biol (2019) 14:14

NJMerge vs. SVDquartets
Species trees can be estimated with SVDquartets using
the full set of

(n
4

)

 quartet trees or a subset of quartet trees.
Based on a prior study [55], which showed that the best
accuracy was obtained when using all quartet trees, we
computed all

(n
4

)

 quartet trees for 100-taxon datasets.
However, on datasets with 1000 taxa, SVDquartets was
run using a random subset of quartet trees (without
replacement), because the maximum number of quartets
allowed by SVDquartets (as implemented by PAUP*) was
4.15833× 1010 . Running PAUP* resulted in a segmenta-
tion fault for all 1000-taxon datasets, i.e., SVDquartets
failed on 40/40 datasets with 1000 taxa and 1000 genes.
In contrast, NJMerge(TSVD , DAGID ) failed on 0 datasets,
and NJMerge(TSVD , DLD ) failed on 3 datasets (Table 1).

NJMerge also improved running time on datasets with
100 taxa; for example, SVDquartets completed in 19–81
min on average, whereas NJMerge(TSVD , DAGID ) com-
pleted in less than 2 min on average for datasets with 100
taxa and 1000 genes (Fig. 9; Additional file 1: Figure S5).
This running time comparison does not take into account

the time needed to estimate gene trees, which required
on average 18 min using FastTree-2 on datasets with 100
taxa and 1000 genes.

NJMerge(TSVD , DAGID ) typically produced species trees
with less error than SVDquartets. The difference between
methods was typically small (between 0 and 2%) when
the level of ILS was low/moderate but could be larger
than 10% when the level of ILS was very high. Similar
trends were observed for NJMerge(TSVD , DLD ) (Addi-
tional file 1: Figures S9, S10).

NJMerge vs. RAxML
NJMerge(TRAX , DAGID ) and NJMerge(TRAX , DLD )
reduced the running time of RAxML by more than
half—even though RAxML was run on the subset trees
in serial (Fig. 10 and Additional file 1: Figure S6). For
the 1000-taxon datasets, the final checkpoint was writ-
ten by RAxML after more than 2250 min ( ∼ 37.5 h) on
average. In comparison, when RAxML was run on sub-
sets in serial, the average running time of NJMerge(TRAX ,
DAGID ) was between 500 (approximately 8.5 h) and 1500

Fig. 7  Comparison of species tree methods. All methods were run on the full dataset (i.e., not subsets) with 100 species. Neighbor Joining (NJ) was
run with two different distance matrices (“Performance study” section for more information on the notation). Species tree estimation error is defined
as the normalized Robinson–Foulds (RF) distance between true and estimated species trees. Note that gray bars represent medians, gray squares
represent means, gray circles represent outliers, box plots are defined by quartiles (extending from the first to the third quartiles), and whiskers
extend to plus/minus 1.5 times the interquartile distance (unless greater/less than the maximum/minimum value)

Page 12 of 17Molloy and Warnow ﻿Algorithms Mol Biol (2019) 14:14

min (approximately 25 h). Although these running times
for NJMerge do not include the time to estimate gene
trees, recall that it took on average 217 min (less than 4 h)
to estimate 1000 gene trees on datasets with 1000 species
using FastTree-2.

While NJMerge can fail to return a tree, NJMerge failed
less frequently than RAxML—when both methods were
given the same computational resources. NJMerge(TRAX ,
DAGID ) failed on 1 dataset, and NJMerge(TRAX , DLD )
failed on 2 datasets. In contrast, for datasets with 1000
taxa, RAxML failed to run on 38 intron-like datasets and
3 exon-like datasets due to “Out of Memory” (OOM)
errors (Table 1); the difference between the number of
intron-like versus the number of exon-like datasets is
noteworthy (see discussion).

For datasets with low/moderate levels of ILS, RAxML
produced species trees with less error (0–3% on aver-
age) than NJMerge(TRAX , DAGID ); however, for datasets
with very high levels of ILS, NJMerge(TRAX , DAGID ) pro-
duced species trees with less error (0–4% on average)
than RAxML (Fig. 10; Additional file 1: Figure S6). Simi-
lar trends were observed for NJMerge(TRAX , DLD ) (Addi-
tional file 1: Figures S11, S12).

Discussion
Remarks on the utility of pipelines using NJMerge
Pipelines using NJMerge can be viewed either as tech-
niques for improving traditional NJ or as techniques for
scaling a computationally-intensive base method (previ-
ously referred to as MT ) to larger datasets. Thus, in order
to maximize the utility of NJMerge, users should select a
base method that is both more accurate and more com-
putationally-intensive than NJ. Our results show that
selecting base methods for NJMerge may not be trivial
when analyzing phylogenomic datasets—because both
accuracy and running time were impacted by the level
of ILS. For example, ASTRAL-III was very fast when
the level of ILS was low/moderate but was substantially
slower when the level of ILS was very high. Similarly,
SVDquartets and RAxML were both more accurate than
NJ(DAGID ), i.e., NJst, when the level of ILS was low/mod-
erate but were less accurate than these methods when the
level of ILS was very high; note that this trend is consist-
ent with results from [12] (also see the review paper by
[56]). Overall, our results suggest that constraint trees
should be estimated using RAxML when the level of ILS
is low/moderate and using ASTRAL-III when the level of

Fig. 8  ASTRAL-III vs. NJMerge given ASTRAL-III constraint trees and average gene tree internode distance (AGID) matrix. Subplots on top row show
species tree estimation error (defined as the normalized RF distance between true and estimated species trees); note that gray bars represent
medians, gray squares represent means, gray circles represent outliers, box plots are defined by quartiles (extending from the first to the third
quartiles), and whiskers extend to plus/minus 1.5 times the interquartile distance (unless greater/less than the maximum/minimum value).
Subplots on bottom row show running time (in minutes); bars represent means and error bars represent standard deviations across replicate
datasets. NJMerge running times are for computing the subset trees “in serial”; see Eq. (1) in the main text for more information. The numbers of
replicates on which the methods completed is shown on the x-axis, e.g., N = X , Y indicates that ASTRAL-III completed on X out of 20 replicates and
that NJMerge(TAST ,DAGID ) completed on Y out of 20 replicates. ASTRAL-III did not complete within the maximum wall-clock time of 48 h on 4/40
intron-like datasets with 1000 taxa and very high ILS

Page 13 of 17Molloy and Warnow ﻿Algorithms Mol Biol (2019) 14:14

Table 1  The number of datasets on which methods failed is indicated below by model condition

ASTRAL-III failed due to running beyond the maximum wall clock time of 48 h; SVDquartets failed due to segmentation faults; RAxML failed due to running out of
memory; NJMerge failed due to being unable to find a legal siblinghood. Note that NJMerge is described by the input set T of constraint trees and input distance
matrix D; see “Performance study” section for more information on the notation

of taxa # of genes ILS level Sequence type Method # of failures
(out of 20)

100 25 Very high Exon NJMerge(Ttrue , DLD) 1

100 25 Very high Exon NJMerge(TRAX , DAGID) 1

100 25 Very high Intron NJMerge(Ttrue,DAGID) 1

1000 1000 Low/moderate Exon SVDquartets 20

1000 1000 Low/moderate Exon RAxML 3

1000 1000 Low/moderate Intron NJMerge(TAST  , DLD) 1

1000 1000 Low/moderate Intron SVDquartets 20

1000 1000 Low/moderate Intron RAxML 20

1000 1000 Very high Exon ASTRAL-III 19

1000 1000 Very high Exon NJMerge(Ttrue , DLD) 1

1000 1000 Very high Exon NJMerge(TAST  , DLD) 1

1000 1000 Very high Exon NJMerge(TSVD , DLD) 2

1000 1000 Very high Exon NJMerge(TRAX , DLD) 2

1000 1000 Very high Exon SVDquartets 20

1000 1000 Very high Intron ASTRAL-III 4

1000 1000 Very high Intron NJMerge(TSVD ,DLD) 1

1000 1000 Very high Intron SVDquartets 20

1000 1000 Very high Intron RAxML 19

Fig. 9  SVDquartets vs. NJMerge given SVDquartet constraint trees and average gene tree internode distance (AGID) matrix. Subplots on top row
show species tree estimation error (defined as the normalized RF distance between true and estimated species trees); note that gray bars represent
medians, gray squares represent means, gray circles represent outliers, box plots are defined by quartiles (extending from the first to the third
quartiles), and whiskers extend to plus/minus 1.5 times the interquartile distance (unless greater/less than the maximum/minimum value). Subplots
on bottom row show running time (in minutes); bars represent means and error bars represent standard deviations across replicate datasets.
NJMerge running times are for computing the subset trees “in serial”; see Eq. (1) in the main text for more information. The numbers of replicates
on which the methods completed is shown on the x-axis, e.g., N = X , Y indicates that SVDquartets completed on X out of 20 replicates and that
NJMerge(TSVD ,DAGID ) completed on Y out of 20 replicates. SVDquartets did not run any datasets with 1000 taxa due to segmentation faults

Page 14 of 17Molloy and Warnow ﻿Algorithms Mol Biol (2019) 14:14

ILS is very high, and thus, determining the level of ILS
in a given phylogenomic datasets is an important area
of future research. Finally, we note that NJMerge, when
given constraint trees that agreed with the true species
tree, was very accurate (less than 2% error on average)
even when the level of ILS was very high, suggesting that
NJMerge is a promising technique for scaling Bayes-
ian methods (e.g., Starbeast2 [8]) and future species tree
methods to larger datasets.

Although NJMerge can fail, this should not discour-
age potential users, as NJMerge failed on fewer datasets
than ASTRAL-III, SVDquartets, or RAxML—when all
methods were given the same computational resources,
including a maximum wall-clock time of 48 h. In our
experiments, NJMerge failed on only 11/2560 test cases
from running NJMerge on 320 datasets with two differ-
ent types of distance matrices and four different types of
constraint trees (Table 1).

Importantly, in all our experiments, NJMerge was run
within the divide-and-conquer pipeline shown in Fig. 4,
specifically, with subsets of taxa derived from decompos-
ing the NJ tree (blue dashed lines). Because NJMerge was
always given inputs generated by this pipeline, our results

on the accuracy, the failure rate, and the running time of
NJMerge may not generalize to arbitrary inputs.

Remarks on other results
Impact of distance matrix on NJ
Our results showed that on average NJ(DAGID ) was either
as accurate or else more accurate than NJ(DLD ). Notably,
there was a clear difference between these two methods
on datasets with 100 taxa and low/moderate levels of ILS;
specifically NJ(DAGID ) produced trees with less than 5%
error on average, whereas NJ(DLD ) produced trees with
greater than 10% error on average). However, on the exact
same model condition but with 1000 taxa, NJ(DAGID ) and
NJ(DLD ) produced trees with similar levels of accuracy.
This may be due to the difference between the median
branch length between low/moderate ILS datasets with
100 taxa and 1000 taxa (Additional file 1: Table S3); fur-
thermore, it is possible that branch length and other fac-
tors that limit the accuracy of NJ(DLD ) in the context of
gene tree estimation would also apply in the context of
species tree estimation. However, it is interesting to note
that NJ(DLD ) was more accurate than either SVDquartets
or RAxML when the level of ILS was very high, providing

Fig. 10  RAxML vs. NJMerge given RAxML constraint trees and and average gene tree internode distance (AGID) matrix. Subplots on top row show
species tree estimation error (defined as the normalized RF distance between true and estimated species trees); note that gray bars represent
medians, gray squares represent means, gray circles represent outliers, box plots are defined by quartiles (extending from the first to the third
quartiles), and whiskers extend to plus/minus 1.5 times the interquartile distance (unless greater/less than the maximum/minimum value). Subplots
on bottom row show running time (in minutes); bars represent means and error bars represent standard deviations across replicate datasets.
NJMerge running times are for computing the subset trees “in serial”; see Eq. (1) in the main text for more information. The numbers of replicates
on which the methods completed is shown on the x-axis, e.g., N = X , Y indicates that RAxML completed on X out of 20 replicates and that
NJMerge(TRAX ,DAGID ) completed on Y out of 20 replicates. RAxML was only able to run on 1/40 intron-like datasets with 1000 taxa due to “Out of
Memory” errors

Page 15 of 17Molloy and Warnow ﻿Algorithms Mol Biol (2019) 14:14

support for Allman et al.’s statement, “The simplicity and
speed of distance-based inference suggests log-det based
methods should serve as benchmarks for judging more
elaborate and computationally-intensive species trees
inference methods” [18].

Impact of ILS and sequence type on ASTRAL‑III
Our results showed that ASTRAL-III was much faster on
the low/moderate ILS datasets than on the very high ILS
datasets. This finding makes sense in light of ASTRAL-
III’s algorithm design. ASTRAL-III operates by search-
ing for an optimal solution to its search problem within
a constrained search space that is defined by the set X of
bipartitions in the estimated gene trees, and in particu-
lar, ASTRAL-III’s running time scales with |X |1.726 [30].
The set of gene trees will become more heterogeneous for
higher levels of ILS, and thus, the size of X will increase,
as every gene tree could be different when the level of ILS
is very high. In addition, gene tree estimation error can
also increase the size of X  , explaining why ASTRAL-III
failed to complete on exon datasets more often than on
intron datasets (Table 1, Additional file 1: Table S2).

Impact of sequence type on RAxML
Our results showed that RAxML failed on more intron-
like datasets than exon-like datasets. This finding makes
sense in light of RAxML’s implementation. RAxML uses
redundancy in site patterns to store the input alignment
compactly, so that the memory scales with the number
of unique site patterns. The intron datasets had more
unique site patterns than the exon datasets (i.e., greater
phylogenetic signal and lower gene tree estimation error),
which explains why RAxML required more memory
when analyzing introns.

Remarks on the statistical consistency of pipelines using
NJMerge
Although NJMerge can fail to return a tree, by statisti-
cal consistency under the MSC model (Corollary 7), the
probability that NJMerge fails goes to zero as the number
of true gene trees goes to infinity. In fact, NJMerge was
designed to have this theoretical guarantee via the selec-
tion of the heuristic for determining whether or not to
accept a siblinghood proposal. It is easy to think of other
heuristics that prevent NJMerge from failing but do not
have the guarantee of correctness (Theorem 3) and thus
do not have the guarantee of statistical consistency (Cor-
ollary 7). Designing heuristics that prevent NJMerge
from failing but have good theoretical properties is an
area of future research.

As mentioned previously, our proof of statistical con-
sistency under the MSC model requires that the number

of true gene trees goes to infinity, which is the equivalent
of requiring that both the number of gene trees and the
sequence length per gene tree go to infinity. Roch et al.
[6] recently showed that essentially all gene tree summary
methods (e.g., NJst [40], and ASTRAL [11]) are not sta-
tistically consistent under the MSC if the sequence length
per gene is fixed—and these theoretical results apply to
NJMerge as well. The failure to be statistically consist-
ent when the sequence length per gene is bounded is not
unique to gene tree summary methods or NJMerge, as
Roch et al. also showed that fully partitioned maximum
likelihood is not consistent under these conditions, and
[5] had shown that unpartitioned maximum likelihood is
also not consistent.

Conclusions
In this paper, we introduced a divide-and-conquer
approach to phylogeny estimation that (1) decomposes
a set of species into pairwise disjoint subsets, (2) builds
trees on each subset of species using a base method, and
(3) merges the subsets trees together using a distance
matrix. For the merger step, we presented a new method,
called NJMerge, and proved that some divide-and-con-
quer pipelines using NJMerge are statistically consistent
under some models of evolution. We then evaluated pipe-
lines using NJMerge in the context of species tree estima-
tion, specifically using simulated multi-locus datasets
with up to 1000 species and two levels of ILS. We found
that pipelines using NJMerge provided several ben-
efits to large-scale species tree estimation. Specifically,
under some model conditions, pipelines using NJMerge
improved the accuracy of traditional NJ and substan-
tially reduced the running time of three popular species
tree methods (ASTRAL-III, SVDquartets, and “concat-
enation” using RAxML) without sacrificing accuracy (see
discussion for details as the results depended on the level
of ILS). Finally, although NJMerge can fail to return a
tree, in our experiments, pipelines using NJMerge failed
on only 11 out of 2560 test cases. Together these results
suggest that NJMerge is a promising approach for scaling
highly accurate but computationally-intensive methods
to larger datasets.

This study also suggests several different directions
for future research. Since NJMerge uses a heuristic
(which can fail) to test for tree compatibility (in deciding
whether to accept a siblinghood proposal), a modifica-
tion to NJMerge to use an exact method for this problem
would reduce the failure rate and—if sufficiently fast—
would still enable scalability to large datasets. In addi-
tion, all aspects of the divide-and-conquer pipeline could
be modified and tested; for example, the robustness of

Page 16 of 17Molloy and Warnow ﻿Algorithms Mol Biol (2019) 14:14

NJMerge to the starting tree and initial subset decom-
position could be evaluated. Finally, divide-and-conquer
pipelines using NJMerge could be compared to tradi-
tional divide-and-conquer pipelines (e.g., Disk Covering
Methods) when robust implementations become publicly
available for species tree estimation. Other agglomerative
techniques for merging disjoint subset trees are being
developed (e.g., the agglomerative technique described in
[57] for gene tree estimation has good theoretical prop-
erties but has not yet been implemented), and NJMerge
should be compared to such techniques when they
become publicly available.

Additional file

Additional file 1. Detailed methods section, including software com-
mands. 12 figures and 10 tables describing additional results, including
those for exon-like datasets and those for analyses using log-det distance
matrices.

Abbreviations
GTR​: Generalized Time Reversible; ILS: incomplete lineage sorting; MSC: Multi-
Species Coalescent; NJ: Neighbor Joining; RF: Robinson–Foulds.

Acknowledgements
We thank the anonymous reviewers of our RECOMB-CG paper, whose feed-
back led to improvements in the quality of this paper.

Availability and requirements
Project name: NJMerge; Project home page: https​://githu​b.com/ekmol​loy/
njmer​ge; Operating systems: Platform independent; Programming language:
Python version 2.7; Other requirements: Dendropy version 4.3.0; License: BSD
3-Clause; Any restrictions to use by non-academics: None.

Authors’ contributions
Both authors designed the study, proved the theorems, and wrote the paper.
EKM implemented the algorithm and performed the simulation study. Both
authors read and approved the final manuscript.

Funding
This work was supported by the U.S. National Science Foundation (grants
1535977 and 1513629) to TW. EKM was supported by the NSF Graduate
Research Fellowship (Award DGE-1144245) and the Ira and Debra Cohen
Graduate Fellowship in Computer Science. Computational experiments were
performed on Blue Waters. This research is part of the Blue Waters sustained-
petascale computing project, which is supported by the NSF (Awards OCI-
0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort
of the University of Illinois at Urbana-Champaign and its National Center for
Supercomputing Applications.

Availability of data and materials
The datasets supporting the conclusions of this article are available in the
following Illinois Data Bank repositories: https​://doi.org/10.13012​/B2IDB​-14247​
46_V1 and https​://doi.org/10.13012​/B2IDB​-05694​67_V2.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 5 May 2019 Accepted: 13 June 2019

References
	1.	 Maddison WP. Gene trees in species trees. Syst Biol. 1997;46(3):523–36.

https​://doi.org/10.1093/sysbi​o/46.3.523.
	2.	 Pamilo P, Nei M. Relationships between gene trees and species trees. Mol

Biol Evol. 1988;5(5):568–83.
	3.	 Rannala B, Yang Z. Bayes estimation of species divergence times and

ancestral population sizes using DNA sequences from multiple loci.
Genetics. 2003;164(4):1645–56.

	4.	 Edwards SV. Is a new and general theory of molecular systemat-
ics emerging? Evolution. 2009;63(1):1–19. https​://doi.org/10.111
1/j.1558-5646.2008.00549​.x.

	5.	 Roch S, Steel M. Likelihood-based tree reconstruction on a concatena-
tion of aligned sequence data sets can be statistically inconsistent. Theor
Popul Biol. 2015;100:56–62. https​://doi.org/10.1016/j.tpb.2014.12.005.

	6.	 Roch S, Nute M, Warnow T. Long-branch attraction in species tree estima-
tion: inconsistency of partitioned likelihood and topology-based sum-
mary methods. Syst Biol. 2018;68:281–97. https​://doi.org/10.1093/sysbi​o/
syy06​1.

	7.	 Heled J, Drummond AJ. Bayesian inference of species trees from multilo-
cus data. Mol Biol Evol. 2010;27(3):570–80. https​://doi.org/10.1093/molbe​
v/msp27​4.

	8.	 Ogilvie HA, Bouckaert RR, Drummond AJ. StarBEAST2 brings faster spe-
cies tree inference and accurate estimates of substitution rates. Mol Biol
Evol. 2017;34(8):2101–14. https​://doi.org/10.1093/molbe​v/msx12​6.

	9.	 Liu L, Yu L. Estimating species trees from unrooted gene trees. Syst Biol.
2011;60(5):661–7. https​://doi.org/10.1093/sysbi​o/syr02​7.

	10.	 Saitou N, Nei M. The neighbor-joining method: a new method for recon-
structing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25. https​://doi.
org/10.1093/oxfor​djour​nals.molbe​v.a0404​54.

	11.	 Mirarab S, Reaz R, Bayzid MS, Zimmermann T, Swenson MS, Warnow T.
ASTRAL: genome-scale coalescent-based species tree estimation. Bio-
informatics. 2014;30(17):541–8. https​://doi.org/10.1093/bioin​forma​tics/
btu46​2.

	12.	 Molloy EK, Warnow T. To include or not to include: the impact of gene fil-
tering on species tree estimation methods. Syst Biol. 2018;67(2):285–303.
https​://doi.org/10.1093/sysbi​o/syx07​7.

	13.	 Chifman J, Kubatko L. Quartet inference from SNP data under the
coalescent model. Bioinformatics. 2014;30(23):3317–24. https​://doi.
org/10.1093/bioin​forma​tics/btu53​0.

	14.	 Jiang T, Kearney P, Li M. A polynomial time approximation scheme for
inferring evolutionary trees from quartet topologies and its application.
SIAM J Comput. 2001;30(6):1942–61. https​://doi.org/10.1137/S0097​53979​
93616​83.

	15.	 Jukes TH, Cantor CR. Evolution of protein molecules. In: Munro HN, editor.
Mammalian protein metabolism, vol. 3. New York: Academic Press; 1969.
p. 21–132.

	16.	 Steel MA. Recovering a tree from the leaf colourations it generates under
a Markov model. Appl Math Lett. 1994;7(2):19–24.

	17.	 Dasarathy G, Nowak R, Roch S. Data requirement for phylogenetic
inference from multiple loci: a new distance method. IEEE/ACM Trans
Comput Biol Bioinform. 2015;12(2):422–32. https​://doi.org/10.1109/
TCBB.2014.23616​85.

	18.	 Allman ES, Long C, Rhodes JA. Species tree inference from genomic
sequences using the log-det distance. 2018. arXiv​:1806.04974​.

	19.	 Warnow T, Moret BME, St. John K. Absolute convergence: true trees
from short sequences. In: Proceedings of the twelfth annual ACM-SIAM
symposium on discrete algorithms. SODA ’01. Philadelphia: Society for
Industrial and Applied Mathematics; 2001. p. 186–95.

	20.	 Huson DH, Vawter L, Warnow T. Solving large scale phylogenetic prob-
lems using DCM2. In: Proceedings of the seventh international confer-
ence on intelligent systems for molecular biology. Palo Alto: AAAI Press;
1999. p. 118–29.

	21.	 Lagergren J. Combining polynomial running time and fast convergence
for the disk-covering method. J Comput Syst Sci. 2002;65(3):481–93. https​
://doi.org/10.1016/S0022​-0000(02)00005​-3.

https://doi.org/10.1186/s13015-019-0151-x
https://github.com/ekmolloy/njmerge
https://github.com/ekmolloy/njmerge
https://doi.org/10.13012/B2IDB-1424746_V1
https://doi.org/10.13012/B2IDB-1424746_V1
https://doi.org/10.13012/B2IDB-0569467_V2
https://doi.org/10.1093/sysbio/46.3.523
https://doi.org/10.1111/j.1558-5646.2008.00549.x
https://doi.org/10.1111/j.1558-5646.2008.00549.x
https://doi.org/10.1016/j.tpb.2014.12.005
https://doi.org/10.1093/sysbio/syy061
https://doi.org/10.1093/sysbio/syy061
https://doi.org/10.1093/molbev/msp274
https://doi.org/10.1093/molbev/msp274
https://doi.org/10.1093/molbev/msx126
https://doi.org/10.1093/sysbio/syr027
https://doi.org/10.1093/oxfordjournals.molbev.a040454
https://doi.org/10.1093/oxfordjournals.molbev.a040454
https://doi.org/10.1093/bioinformatics/btu462
https://doi.org/10.1093/bioinformatics/btu462
https://doi.org/10.1093/sysbio/syx077
https://doi.org/10.1093/bioinformatics/btu530
https://doi.org/10.1093/bioinformatics/btu530
https://doi.org/10.1137/S0097539799361683
https://doi.org/10.1137/S0097539799361683
https://doi.org/10.1109/TCBB.2014.2361685
https://doi.org/10.1109/TCBB.2014.2361685
http://arxiv.org/abs/1806.04974
https://doi.org/10.1016/S0022-0000(02)00005-3
https://doi.org/10.1016/S0022-0000(02)00005-3

Page 17 of 17Molloy and Warnow ﻿Algorithms Mol Biol (2019) 14:14

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

	22.	 Nelesen S, Liu K, Wang L-S, Linder CR, Warnow T. DACTAL: divide-
and-conquer trees (almost) without alignments. Bioinformatics.
2012;28(12):274–82. https​://doi.org/10.1093/bioin​forma​tics/bts21​8.

	23.	 Bayzid MS, Hunt T, Warnow T. Disk covering methods improve
phylogenomic analyses. BMC Genom. 2014;15(6):7. https​://doi.
org/10.1186/1471-2164-15-S6-S7.

	24.	 Warnow T. Computational phylogenetics: an introduction to designing
methods for phylogeny estimation. Cambridge: Cambridge University
Press; 2017.

	25.	 Bodlaender HL, Fellows MR, Warnow TJ. Two strikes against perfect phy-
logeny. In: Automata, languages and programming: 19th international
colloquium Wien, Austria, July 13–17, 1992 proceedings. Berlin: Springer;
1992. p. 273–83. https​://doi.org/10.1007/3-540-55719​-9_80.

	26.	 Bansal MS, Burleigh JG, Eulenstein O, Fernández-Baca D. Robin-
son–Foulds supertrees. Algorithms Mol Biol. 2010;5(1):18. https​://doi.
org/10.1186/1748-7188-5-18.

	27.	 Ragan MA. Phylogenetic inference based on matrix representation of
trees. Mol Phylogenet Evol. 1992;1(1):53–8. https​://doi.org/10.1016/1055-
7903(92)90035​-F.

	28.	 Nguyen N, Mirarab S, Warnow T. MRL and SuperFine+MRL: new
supertree methods. Algorithms Mol Biol. 2012;7(1):3. https​://doi.
org/10.1186/1748-7188-7-3.

	29.	 Warnow T. Supertree construction: opportunities and challenges. ArXiv
e-prints; 2018. arXiv​:1805.03530​

	30.	 Zhang C, Rabiee M, Sayyari E, Mirarab S. ASTRAL-III: polynomial time
species tree reconstruction from partially resolved gene trees. BMC
Bioinform. 2018;19(6):153. https​://doi.org/10.1186/s1285​9-018-2129-y.

	31.	 Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-
analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3. https​://
doi.org/10.1093/bioin​forma​tics/btu03​3.

	32.	 Steel M. The complexity of reconstructing trees from qualitative char-
acters and subtrees. J Classif. 1992;9(1):91–116. https​://doi.org/10.1007/
BF026​18470​.

	33.	 Warnow TJ. Tree compatibility and inferring evolutionary history. J Algo-
rithms. 1994;16(3):388–407. https​://doi.org/10.1006/jagm.1994.1018.

	34.	 Aho AV, Sagiv Y, Szymanski TG, Ullman JD. Inferring a tree from low-
est common ancestors with an application to the optimization of
relational expressions. SIAM J Comput. 1981;10(3):405–21. https​://doi.
org/10.1137/02100​30.

	35.	 Mirarab S, Nguyen N, Guo S, Wang L-S, Kim J, Warnow T. PASTA: ultra-
large multiple sequence alignment for nucleotide and amino-acid
sequences. J Comput Biol. 2015;22(5):377–86. https​://doi.org/10.1089/
cmb.2014.0156.

	36.	 Gascuel O. Concerning the NJ algorithm and its unweighted version, UNJ.
In: Roberts FS, Rzhetsky A, editors. Mathematical hierarchies and biology.
Providence: American Mathematical Society; 1997. p. 149–70.

	37.	 Atteson K. The performance of neighbor-joining methods of phyloge-
netic reconstruction. Algorithmica. 1999;25(2–3):251–78. https​://doi.
org/10.1007/PL000​08277​.

	38.	 Bryant D. On the uniqueness of the selection criterion in neighbor-join-
ing. J Classif. 2005;22:3–15. https​://doi.org/10.1007/s0035​7-005-0003-x.

	39.	 Tavaré S. Some probabilistic and statistical problems in the analysis of
DNA sequences. Lect Math Life Sci. 1986;17(2):57–86.

	40.	 Allman ES, Degnan JH, Rhodes JA. Species tree inference from gene splits
by unrooted STAR methods. IEEE/ACM Trans Comput Biol Bioinform.
2018;15(1):337–42. https​://doi.org/10.1109/TCBB.2016.26048​12.

	41.	 Vachaspati P, Warnow T. ASTRID: accurate species trees from
internode distances. BMC Genom. 2015;16(10):3. https​://doi.
org/10.1186/1471-2164-16-S10-S3.

	42.	 Neyman J. Molecular studies of evolution: a source of novel statistical
problems. In: Gupta SS, Yackel J, editors. Statistical decision theory and
related topics. Cambridge: Academic Press; 1971. p. 1–27. https​://doi.
org/10.1016/B978-0-12-30755​0-5.50005​-8.

	43.	 Felsenstein J. Evolutionary trees from DNA sequences: a maximum likeli-
hood approach. J Mol Evol. 1981;17(6):368–76. https​://doi.org/10.1007/
BF017​34359​.

	44.	 Mitrinović DS. Analytic inequalities. New York: Springer; 1970.
	45.	 Mirarab S, Warnow T. ASTRAL-II: coalescent-based species tree estimation

with many hundreds of taxa and thousands of genes. Bioinformatics.
2015;31(12):44–52. https​://doi.org/10.1093/bioin​forma​tics/btv23​4.

	46.	 Robinson DF, Foulds LR. Comparison of phylogenetic trees. Math Biosci.
1981;53(1):131–47. https​://doi.org/10.1016/0025-5564(81)90043​-2.

	47.	 Mallo D, De Oliveira Martins L, Posada D. SimPhy: phylogenomic simula-
tion of gene, locus, and species trees. Syst Biol. 2016;65(2):334–44. https​://
doi.org/10.1093/sysbi​o/syv08​2.

	48.	 Fletcher W, Yang Z. INDELible: a flexible simulator of biological sequence
evolution. Mol Biol Evol. 2009;26(8):1879–88. https​://doi.org/10.1093/
molbe​v/msp09​8.

	49.	 Jarvis ED, Mirarab S, et al. Whole-genome analyses resolve early branches
in the tree of life of modern birds. Science. 2014;346(6215):1320–31. https​
://doi.org/10.1126/scien​ce.12534​51.

	50.	 Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-
likelihood trees for large alignments. PLoS ONE. 2010;5(3):1–10. https​://
doi.org/10.1371/journ​al.pone.00094​90.

	51.	 Swofford DL. PAUP* (*Phylogenetic Analysis using PAUP); 2018. http://
phylo​solut​ions.com/paup-test/.

	52.	 Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate,
and fast distance-based phylogeny inference program. Mol Biol Evol.
2015;32(10):2798–800. https​://doi.org/10.1093/molbe​v/msv15​0.

	53.	 Sukumaran J, Holder MT. DendroPy: a Python library for phylogenetic
computing. Bioinformatics. 2010;26(12):1569–71. https​://doi.org/10.1093/
bioin​forma​tics/btq22​8.

	54.	 Molloy EK, Warnow T. NJMerge: a generic technique for scaling
phylogeny estimation methods and its application to species trees. In:
Blanchette M, Ouangraoua A, editors. Comparative genomics. RECOMB-
CG 2018. Lecture notes in computer science, vol. 11183. Cham: Springer;
2018. https​://doi.org/10.1007/978-3-030-00834​-5_15.

	55.	 Swenson MS, Suri R, Linder CR, Warnow T. An experimental study of
Quartets MaxCut and other supertree methods. Algorithms Mol Biol.
2011;6(1):7. https​://doi.org/10.1186/1748-7188-6-7.

	56.	 Xu B, Yang Z. Challenges in species tree estimation under the multi-
species coalescent model. Genetics. 2016;204(4):1353–68. https​://doi.
org/10.1534/genet​ics.116.19017​3.

	57.	 Zhang QR, Rao S, Warnow TJ. New absolute fast converging phylogeny
estimation methods with improved scalability and accuracy. In: 18th
international workshop on algorithms in bioinformatics, WABI 2018,
August 20–22, 2018, Helsinki, Finland. 2018. pp. 8–1812. https​://doi.
org/10.4230/LIPIc​s.WABI.2018.8

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1093/bioinformatics/bts218
https://doi.org/10.1186/1471-2164-15-S6-S7
https://doi.org/10.1186/1471-2164-15-S6-S7
https://doi.org/10.1007/3-540-55719-9_80
https://doi.org/10.1186/1748-7188-5-18
https://doi.org/10.1186/1748-7188-5-18
https://doi.org/10.1016/1055-7903(92)90035-F
https://doi.org/10.1016/1055-7903(92)90035-F
https://doi.org/10.1186/1748-7188-7-3
https://doi.org/10.1186/1748-7188-7-3
http://arxiv.org/abs/1805.03530
https://doi.org/10.1186/s12859-018-2129-y
https://doi.org/10.1093/bioinformatics/btu033
https://doi.org/10.1093/bioinformatics/btu033
https://doi.org/10.1007/BF02618470
https://doi.org/10.1007/BF02618470
https://doi.org/10.1006/jagm.1994.1018
https://doi.org/10.1137/0210030
https://doi.org/10.1137/0210030
https://doi.org/10.1089/cmb.2014.0156
https://doi.org/10.1089/cmb.2014.0156
https://doi.org/10.1007/PL00008277
https://doi.org/10.1007/PL00008277
https://doi.org/10.1007/s00357-005-0003-x
https://doi.org/10.1109/TCBB.2016.2604812
https://doi.org/10.1186/1471-2164-16-S10-S3
https://doi.org/10.1186/1471-2164-16-S10-S3
https://doi.org/10.1016/B978-0-12-307550-5.50005-8
https://doi.org/10.1016/B978-0-12-307550-5.50005-8
https://doi.org/10.1007/BF01734359
https://doi.org/10.1007/BF01734359
https://doi.org/10.1093/bioinformatics/btv234
https://doi.org/10.1016/0025-5564(81)90043-2
https://doi.org/10.1093/sysbio/syv082
https://doi.org/10.1093/sysbio/syv082
https://doi.org/10.1093/molbev/msp098
https://doi.org/10.1093/molbev/msp098
https://doi.org/10.1126/science.1253451
https://doi.org/10.1126/science.1253451
https://doi.org/10.1371/journal.pone.0009490
https://doi.org/10.1371/journal.pone.0009490
http://phylosolutions.com/paup-test/
http://phylosolutions.com/paup-test/
https://doi.org/10.1093/molbev/msv150
https://doi.org/10.1093/bioinformatics/btq228
https://doi.org/10.1093/bioinformatics/btq228
https://doi.org/10.1007/978-3-030-00834-5_15
https://doi.org/10.1186/1748-7188-6-7
https://doi.org/10.1534/genetics.116.190173
https://doi.org/10.1534/genetics.116.190173
https://doi.org/10.4230/LIPIcs.WABI.2018.8
https://doi.org/10.4230/LIPIcs.WABI.2018.8

	Statistically consistent divide-and-conquer pipelines for phylogeny estimation using NJMerge
	Abstract
	Background:
	Results:
	Conclusions:

	Introduction
	NJMerge
	Divide-and-conquer pipelines for phylogeny estimation
	Statistical consistency

	Performance study
	Simulated datasets
	True species and true gene trees
	True sequence alignments
	Estimated gene trees

	Estimated species trees
	NJMerge
	Distance matrices
	Subset decomposition
	Constraint trees
	Notation

	Evaluation
	Species tree estimation error
	Running time

	Results
	How do pipelines using NJMerge compare to Neighbor Joining (NJ)?
	Impact of estimated distance matrix
	Impact of estimated constraint trees

	How do pipelines using NJMerge compare to ASTRAL-III, SVDquartets, and RAxML?
	ASTRAL-III vs. NJMerge
	NJMerge vs. SVDquartets
	NJMerge vs. RAxML

	Discussion
	Remarks on the utility of pipelines using NJMerge
	Remarks on other results
	Impact of distance matrix on NJ
	Impact of ILS and sequence type on ASTRAL-III
	Impact of sequence type on RAxML

	Remarks on the statistical consistency of pipelines using NJMerge

	Conclusions
	Acknowledgements
	References

