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Abstract: Pharmacogenomics has been used effectively in studying adverse drug reactions 
by determining the person-specific genetic factors associated with individual response to 
a drug. Current approaches have revealed the significant importance of sequencing technol-
ogies and sequence analysis strategies for interpreting the contribution of genetic variation in 
developing adverse reactions. Advance in next generation sequencing and platform brings 
new opportunities in validating the genetic candidates in certain reactions, and could be used 
to develop the preemptive tests to predict the outcome of the variation in a personal response 
to a drug. With the highly accumulated available data recently, the in silico approach with 
data analysis and modeling plays as other important alternatives which significantly support 
the final decisions in the transformation from research to clinical applications such as 
diagnosis and treatments for various types of adverse responses. 
Keywords: pharmacogenomics, adverse drug reactions, next generation sequencing, 
genome-wide association study, candidate gene approach

Adverse Drug Reactions
Adverse drug reactions (ADRs) are defined as adverse events that happen to 
patients after taking certain drugs in clinical treatment.1,2 ADRs can cause failure 
to almost every organ, but more frequent targets are skin, blood, and liver.3–16 

These reactions have been reported to affect 10–20% inpatients and about 25% 
outpatients17–19 and becoming the major burden of healthcare globally. Edward 
and Aronson have characterized ADRs into six types from A-F (Table 1), in 
which two major causes are determined as pharmacologic (type A) and immuno-
logic effects (type B). Some rare ADRs resulted from complementary drug 
metabolism and immunogenic responses.20 Type A is the most common ADRs 
which driven by the pharmacodynamics reactions including drug metabolism and 
transport. This type of ADRs is dose-dependent and predictable, therefore they 
can be managed by adjusting drug intake. The incidences of this ADR type 
depend largely on the manifestations of Phase I and Phase II liver enzymes 
such as cytochrome P450s and glutathione transferases. The majority of ADR 
type B is drug hypersensitivity reactions (DHRs) which count for about 20% of 
total ADR cases and are mostly driven by immune system factors such as human 
leukocyte antigens. The reactions may happen at a very low amount of drug 
compared with a normal dose, and are classified based on different sorts of 
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mechanisms. DHRs are more frequently categorized as 
immediate and delayed reactions regarding the time 
course of development.21 Even though the other four 
types of ADRs were also classified based on the involve-
ment of the associated factors and systematic response to 
the monitoring methods, the most common ADRs 
observed from literature are type A (on-target or intrin-
sic) and type B (off-target or idiosyncratic). The ADRs 
may appear in patients with mild symptoms from dizzi-
ness to very severe syndromes or death, causing much 
uncomfortability during treatment. In some specific con-
ditions, drugs must be withdrawn and the treatments have 
to be switched to new therapies. Accurate diagnosis 
therefore becomes vital to save patients and reduce finan-
cial tension. The pharmacogenomic studies of gene–drug 
relationships bring relevant knowledge to add genetic 
factors as one to be diagnosed prior to using a drug.

Genetic Predisposition of ADRs
Advances in pharmacogenomics and immunogenomics 
have revealed the involvement of multiple molecular fac-
tors in response to a drug, raising the concept of drug– 
gene relationship, and moreover, the mechanisms of 
response. Pharmacogenomics approaches developed to 
perceive the presentation of genes in a particular group 
of samples as well as the gene products under certain 
conditions. Upon exposure to a drug, a particular gene 
set will express and bring about the products that could 
be assessed. The completion of the human genome 
sequencing has brought several advantages to elucidate 
the relationship between a person’s genome and drug 
response. Drug metabolizing enzymes cytochrome P450 
(CYPs) especially members 1,2 and 3 families play an 
important role in drug metabolism and toxicity. CYP2D6, 
CYP2C19 and CYP2C9 involve in the metabolism of 
about 80% of therapeutic drugs today. The variation in 
these genes therefore accounts for most of the ADRs type 
A in literature. In clinical practice, CYP2D6 biomarkers 
were observed to link with about 18% of ADR cases 
reported and suggested by the FDA.22 This gene variation 
is ethnic-specific and required individual validation in 
a certain population. In drug hypersensitivity, observa-
tional studies in patients treated with some drug groups 
have shown the high association of genes of HLA classes 
I and II with the incidence of disease states. For example, 
HLA-B*15:11 is well-known linked with carbamazepine – 
inducing SCARs in Japanese and Korean people,23,24 

while in South East Asian countries, SCARs to the same 
drug have prevalently appeared in carriers of HLA-B*15 
:02 alleles.25–28 Antiretroviral abacavir, on the other hand, 
is more consistently linked with hypersensitivity in 
patients carrying HLA-B*57:01 across multiple popula-
tions of different origins.29–38 The increasing size and 
abundance of data accumulated from studies make 
research in data mining now available for 
applications.39,40 This review presents the features of cur-
rent approaches and archive, and state the availability of 
the data obtained for public share.

Pharmacogenomics Approaches to 
Study ADRs
Studies on Target Genes Candidates: 
Replication Approach
More than 95 percents of ADR investigations in Asia are 
replication approaches.41 A similar situation is also seen in 

Table 1 ADR Classification

Type Clinical 
Characteristics

Examples Drugs

A Pharmacological 

effect; Predictable; 

Dose dependent

Thrombolysis 

Serotonin 

syndrome

Antiplatelets 

Digoxin

B Caused by Immune – 

mediation and non- 
immune –mediation; 

Nonpredictable; Dose 

independent

MPE 

SCARs

Betalactams 

Anticonvulsants

C Mix pharmaco- 
immuno effect; 

Chronic; Cumulative 

dose-related; 
Manageable by 

withdrawal

Hypothalamic- 
pituitary- 

adrenal axis 

suppression

Corticosteroids

D Dose – related; 

Nonmanageable by 

withdrawal

Teratogenesis Diethylstilbestrol

E Withdrawal effect; 

Manageable by slow 
withdrawal or 

reintroducing

Opiate 

withdrawal 
syndrome

Opiate

F Failure; Dose – 

related; Often caused 

by drug interaction; 
Manageable by 

changing dose

Inadequate 

dosage of an 

oral 
contraceptive

Contraceptive 

drugs
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other regions. The study is based on case-control design 
where people using the same drug(s) are chosen for investiga-
tion. Those subjects that develop adverse reactions are care-
fully characterized and set as cases, whereas controls are the 
ones who can metabolize the same drug normally. Key var-
iants that show strong association parameters in genome-wide 
association study (GWAS) would be selected for replications. 
The designated genes or variants might also be chosen from 
previous investigations in closely related populations.

Replication approach can be considered to assess the 
prevalence of genes in certain groups of patients in the 
association study. It can also be used to validate a marker 
in multiple samples. The replication scheme is therefore 
designed in a variable approach such as combining different 
polymerase chain reaction (PCR) – based techniques such as 
PCR followed with restriction fragment length polymorph-
ism (RFLP); conventional PCR with sequencing; or RT-PCR 
and in silico techniques.24,42–45 Compared with next genera-
tion sequencing, this method is much cheaper and totally 
affordable for research, and it can be scaled and transformed 
into an application with little optimization.46,47

Several genetic risk factors responding to drugs were 
discovered in the gene candidate approach. Abacavir 

becomes one of the first drugs studied to date to be aware 
by FDA in patients carrying HLA-B*57:01 alleles (released 
in 2017). The allele was found more prevalently in abacavir – 
inducing hypersensitivity patients across 
continents.30,34–36,48–50 PCR method was repeated simply 
in several samples using the sequence-specific oligonucleo-
tides followed with sequencing. The consistency of the 
association between abacavir hypersensitivity and HLA- 
B*57:01 leads to the general instruction and guideline by 
FDA to use HLA-B*57:01 test prior to taking this drug. The 
other example is antiepileptic drug carbamazepine, which 
has caused highly variable reactions to people in different 
ethnic groups. Using PCR – based genotyping, HLA-B*15 
:02 is shown to associate with SJS/TEN in South Asian 
populations including Han Chinese, Thai, Vietnamese, and 
Indian,25–28,35,51,52 but in East Asians like Korean and 
Japanese, the disease is tightly linked with HLA-B*15 
:11.23,24 In addition to the main allele mentioned above for 
carbamazepine-induced SCAR, HLA-A*31:01 is also asso-
ciated with the severe skin disease caused by this drug. 
A detection test for these alleles has been developed to 
promisingly use as a diagnostic method in screening the 
carbamazepine sensitive patients before prescription.53,54 

Table 2 Selected Genes in Replication Approaches

Drug Gene Disease Population Methods Ref.

Abacavir HLA – B*57:01 Hypersensitivity Costa Rica Central, 

Australia, Italia, 

Argentina

PCR, sequencing 30,34–36,48–50

Nevirapine CYP2B6 TRAF3IP2 Hypersensitivity African PCR 55–57

Carbamazepine HLA – B*15:02 SCAR Han Chinese, Thai, 

Vietnamese

Sequence specific oligonucleotide 

reverse line blots

25,26,52,54,58

HLA-B*1511 SJS/TEN Japanese 23

HLA-A*31:01 MPE DRESS Han Chinese, 
Vietnamese

PCR 26,54

HLA-B*51:01 MPE DRESS Han Chinese 26

Phenytoin HLA - B*15:02 
HLA – B*15:13

SCAR Malaysia PCR 59

HLA-B*13:01, HLA- B*56:02/ 
04, CYP2C19*3

SCAR Thailand PCR 60

NSAID ALOX15 Respiratory 

disease

Spanish PCR 42

Co- 

trimoxazole

CYP2C9 2*/3* and CYP2C19 
3* and NAT2

Hypersensitivity UK PCR 61
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Using PCR in case–control design, several gene-drug asso-
ciations have been revealed, providing the basis for syn-
drome – drug linkage using amplification methods (Table 
2, Table 3).

Accumulated evidences from individual researches 
across populations reveal the geographic difference in 
genetic variability. The association of a gene to a drug 
response in different populations are varied along with vari-
able allele frequency, haplotype frequency and linkage dis-
equilibrium. Several diseases are multifactorial that require 

the combinational interpretation of many genes. The meta- 
analysis of whole exome data from six ethnic populations 
from different parts of the world shows the consistent find-
ings in drug-related genes. About half of the functional 
variants of these genes are unique to one of 6 populations 
studied.62 In addition, amongst the drug-related genes ana-
lyzed, CYPs and phase II enzyme have highest difference in 
cumulative allele probability (CAP), indicating the variation 
in possibility that a functional variant affects the drug 
response phenotypes. Although the analysis was based on 

Table 2 Approaches of GWAS in Drug Hypersensitivity and Outcomes

Drugs Population Case Control Associated Gene – Disease Ref.

Antiretrovirals

Nevirapine Saharan 

African

151 182 HLA-C*04:01 - SJS/TEN 73

Thai 72 77 (rs1265112 and rs746647) within CCHCR1 – skin rash 74

Antibiotics

Sulfonamide US 91 184 None – hypersensitivity 75

Dapsone Chinese 39 833 HLA-B*13:01 – dapsone hypersensitivity 76

Beta lactam - 

Penicillin

Spain 

Italy

387 

299

1124 

362

Rs4958427 of ZNF300 – penicillin allergy 

rs17612 of C5 
rs7754768 and rs9268832 of the HLA-DRA | HLA-DRB5 interregion 

rs7192 of HLA-DRA

77

NSAID

NSAID Spanish 112 124 None but suggestive regions of RIMS1, BICC1 and RAD51L 1 – urticarial/ 
angioderma

78

Han Chinese 120 101 None but suggestive regions of ABI3BP - urticarial/angioderma 78

Aspirin Korean 117 685 HLA-DPB1 rs1042151 - Respiratory disease 79

Korean SBF1 – asthma 80

Cold medicine Japanese 117 691 rs4917014 of IKZF1 
SCAR

81

Anticonvulsant

Lamotrigine 

Phenytoin

UK 46 

44

1296 None – hypersensitivity 82

Phenytoin Taiwan CYP2C9*3 - SCAR 83

Lamotrigine Korean 34 1214 rs12668095 near CRAMP1L/TMEM204/IFT140/HN1L 
rs79007183 near TNS3 
skin rash

84

Carbamazepine Japanese 53 882 HLA-A*31:01 - SCAR 85

Carbamazepine European 65 3987 HLA-A*31:01 – immediate and delayed hypersensitivity (including SCAR) 86

Various drugs Caucasian 96 198 None – SJS/TEN 87

Others

Allopurinol Japanese SJS/TEN HLA-B*58:01 88

Asparaginase US 589 3308 rs6021191 variant in NFATC2 
rs17885382 in HLA-DRB1

89
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only the exome data, the major outcome obtained from this 
result is crucial for each country to build the own pharma-
cogenomic database. The availability of this data would get 
us closer to personalized medicine when doctors can more 
precisely predict the effect of a drug to a patient and choose 
the best medication for a person.

Genome-Wide Association Studies
Genome-wide association study (GWAS) has shown to be 
one of the very effective approaches to screen for the risk 
factors associated with a certain disease.63 To date, there 
are 4054 publications and almost 140 thousand associa-
tions have been published in the GWAS catalog.64 The 
approaches are designed with a case–control model fol-
lowed with next generation sequencing and SNP calling 
against the reference genome. At this present time, the 
enormous number of SNPs would be obtained and sent 
for further evaluation of association analysis. Since GWAS 
evaluated a large number of SNPs, it requires a much 
larger number of samples to achieve the statistical 
reliability.65–69 The correlation between the number of 
SNP and sample size is calculated. It is estimated that 
testing a single SNP marker requires 248 cases, while 
testing 500,000 SNPs and 1 million markers requires 
1206 cases and 1255 cases, respectively, under the 
assumption of an odds ratio of 2, 5% disease prevalence, 
5% minor allele frequency, complete linkage disequili-
brium (LD), 1:1 case/control ratio, and a 5% error rate in 
an allelic test.70

Recruitment of the large sample in research requires 
big financial support as well as expertise in data analysis. 
For this reason, GWAS is preferably used for emerging 
diseases or complex traits that cannot be simply under-
stood by a single gene phenotype. Specific variants were 
found in different cohorts providing that risk factors could 
be thoroughly scanned and validated. GWAS can be 
designed to integrate with pharmacodynamics to study 
the drug response in either prospective or retrospective 
approaches. The suspected drug is administered at com-
mon or tested doses and given to individuals. People are 
recruited based on their response and their genotypes are 
scanned for all SNPs, and phenotypes are observed 
through the response of each individual under drug 
conditions.71 In common design for ADR study, patients 
are selected with a similar phenotype that demonstrating 
the characteristics of the same disease in response to 
a certain drug, compared with the control subjects who 
take the same prescription and well improved without 

adverse reactions (drug tolerant). The statistical analysis 
is then performed to find the association based on genome 
wide significance, predictive values, et etc.72 The antic-
onvulsants, antimicrobial and NSAID are among the most 
causative drugs of ADRs, and were among the first drugs 
studied and analyzed in GWAS (Table 2).

Several factors have been discussed for the better 
improvement of the GWAS significance. The sample size 
is one of the important factors. In the standard approach 
mentioned, the number of subjects recruited in the study 
should reach the required quantity in which it could cover 
the number of possible variants.90 However, in many rare 
syndromes, recruiting adequate samples seems impossible 
in a given time. It is therefore requiring consecutive phases 
of research in which sample collection needs to be com-
pleted prior to implementing all other research steps. 
Multiple attempts have been made to improve the relia-
bility and accuracy of the genome-wide analysis even with 
a small reference population.91 The findings discussed the 
adjustment of the model, in which after testing in reference 
data set of population, both theory and empirical observa-
tion from simulation agreed well in the population samples 
with a high degree of relatedness. These results suggested 
that higher significance would be obtained in the subjects 
with the same ethnic origin than in the mixed groups such 
as meta-analysis. For that, the accuracy and significance at 
genome-wide scale are still obtained even in the cohort 
with a small number of subjects (as 50).

Design is another important feature besides sample size 
added to the success of GWAS. Several samples such as 
some examples explained above cannot get the genome 
wide significance assigned by the International Hapmap 
consortium92 assuming that an OR of 2, MAF 5%, disease 
prevalence 5% and complete linkage disequilibrium. The 
outcome might be due to the low allele frequency. The 
associated p-value suggested 5 x 10−8 is valid for common 
variants with MAF ≥ 5%. When analyzing variants with 
lower MAF values such as 1%, 0.5% or 0.1%, the model 
showed the genome wide significance with p values are 3 
× 10−8, 2×10−8 and 1 × 10−8, respectively. The inclusion of 
LD was indicated not necessary as the model can analyze 
all variants even they have complete linkage disequili-
brium (r2 =1).93

Data Mining and in silico Approach
Although replication approaches have contributed to the 
mass data accumulation through scanning several cohorts, 
adding to better understanding the genetics of population, 
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the research design should be utilized with thorough con-
sideration in different aspects.

First, the selected candidate gene should be chosen 
from the combinational results of genome scanning and/ 
or tested gene of the whole population. The high associa-
tion of a single gene with the disease might not completely 
interpret the cause–effect relationship. Pan reported an 
HLA-B*15:02 negative - case in Taiwan population who 
developed hypersensitivity in response to 
carbamazepine,47 suggesting that, the insight about the 
genetics of a common disease contributes as part of dis-
ease development. In the Thai cohort, screening of the 
HLA genes could help to protect only 22% of SCAR 
Thai patients (mainly allopurinol - and carbamazepine – 
inducing) whereas using drug-induced IFN-γ-specific cells 
scan, approximately 46% of patients with SCAR were 
detected positive.94 Second, with the complication of the 
metabolism, approaching a real system to study mechan-
ism sometimes is not possible. The virtual platform may 
be one of the very good options to try.

The in silico study of carbamazepine and SCAR using 
pooled data from Asian populations have proved that the 
polymorphic alleles themselves may not be sufficient to 
explain the clinical outcomes, instead, the proteins or 
complex combination of multiple factors could efficiently 
help to increase the predictive value. For example, when 
aligning available HLA – B75 protein members on the 
crystal structure of HLA – B*15:01, all except HLA – 
B*15:21 imposed and fit on each other. The molecular 
docking of the chemical structure of carbamazepine to 
the antigen-presenting sites of tested HLAs could deter-
mine the drug binding amino acids on HLA protein. This 
finding explains for the case reported, in which the HLA – 
B*15:02 negative but HLA – B*15:21 positive patients 
still developed SCAR when taking carbamazepine.39 

When both alleles belong to the HLA-B75 family, the 
presence of one and/or another causes hypersensitivity. 
More investigation combining gene detection and in silico 
studies have been implemented for dapsone or 
NSAID.95,96

Analyzing ADRs Using Next Generation 
Sequencing Data
Data Generation and Collection
In recent years, high-throughput technologies have accel-
erated genomics/pharmacogenomics studies and resulted 
in large-scale data. Next-generation sequencing 

technologies (NGS) such as those provided by Ion 
Torrent or Illumina platforms are becoming the most com-
mon way to get genomics data. Such technologies enabled 
genomic sequencing on a massive scale at a low-cost and 
high-quality, which enabled genome-wide studies in large- 
scale cohorts. Recently, third-generation sequencing tech-
nologies (TGS) such as those provided by Pacific 
Biosciences or Oxford Nanopore Technologies are also 
exploited in some recent genomics/pharmacogenomics 
studies.97–101 Such technologies could give read lengths 
of around tens to even hundreds of thousands of bases 
although with high-cost and somewhat low-quality com-
pared to second-generation technologies. By generating 
long reads, TGS has clear advantages in resolving highly 
repetitive or polymorphic regions which are quite common 
in pharmacogenomics and immunogenomics studies.

Available Databases for ADRs Studies
Large-scale data from pharmacogenomics studies have 
been collected and managed under large consortia and 
networks such as Clinical Pharmacogenetic Consortium 
(CPIC), Pharmacogenomics Research Network (PGRN), 
or The South East Asian Pharmacogenomic Network 
(SEAPHARM). More details of these consortia and net-
works are shown in Table 3. Some recent work such as 
The Observational Medical Outcomes Partnership– 
Common Data Model (OMOP-CDM)102 provides clinical 
data sources such as electronic health records (EHR) from 
which ADR-related information can be extracted. Specific 
databases such as FDA Adverse Event Reporting System 
(FAERS), Side Effect Resource (SIDER), or Healthcare 
Cost and Utilization Project (HCUP) provide public data-
sets that can be used to analyze ADRs and support con-
trolling ADEs.103,104 Currently, many databases have been 
integrated into larger ones such as PharmGKB.105 

PharmGKB also provides a number of datasets and anno-
tations for drugs that have shown adverse reactions, many 
of them have been pharmacogenetically tested. Some 
others such as CTD,106 KEGG,107 or SuperTarget108 pro-
vide non-clinical data for metabolic pathways, or drug 
metabolism, interactions in the molecular structures of 
proteins, or associations of drugs-drugs, drugs-genes. In 
addition, immunogenomics databases such as HLA-ADR 
provide allele frequency and haplotype of HLA genes that 
have been associated with ADRs.109 These databases can 
be used to help minimize ADRs in drug design or patient 
treatment.110,111 Some general databases such as dbSNP or 
the Database of Genomic Variants can be also used as 
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Table 3 PGx Consortia and Networks

PGx Consortia and Networks Description URL

PharmGKB PharmGKB is a database that collects and curates knowledge of human genetic 
variation on drug responses. The database provides information about 706 

annotated drugs and 149 curated pathways. There are currently 155 

annotations for clinical guidelines and 753 annotations for drug labeling. The 
database also provides 4,570 clinical annotations and 23,938 variant 

annotations (accessed on July 15th).

https://www.pharmgkb. 
org/

Clinical Pharmacogenetics 

Implementation Consortium (CPIC)

CPIC is an assessment organization with updated information on clinical 

findings and laboratories in the field of pharmacogenomics. CPIC has provided 

24 guidelines of 20 genes and 62 drugs to address and breakdown barriers in 
clinical implementation, reducing “one size fit all” status, and optimizing drugs 

in precision medicine (accessed on July 15th).

https://cpicpgx.org/

Dutch Pharmacogenetics Working 

Group (DPWG)

The aim of DPWG consortium is to provide well-known PGx clinical testing to 

translate genotype to phenotype. With more than 90 clinical guidelines, 
annotation validated by DPWG will be formulating hypotheses to support 

clinical implementation or in silico related pharmacogenomics.

https://www.pharmgkb. 

org/page/dpwg

Ubiquitous Pharmacogenomics 

(U-PGx)

U-PGx was established by European experts to implement a pre-emptive 

pharmacogenomics approach. A panel of 13 PGx genes with 50 variants helps 

to study the genetic factors that influence the patient’s response to medication, 
with the aim of improving the quality of life, reducing costs, and giving better 

results for patients.

http://upgx.eu

ClinGen PGx Working Group As a data center to support clinical practitioners, researchers with genomic 

and phenotypic information to help to interpret gene factors. There are 

currently more than 1750 curated genes, 50 expert groups and 11,413 experts 
for the development of bioinformatics tools and increasing accuracy in the fairly 

healing process.

https://www.clinicalgen 

ome.org/working-groups 

/

PGRN-RIKEN PGRN-RIKEN is a collaboration between Pharmacogenomics Research 

Network (PGRN) and RIKEN in the use of patient samples and drug response 

for collaborative research, involving adverse drug response.

https://www.pgrn.org/ 

pgrn-riken.html

Canadian Pharmacogenomics 

Networks for Drug Safety (CPNDS)

CPNDS was founded in 2004 with the goal of building guidelines (8 guidelines – 

updated 07/03/2020) related to PGx response and ADR. Learn and assess risks 
to genetic factors, develop PGx clinical implementation tools to support and 

optimize drug use.

http://cpnds.ubc.ca/

PharmVar PharmVar is a repository of pharmacogenomics variation that supporting the 

defined haplotype and alleles, focusing on human cytochrome P450 families and 

NUDT15. A comprehensive database providing information for 
pharmacogenomics Knowledge (PharmGKB) and the Clinical 

Pharmacogenetics Implementation Consortium (CPIC).

https://www.pharmvar. 

org/

European Pharmacogenetic 

Implementation Consortium (EU – 

PIC)

A group for clinical implementation of many European countries to improve the 

treatment from pharmacogenomics guideline into clinical care.

http://www.eu-pic.net

Southeast Asain Pharmacogenomic 

Research Network (SEAPHARM)

SEAPharm was established to enable PGx research among the various 

communities within but not limited to countries in South East Asia, with the 
ultimate goal to support PGx implementation in the region.

http://www.pharmagtc. 

org/seapharm/

Database genomic variant DGV provides the archiving, accessioning and distribution of public available 
genomic structural variant in all species.

https://www.ebi.ac.uk/ 
dgva/

(Continued)
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reference for pharmacogenomics studies, eg, to check 
allele frequency, genotype, and annotation. Figure 1 
shows an overview of data, methods and resources for 
ADR studies.

Data Analysis
With the advances in high-performance computing and big 
data analytics, we can take advantage of large-scale che-
mical, biological, and biomedical information to discover 
complex genetic mechanisms of ADRs. Nevertheless, 
while sequencing data are now easier and cheaper to 
produce, analyzing such data is still the bottleneck. In 
the following paragraphs, we will focus on two types of 
analyses: detecting genomics/pharmacogenomics variants/ 
haplotypes and annotating them for ADR studies. State-of- 
the-art bioinformatics tools/pipelines for such analyses and 
emerging machine learning techniques to classify genomic 
variants into ADRs were summarized in Table 4.

Genetic Variant Calling
The GATK best practices112 are often recommended to use 
for variant calling on NGS data, together with BWA- 
MEM113 for reading alignment. However, some others 
such as DeepVariant114 or Novoalign (http://novocraft. 
com/) can be used as complementary for BWA-MEM or 
even replacement in some cases to improve performance. 
This strategy can be widely applied for WGS, WES or 
sequencing data generated from gene panels. The called 
variants often serve as a starting point for downstream 
analyses to study ADRs.

PGx Haplotyping
Due to the complexity of PGx regions, general haplotype 
callers often have limitations in determining PGx star 
alleles.101 As a result, specific tools such as Astrolabe,115 

Cyrius,116 Aldy,117 or Stargazer118 are often used. However, 
most of the current PGx haplotyping tools are still limited to 
detecting star alleles in a subset of PGx genes, eg, Cyrius 
works on only gene Cytochrome P450 2D6 (CYP2D6), while 

Stargazer covers only 51 PGx genes. Developing more com-
prehensive and accurate tools is still an urgent need.

HLA Typing
The complexity and high polymorphisms of HLA regions 
make HLA typing always challenging, especially for NGS 
data. HLA typing tools for NGS data such as PHLAT, 
Polysolver, OptiType, xHLA, or Kourami can get HLA 
alleles with 4-digits,119,120 6-digits,121,122 up to 8-digits 
using WGS/WES data. These tools are often limited to 
detecting known HLA alleles. For RNA-seq data, 
seq2HLA can be used to get 4-digits resolution.123 

Despite a lot of efforts, current tools for HLA typing still 
suffer from detecting novel or class II HLA alleles.

PGx Annotation
Variant annotation is the process of determining the 
effects of genetic variants on disease and genes.124 

Annotation for PGx variants can be obtained using gen-
eral tools for annotation of genetic variants such as VEP, 
SnpEff/SnpSift, Annovar, or Intervar. More informative 
annotation of PGx genes could be obtained using specific 
tools such as PharmCAT, which was built based on 
CPIC’s guidelines. Such guidelines link genotypes to 
phenotypes and prescribing recommendations based on 
genotype/phenotype. Recently, PGx guidelines are pro-
vided by CPIC, DPWG, CPNDS, and PharmVar are still 
the gold standard. Due to the limited number of guide-
lines, such annotation tools can cover only a small subset 
of PGx genes. The current version of PharmCAT can 
detect only 12 guidelines out of 64 very important phar-
macogenomics (VIPs) of more than 100 known PGx 
genes.

Classifying Genomic Variants into ADRs
The American College of Medical Genetics and Genomics 
and Association of Molecular Pathology (ACMG-AMP) 
has developed guidelines for standardizing and improving 
disease classification based on genomic variants, which 

Table 3 (Continued). 

PGx Consortia and Networks Description URL

dbSNP dbSNP contains human single nucleotide variations, microsatellites and small 

scale insertions and deletions along with publications, allele frequencies, 

molecular sequences and genomic mapping information for both common 
variation and clinical mutations.

https://www.ncbi.nlm. 

nih.gov/snp/
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can be used for studying ADRs.125,126 Some tools aim to 
predict phenotype from genotype using activity score 
assigned based on allele frequency information from 
CPIC.127 Some others used hierarchical or k-means clus-
tering to detect the correlation between genotype and 
phenotype.128 Some recent tools such as Hubble have 
applied deep learning techniques to predict the functions 
of PGx alleles.129 Nevertheless, classifying genomic var-
iants to explore the correlation of genes related to ADRs is 
still challenging and needs significant improvement.

Put-All-Together
A number of data analysis pipelines have been developed 
to detect and annotate ADR-associated variants and hap-
lotypes. A pipeline for analyzing three genes CYP2C9, 
CYP2C12, and HLA using WGS/WES/genotyping data 
have been carried out in.130 They have extracted 39 var-
iants from whole exome sequencing data of 1585 

individuals, then haplotype was assigned based on 
U-PGx translation. Currently the pipeline developed by 
PGRN seems to be a gold standard for PGx data 
analysis.131 Meanwhile, some other groups such as 
RIKEN-Pharmacogenomics Laboratory, SEAPHARM 
also built their own pipelines for pharmacogenomics data 
analysis (personal discussion).

Nevertheless, accurate identification of haplotype in 
pharmacogenomics is still challenging, especially with 
highly polymorphic regions such as HLA or CYP2D6. 
Many haplotypes/diplotypes of PGx genes are still 
unknown. Annotation of PGx genes including novel alleles 
is still challenging, and there is a need for developing 
better annotation tools. The gene–drug interaction guide-
lines are now still very limited, eg, the CPIC database 
provides only 12 specific guidelines to support optimizing 
drug therapy. Furthermore, the genotype-phenotype asso-
ciation is still uncertain in many cases due to many factors 

Figure 1 Pharmacogenomics for ADRs: networks, data, and pipelines.
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such as age, gender, the interaction between drug mole-
cules. Developing tools to capture such uncertainty is 
pretty necessary but very challenging.

Suggestion for Clinical Applications
We have reviewed the typical works in pharmacogenomics to 
detect adverse drug reactions, a key task in the post-market 
drug safety surveillance. It is well-known that datadriven131 

and data integration approach is essential in solving that 
problem. Advance in next generation sequencing technology 
and abundance of genomic data has led to the great outcomes 
from pharmacogenomic research in drug response to the 
transformation into clinical applications. A number of 
drugs have been labeled which concern patients to take the 
genetic test prior to prescription. Specific programs have also 
been implemented in particular countries where population 

Table 4 Common Tools Used for Data Analysis

PGx Variants and 
Haplotypes Calling

Description Ref.

GATK A standard tool for variant calling, support Whole Genomes/Exomes, Gene Panels, 

RNA-seq and Targeted Sequencing.

https://gatk.broadinstitute.org/ 

hc/en-us

BWA A standard tool for aligning short genomic sequences to large reference sequences 

such as human genome.

http://bio-bwa.sourceforge. 

net/bwa.shtml

DeepVariant A variant calling tool which applies convolutional neural network approach for 

identifying genomic variants.

https://github.com/google/ 

deepvariant/

Novoalign An accurate tool for aligning short reads to large reference genomes http://www.novocraft.com/

Astrolabe A tool for star allele calling which was initially developed for the CYP2D6 gene, then 

extended to CYP2C9 and CYP2C19 and other genes

https://www.nature.com/arti 

cles/npjgenmed201639

Stargazer A tool for calling star alleles (haplotypes) in PGx genes using data from NGS or SNP 

array.

https://stargazer.gs.washing 

ton.edu/stargazerweb/

HLA typing

Seq2HLA RNA-seq; iterative allele inference (greedy); 4-digit resolution https://bio.tools/seq2hla

Kourami WGS; discovery of novel alleles; up to 6-digit resolution https://bio.tools/kourami

Polysover WES; k-mer seeding to get HLA reads; Bayesian inference for inferring best alleles: up 

to 6-digit resolution

https://github.com/research 

apps/polysolver

HLA-HD WGS, WES, RNA-seq; discovery of novel alleles; up to 6-digit resolution https://www.genome.med. 

kyoto-u.ac.jp/HLA-HD/

Optitype RNA-seq, WGS, WES; ILP solving to aligned reads for best alleles; 4-digit resolution https://github.com/FRED-2/ 

OptiType

PGx annotation

VEP A tool for predicting effects of variants including SNPs, Indels, CNVs or Structural 
Variants; work with genes, transcripts, protein sequences and regulatory regions.

https://asia.ensembl.org/info/ 
docs/tools/vep/index.html

Annovar An annotation tool which can identify protein coding changes through the 
transformation of SNVs, CNVs

http://wannovar.wglab.org/

SnpEff/SnpSift SnpEff is a tool for variant effect annotation and prediction, particularly on genes and 
proteins. SnpSift is a tool for genomic variant annotation, using annotated databases. 

The latter is often used after the former to find the most significant variants.

https://pcingola.github.io/ 
SnpEff/

Intervar A tool for clinical interpretation of genetic variants based on ACMG/AMP guidelines. http://wintervar.wglab.org/

PharmCAT A tool for translation of genotype to phenotype using genotyping and sequencing data 
based on CPIC guidelines.

http://pharmcat.org/
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genomics have been well analyzed. The US FDA Sentinel 
Initiative (https://www.sentinelinitiative.org) or The UK 
CPRD (https://www.cprd.com) are among the programs 
which have been implemented. These are successful exam-
ples for translating research into clinical guidelines for 
patients or populations who suspect to use specific drugs in 
the future. For emerging countries, the introduction and 
improvement of technologies as well as the gradual enlarging 
of available data bring a number of options of choice. Our 
review has presented the characteristics, requirements and 
possible outcomes of some popular and powerful approaches 
for future applications. Using either one or another depends 
a lot on the prevalence of current data, design and expecta-
tion, however, they can be combined to have the best inter-
pretation of the mechanism of drug response or association of 
genetic components with a disease, therefore suggest the 
most effective risk factors for diagnosis or strategic therapy.

Enriching knowledge and attitude towards implemen-
tation of pharmacogenomic services among clinicians and 
administrative staff are crucial for clinical application. In 
addition, expanding the list of drug-gene pairs covered by 
national health policy is feasible goal for the near future 
when sufficient pharmacogenomic and health economic 
data are generated to aid in the decision-making process. 
Efforts to implement pharmacogenomics into clinical prac-
tice are proceeding at different rates in different countries. 
It is important to realize the potential benefits of pharma-
cogenomic implementation on the healthcare system. 
Effective data and experience sharing at international 
levels would reduce unnecessary healthcare costs from 
inefficient or inappropriate drug therapies, maximize the 
effectiveness of drugs and minimize adverse drug events.
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