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Abstract: Leap Motion Controller (LMC) is a virtual reality device that can be used in the rehabilita-
tion of central nervous system disease (CNSD) motor impairments. This review aimed to evaluate the
effect of video game-based therapy with LMC on the recovery of upper extremity (UE) motor function
in patients with CNSD. A systematic review with meta-analysis was performed in PubMed Medline,
Web of Science, Scopus, CINAHL, and PEDro. We included five randomized controlled trials (RCTs)
of patients with CNSD in which LMC was used as experimental therapy compared to conventional
therapy (CT) to restore UE motor function. Pooled effects were estimated with Cohen’s standardized
mean difference (SMD) and its 95% confidence interval (95% CI). At first, in patients with stroke,
LMC showed low-quality evidence of a large effect on UE mobility (SMD = 0.96; 95% CI = 0.47, 1.45).
In combination with CT, LMC showed very low-quality evidence of a large effect on UE mobility
(SMD = 1.34; 95% CI = 0.49, 2.19) and the UE mobility-oriented task (SMD = 1.26; 95% CI = 0.42,
2.10). Second, in patients with non-acute CNSD (cerebral palsy, multiple sclerosis, and Parkinson’s
disease), LMC showed low-quality evidence of a medium effect on grip strength (GS) (SMD = 0.47;
95% CI = 0.03, 0.90) and on gross motor dexterity (GMD) (SMD = 0.73; 95% CI = 0.28, 1.17) in the
most affected UE. In combination with CT, LMC showed very low-quality evidence of a high effect
in the most affected UE on GMD (SMD = 0.80; 95% CI = 0.06, 1.15) and fine motor dexterity (FMD)
(SMD = 0.82; 95% CI = 0.07, 1.57). In stroke, LMC improved UE mobility and UE mobility-oriented
tasks, and in non-acute CNSD, LMC improved the GS and GMD of the most affected UE and FMD
when it was used with CT.

Keywords: leap motion controller; virtual reality; central nervous system diseases; upper extremity;
motor function; grip strength; gross motor dexterity; fine motor dexterity; meta-analysis

1. Introduction

Central nervous system diseases (CNSDs) include a wide group of diseases that
affect the brain (cerebral hemispheres, diencephalon, brain stem, and cerebellum) or the
spinal cord, causing motor, balance, and cognitive impairments [1]. CNSD can be due to
different causes, including vascular damage to brain areas, such as ischemic or hemorrhagic
stroke [2], developmental and non-progressive neurological disorders, such as cerebral
palsy [3], or neurodegenerative causes, such as multiple sclerosis, Alzheimer’s disease,
and Parkinson’s disease [4]. All of the CNSDs mentioned above share disabling symptoms
such as difficulties in voluntary extremity movement [5], gait and balance disorders [6],
and decreased functional capacity and personal autonomy [7]. The most common disabling
alterations in CNSDs are motor impairments in the upper extremities (UE) that reduce the
range of motion (ROM) [8] and produce muscle weakness and/or spasticity [9]. In addition,
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reductions in grip strength (GS) [10], manual skills [8], gross and fine motor dexterity (GMD
and FMD) [11], and tactile discrimination [12] alter the ability to perform activities of daily
living (ADL), such as dressing, eating, or writing [13].

Currently, conventional therapy (CT) is the most commonly used approach to improve
the UE motor impairments caused by CNSD [14]. Specifically, physiotherapy and occu-
pational therapy are the most commonly used CTs in neurorehabilitation for stroke and
other CNSDs [15]. CT is based on the practice of passive (at first, when the patient is most
impaired) and active, high-intensity and repetitive tasks conducted by a therapist with the
aim of activating damaged brain areas to promote neural plasticity [16]. Scientific literature
suggests that the effect of CT may be limited (in long-term therapy, patients sometimes
show difficulties adhering to treatment due to lack of motivation [17]). This technology can
help to resolve these difficulties with novel therapeutic approaches [18]. In recent years,
technological development has enabled the inclusion of new technologies in neurorehabili-
tation. Virtual rehabilitation using virtual reality (VR) devices [19] has emerged as a novel
promising modality for motor rehabilitation in subjects with CNSD [20]. VR technology
allows the patient to be integrated into a virtual environment that closely resembles the
real environment through a computer and interact with it [21]. Non-immersive VR allows
patients to experience a virtual environment as observers [22] and to interact with the
virtual environment presented on the computer screen through the use of the mouse,
keyboard, or other haptic devices that allow interaction with the game [23] in a low-cost
experience [24]. Non-immersive VR devices are among the most promising VR tools
for designing physiotherapy programs due to the great potential shown for training UE
motor function [25]. Different studies have assessed the effect of the clinical application
of non-immersive VR in patients who have suffered a CNSD [26]. Although stroke is
the leading CNSD in which non-immersive VR has been used [27], in other CNSDs that
cause motor impairments such as cerebral palsy [28], multiple sclerosis [29], Parkinson’s
disease [30] or spinal cord injury [31], non-immersive VR has been extensively studied
with promising results. However, to train the disabled manual skills more specifically (e.g.,
GS, GMD and FMD), it is necessary to use VR haptic devices, such as the Leap Motion
Controller (LMC) [32].

The LMC is a consumer-grade and contact-free interaction [33] developed by Leap
Motion (Leap Motion Inc., San Francisco, CA, USA [34], https://leapmotion.com, accessed
on 1 February 2021) that does not require sensors to be placed on the participant’s body [35].
The LMC was designed to detect, recognize, and capture hand gestures and finger positions
in interactive software applications [36]. In addition, the LMC allows the tracking of the
arm, wrist, and hand positions of up to four participants [36]. This device incorporates three
infrared sensors and two charge-coupled device cameras for computing hand geometry
measurements for person-related hand recognition [37]. The LMC does not emit any
structured light or create a depth scene map unless the LMC obtains the hand and finger
positions from the stereo-vision images, and all mathematical calculations are carried out
on the host computer using a proprietary algorithm [36]. The sensor accuracy in fingertip
position detection is approximately 0.01 mm [36]. Fingertip positions over the LMC are
measured in Cartesian coordinates relative to the center of the LMC in a right-handed
coordinate system. The LMC is equipped with a high-precision optical tracking module
that allows a hand tracking speed up to 200 frames per second in a 150◦ field of view with
approximately eight cubic feet of interactive 3D space, allowing the perfect integration of
one or both hands into the field [38]. The LMC generates a virtual representation of the UE
on the computer screen and indicates to the patient what task should be performed [35].
Compared to other motion capture systems, such as Kinect® (Microsoft Corp., Redmond,
WA, USA), which is the most widely used body recognition device in balance and gait
analysis [39], LMC shows several advantages, including its low cost [34], its small size,
its ease of use and installation [40], and the wide variety of engineering applications that can
be used, such as physical rehabilitation and assessment [41,42] and medical education [43].
Several studies have assessed the accuracy of manual motion tracking using LMC [44,45].

https://leapmotion.com
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Smeragliuolo et al. [46] reported that the LMC is accurate for wrist flexion/extension and
radial and cubital deviation, although it is less precise for arm supination and pronation.
Chophuk et al. [47] suggested small error angles in fingers using LMC to recognize real
finger movement. Recently, Fonk et al. [48] reported that the LMC is able to provide a
correct estimation of the orientation of the hand bones and joint positions to be reproduced
with precision in software with biomechanical applications.

To date, different studies have analyzed the validity [49], feasibility [50], and usabil-
ity [32] of LMC for use in neurorehabilitation. Several RCTs have assessed the effect of
immersive or non-immersive VR on UE motor function recovery [51–53], and consequently,
some reviews have been carried out [54–56]. However, the use of LMC as a VR tool in UE
neurorehabilitation has been less studied [57,58]. Therefore, the objective of the present
review was to retrieve published evidence to analyze the effect of video game-based ther-
apy using LMC to improve UE motor function in patients with acute and non-acute CNSD.
Second, we assessed the effect of LMC on UE motor function when it was used alone or in
combination with CT.

2. Materials and Methods
2.1. Protocol Review

A systematic review with meta-analysis was performed following the preferred re-
porting items for systematic reviews and meta-analyses (PRISMA) statement proposed by
Moher et al. 2009 [59] and the Cochrane Handbook for Systematic Reviews of Interventions
of Higgins and Green [60]. In addition, the protocol of this review has been registered in
PROSPERO (International Prospective Register of Systematic Reviews) with the registration
number CRD42020200771 [61].

2.2. Search Strategy and Data Sources

A bibliographic search was conducted in PubMed Medline, Web of Science (WOS),
Scopus, CINAHL Complete, and PEDRO (Physiotherapy Evidence Database) indepen-
dently by two authors (I.C.-P. and D.M.-C.) between November 2020 and January 2021.
Furthermore, the authors also performed a search in the reference lists of the full-text
articles retrieved with the original search strategy, in the gray literature and in expert
documents. The search strategy was based on the use of the PICOS tool proposed by the
Cochrane Library [60]: (1) population, subjects with CNSD; (2) intervention, video game-
based therapy using LMC; (3) comparison, CT or no intervention; (4) outcomes, UE motor
function (mobility, GS, GMD, and FMD); and (5) study design, randomized controlled
trials. The main terms included in our search strategy were provided by the Medical
Subjects Headings (MeSH), the EBSCOhost thesaurus, and entry terms, such as “leap
motion controller” and “upper extremity”. These terms were combined using Boolean
operators (AND/OR) following the search specifications of each database used. To perform
this search, the authors did not use filters related to the publication date and language.
Any lack of consensus related to the search was solved by the consultation with a third
author with expertise in the bibliographical search (E.O.-G.). Duplicated studies retrieved
were excluded for the next step (study selection). Table 1 shows the bibliographic strategy
search used in each database.

Table 1. Bibliographic search strategy used in each database.

DATABASE SEARCH STRATEGY

PubMed
Medline

(“leap motion”[tiab] OR “leap motion controller”[tiab] OR leap motion sensor[tiab]
OR LMC[tiab]) AND (upper extremity[mh] OR upper extremity[tiab] OR

upper limb[tiab])
Web of Science (*leap motion controller*) AND (*upper extremity* OR *upper limb*)

Scopus [TITLE-ABS-KEY (“leap motion controller”) AND (“upper limb” OR
“upper extremity”)]

PEDro Leap motion AND upper limb

CINAHL (AB leap motion OR AB leap motion controller) AND (AB upper extremity OR AB
upper limb)
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2.3. Study Selection and Inclusion Criteria

The study selection process was carried out by two authors (I.C.-P. and D.M.-C.).
Each of these authors independently screened each article retrieved by title/abstract.
When a reference was selected as a potentially eligible study by one of the reviewers, it was
examined in detail. Disagreements arising during this phase were resolved by consulting
with a third author (M.C.O.-P).

The inclusion criteria proposed were as follows: (1) randomized controlled trials
(RCTs); (2) RCTs with a sample composed of patients diagnosed with a CNSD; (3) studies
that used LMC video game-based therapy as an intervention (alone or combined with
other therapy); (4) studies in which the comparison group did not receive an intervention
or received a therapy different from LMC; (5) studies that assessed different outcomes
related to the motor function of the UE; and (6) studies that provided data to perform
the meta-analysis. As exclusion criteria, we used (1) RCTs with a population study that
included CNSD and other pathologies and (2) studies with only one group.

2.4. Data Extraction

The data extracted from the included studies were collected using a Microsoft Excel
standardized collection form by two authors (N.Z.-A. and I.C.-P.). A third author (R.L.-V.)
resolved any possible discrepancies related to the extracted data.

From each study, we extracted the following data: (1) data related to the general
characteristics of each study (authorship and publication date, country, study design,
total sample size, type of CNSD, evolution, and number of groups included); (2) char-
acteristics of each group (number of participants, age and sex); (3) characteristics of the
intervention in experimental and comparison groups (type of intervention, number of
weeks, days/week and minutes of each session); and data regarding outcomes (type of
outcome, test employed for evaluation, time between the end of the therapy and the last
assessment and quantitative data for the meta-analysis). Data used in our meta-analysis
were the means and their standard deviations and/or mean differences between groups
and p-values. When a study did not provide data related to standard deviation, these data
could be obtained from other data presented in the study, such as range, interquartile range
or standard error, according to standardized statistical procedures [60,62].

2.5. Outcomes

The main outcome assessed was UE motor function (in terms of mobility, GS, or hand
dexterity). Specifically, different outcomes related to UE motor function were susceptible
to assessment, such as UE mobility, the UE mobility-oriented task, the GS, and the GMD
and FMD.

2.6. Assessment of Evidence Quality and Risk of Bias

In this study, the authors assessed the quality evidence of our findings and the risk of
bias. First, the Grading of Recommendations Assessment, Development, and Evaluation
(GRADE) system [63] was used to analyze the overall quality of the evidence in each
meta-analysis. This scale assesses different aspects, such as the risk of bias of each study,
inconsistency, indirectness, imprecision, and publication bias risk. According to the sugges-
tions of Meader et al. [64] in the GRADE checklist, all these items were assessed, except
risk of bias, which was analyzed using the Cochrane Collaboration Risk of Bias Tool [65].
The assessment of the risk of publication bias is detailed in the statistical analysis section.
Inconsistency was assessed through the level of heterogeneity [66] (see the Statistical Anal-
ysis section). To assess the precision, we took into account the number of participants per
study (low, <100 participants; medium, 300–100 participants; and high, >300 participants)
and the number of included studies (large, >10 studies; moderate, 10–5 studies; and small,
<5 studies) [63].

The Cochrane Collaboration Risk of Bias Tool was chosen to analyze the risk of bias of
the individual studies included in the present review [60]. This scale is formed by seven
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items (selection, performance, detection, attrition, reporting, and other bias) and classifies
the risk of bias as low, uncertain (when studies did not provide detailed information or
description), and high [65].

Two reviewers (D.M.-C. and E.O.-G.) independently assessed the methodological
quality. The quality evidence of each meta-analysis was downgraded one level according
to the limitations found. However, if several limitations were present in the findings, the
quality evidence was downgraded two levels. Finally, we established a meta-analysis
classified into four levels of evidence: (1) high when the findings are robust due to the
absence of limitations; (2) moderate if limitations may change the generalization of our
results; (3) low if the presence of various limitations decreases the level of confidence in
our results; and (4) very low when the estimation of the effect is very uncertain. Any lack
of consensus regarding downgrading the level of evidence was resolved by a third author
(M.C.O.-P.).

2.7. Statistical Analysis

The meta-analyses were performed by two authors (E.O.-G. and I.C.-P.) using Com-
prehensive Meta-Analysis 3.3.070 (Biostat, Englewood, NJ, USA) [67]. We followed the
recommendations of Cooper et al. in The Handbook of Research Synthesis and Meta-
Analysis [68]. To reduce the impact heterogeneity in each study, we used the random-effects
model described by DerSimonian and Laird [69] to estimate the effect of the intervention
and its 95% confidence interval (95% CI) with the aim of improving the generalization
of our findings. Cohen’s standardized mean difference (SMD) was used to calculate the
pooled effect [70], which can be interpreted as small (SMD = 0.2), moderate (SMD = 0.5),
and large (SMD > 0.8) [71] and can be displayed as a forest plot [72]. The risk of publica-
tion bias was assessed with the symmetry or asymmetry present in the funnel plot [73],
with Egger’s test (where p < 0.1 suggests risk of publication bias) [74] and with the Trim
and Fill method [74]. Related to publication bias, the quality level of evidence was not
downgraded if the adjusted pooled effect, according to the Trim and Fill method, varied less
than 10% with respect to the original and raw pooled effect, although the funnel plot was
slightly asymmetric. Heterogeneity was analyzed with the Cochrane-Q test; the degree
of inconsistency (I2) may be small (<25%), medium (25–50%), or large (>50%), and p < 0.1
indicates the presence of heterogeneity [66,75].

2.8. Additional Analysis

A sensitivity analysis was performed using the leave-one-out method with the aim of
assessing the contribution of each study to the overall pooled effect in each analysis [68].
In addition, subgroup analysis was carried out to assess the effect of LMC when it was
used alone or combined with CT.

3. Results
3.1. Study Selection

A PRISMA flow chart (Figure 1) was constructed to display the results of the bib-
liographic search and the study selection phases. A total of 109 studies were retrieved
from databases, and 1 study was retrieved from the gray literature. After duplicates were
removed (n = 81), 29 studies were screened by title/abstract. Three studies were excluded
by title/abstract. Of the 26 remaining studies, 21 were excluded for not meeting the inclu-
sion criteria (reasons in Figure 1). Ultimately, 5 studies were included in the quantitative
synthesis of this review [76–80].
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3.2. Main Characteristics of the Studies Included in the Review

Five studies with 22 independent comparisons provided data from 174 participants
(mean age of 48.35 ± 21.45 years old), of whom 91 participants (57.48 ± 3.76 years old)
were diagnosed with stroke [79,80], 30 with cerebral palsy (11 ± 0.09 years old) [76],
30 with multiple sclerosis (46.26 ± 5.09 years old) [77], and 23 with Parkinson’s disease
(69.7 ± 5.55 years old) [78]. The studies were undertaken in different countries: Turkey
(2 studies) [76,80], Spain (2 studies) [77,78], and China (1 study) [79]. Eighty-nine patients
(48.66 ± 19.67 years old) received an experimental therapy that included video game-
based LMC, which was used alone [78,80] or combined with other therapies [76,77,79].
Cuesta-Gómez et al. [77] and Fernández-González et al. [78] established a rehabilitation
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program with six LMC-based videogames (“Piano Game”, “Reach Game”, “Sequence
Game”, “Grasp Game”, “Pinch Game”, and “Flip Game”) in different virtual environments
using LMC to capture and train the UE movement and skills both unilaterally and bilat-
erally. Wang et al. [79] established an experimental protocol using six LMC-based video
games, such as “Piano Game”, “Petal-picking game”, “Robot-assembling game”, “Object-
catching”, “Firefly game” and “Bee-batting game”. Avcil et al. [76] used 2 Nintendo®

Wii games (tennis and boxing games) and 2 LMC-based videogames (“CatchAPet” and
“Leapball”) to try to improve GS and hand function. Finally, Ögun et al. [80] employed four
LMC-based video games (cube handling, decorating a tree with leaves, kitchen experience,
and drumming) focused on hand grip and manipulative UE movements. The compari-
son group was composed of 75 subjects (48.10 ± 21.05 years old) who received only CT
(physiotherapy or occupational therapy) [76–79] or CT with more passive image visual-
ization [80] as a control intervention. The durations of the interventions based on LMC
therapy were 4 [79], 6 [78,80], 8 [76], and 10 weeks [77]. The numbers of sessions per week
were 2 in 2 studies [77,78], 3 in 2 other studies [76,80], and 5 in one study [79]. Finally,
3 studies performed daily sessions of 60 min [76,77,80], 1 study performed daily sessions
of 45 min [79], and another study performed daily sessions of 30 min [78]. All studies
included in this review were RCTs and assessed the different aspects of UE motor function,
such as UE mobility and UE mobility-oriented task using the Fugl–Meyer Assessment of the
Upper Extremity, the Action Research Arm Test, and the Wolf Motor Function Test [79,80];
the GS [76–78] using a dynamometer; GMD [76–78] with the Minnesota Manual Dexterity
Test and the Box and Block Test; and finally the FMD [76–78] using the Duruoz Hand Index
and the Purdue Pegboard Test. The main characteristics of the studies included in this
review are summarized in Table 2.

3.3. Risk of Bias Assessment

The assessment of the risk of bias and methodological quality of the studies included
in the present review is shown in Table 3. Two studies were susceptible to showing a higher
risk of bias [76,78]. No study was able to blind the type of therapy to the participants in
either group [76–80]. The risk of detection bias was increased in one study [78] and probably
in another [76]. All studies showed a risk of selection and performance bias [76–80].
In general, the overall quality of the studies included could be moderate due to the possible
risk of selection, performance, and detection bias.

3.4. Effect of LMC-Video Game Based Therapy on the Recovery of UE Mobility in Patients
with Stroke

Two studies [79,80] with 2 independent comparisons provided data from 91 patients
diagnosed with stroke. Forty-six patients (58.39 ± 4.36 years old) received LMC therapy in
the intervention group, and 45 participants (56.57 ± 4.49 years old) received other therapies
as a control intervention. Very low-quality evidence of a large effect of LMC-based therapy
(SMD = 0.96; 95% CI = 0.47, 1.45; p < 0.001) was shown on UE mobility in patients with
stroke (Table 4, Figure 2). Although the risk of publication bias was not assessed, it must be
considered high due to the low number of studies included. Heterogeneity was not present
(I2 = 0%, p = 0.31), and the precision of the findings was low (45.5 participants per study).
The leave-one-out method yielded pooled estimates that varied 37% when compared to
the original pooled effect.

After a subgroup analysis, according to the specific therapy used, our findings showed
very low-quality evidence of a higher effect size of the combined use of LMC than when
LMC was used alone (SMD = 1.34; 95% CI = 0.49, 2.19; p = 0.002) (SMD = 0.79; 95% CI = 0.29,
1.30; p = 0.002), both versus CT.
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Table 2. Main characteristics of the studies included in the review.

EXPERIMENTAL GROUP COMPARISON GROUP
OUTCOMES

Sample Intervention Sample Control

Author and
Year Country K N ND Evol

(years) Ne Age M:F Type Weeks Ses/
Week Min Nc Age M:F Type Weeks Ses/

Week Min Type Test Time

Avcil, E et al.
(2020) [76]

Turkey 4 30
Cerebral

Palsy NR 15 10.93 8:7 LMC +
NWT 8 3 60 15 11.07 9:6 CT 8 3 60

GS Dynamometer
ImmediateGMD MMDT

FMD DHI
Cuesta-Gómez,
A. et al. (2020)

[77]
Spain 7 30 Multiple

Sclerosis 15.20 16 49.86 7:9 LMC +
CT 10 2 60 14 42.66 5:9 CT 10 2 60

GS Dynamometer
ImmediateGMD BBT

FMD PPT
Fernández-
González, P.

et al. (2019) [78]
Spain 7 23 Parkinson

Disease NR 12 65.77 6:6 LMC 6 2 30 11 73.63 5:6 CT 6 2 30
GP Dynamometer

ImmediateGMD BBT
FMD PPT

Wang, Z. et al.
(2017) [79] China 2 26 Stroke 0.13 13 55.3 11:2 LMC +

OT 4 5 45 13 53.4 11:2 CT 4 5 45
UE

motor
func-
tion

FM-UE
ImmediateARAT

Ögün, M.N.
et al. (2019) [80] Turkey 2 65 Stroke 0.28 33 61.48 28:5 LMC 6 3 60 32 59.75 23:9

CT
+Pas
VR

6 3 60

UE
motor
func-
tion

WMFT Immediate

Abbreviations: K, number of comparisons; N, total sample size; ND, neurological diseases; Evol, evolution; Ne, experimental group sample size; M, male; F, female; Ses, sessions; Min, minutes; Nc, control group
sample size; NR, not reported; LMC, Leap Motion Controller; NWT, Nintendo® Wii Therapy; CT, conventional therapy; OT, occupational therapy; GS, grip strength; GMD, gross motor dexterity; FMD, fine motor
dexterity; MMDT, Minnesota Manual Dexterity Test; DHI, Duruoz Hand Index; BBT, Box and Block Test; PPT, Purdue Pegboard Test; FM-UE, Fugl–Meyer Upper Extremity; ARAT, Action Research Arm Test;
WMFT Wolf Motor Function Test; Pas VR, Passive virtual reality visualization.
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Table 3. Cochrane Risk of Bias assessment of the included studies.

Selection Bias Performance Bias Detection Bias Attrition Bias Reporting Bias Other Bias

Author
and Year

Random Sequence
Generation

Concealment of
Randomization Sequence

Blinding
of Participants

Blinding of Outcomes
Assessors

Incomplete
Outcome Data

Selective
Reporting

Other, Ideally
Prespecified

Avcil, E. et al. (2020) [76] - + + ? - - -
Cuesta-Gómez, A. et al.

(2020) [77]
- + + - - - -

Fernández-González, P.
et al. (2019) [78]

- + + + - - -

Wang, Z. et al. (2017) [79] - + + - - - -
Ögün, M.N. et al.

(2019) [80]
- + + - - - -

Abbreviations: “+” = high risk of bias, “-” = low risk of bias, “?” = inadequate data for the evaluation.

Table 4. Main findings of each meta-analysis.

Summary of Findings Quality of Evidence (GRADE)
Pooled Effect Het Publication Bias

K N Ns SMD 95%
CI

I2

(p-Value)
(Egger

p-Value)

Trim and Fill Risk
of

Bias
Incons Indirect Imprec Pub.

Bias
QualityAdj

SMD % of Var

STROKE
Overall

UE
Mobility

2 91 45.5 0.96 0.47;
1.45 0% (0.31) - - - Medium No No Yes Likely Very

low

Overall
UE

Oriented-
Task

Mobility

2 91 45.5 1.29 0.84;
1.74 0% (0.94) - - - Medium No No Yes Likely Very

low

NON-ACUTE CNSD (CP, MS, and PD)
GRIP STRENGTH

Overall
Most

Affected
UE

3 83 27.6 0.47 0.03;
0.90 0% (0.45) 0.49 0.47 0% Medium No No Yes Low Low

Overall
Least

Affected
UE

3 83 27.6 0.30 −0.12;
0.74 0% (0.46) 0.58 0.30 0% Medium No No Yes Low Low

GROSS MOTOR DEXTERITY
Overall

Most
Affected

UE

3 83 27.6 0.73 0.28;
1.17 0% (0.57) 0.24 0.73 0% Medium No No Yes Low Low

Overall
Least

Affected
UE

2 53 26.5 0.24 −0.29;
0.78 0% (0.92) - - - Medium No No Yes Likely Very

low

FINE MOTOR DEXTERITY
Overall

Most
Affected

UE

2 53 26.5 0.37 −0.57;
1.33 0% (0.31) - - - Medium No No Yes Likely Very

low

Overall
Least

Affected
UE

2 53 26.5 0.18 −0.77;
1.12 0% (0.39) - - - Medium No No Yes Likely Very

low

Overall
Bilateral

UE
3 83 27.6 0.01 −0.76;

0.77 0% (0.38) 0.95 <0.01 0% Medium No No Yes Low Low

Abbreviations: GRADE, Grading of Recommendations Assessment Development and Evaluation; Het, heterogeneity; K, number of studies;
N, number of participants in each meta-analysis; Ns, mean of participants per study; SMD, Cohen standardized mean difference; CI,
confidence interval; I2, Higgins degree of inconsistency; Adj, adjusted; Incons, inconsistency; Indirect, indirectness; Imprec, imprecision;
Pub. Bias, publication bias; Sym, symmetric; Asym, asymmetric; CP, cerebral palsy; MS, multiple sclerosis; PD, Parkinson’s disease.

3.5. Effect of LMC-Video Game Based Therapy to Restore the UE Mobility-Oriented Task in
Patients with Stroke

Two studies [79,80] provided 2 independent comparisons with data from 91 patients
diagnosed with stroke. LMC was included as an experimental intervention in the interven-
tion group composed of 45 participants (56.57 ± 4.49 years old). Our findings showed very
low-quality evidence of a large effect (SMD = 1.29; 95% CI = 0.84, 1.74; p < 0.001) of the use
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of LMC therapy on UE mobility-oriented task in subjects with stroke (Table 4, Figure 2).
Publication bias was not assessed due to the low number of studies included. Heterogene-
ity was not present (I2 = 0%, p = 0.94), and the precision level was low (45.5 participants
per study). After applying the leave-one-out analysis, the pooled effect varied by only 2%
with respect to the original SMD.

After performing the subgroup analysis according to the specific use of LMC, our find-
ings showed very low-quality evidence of a higher effect of LMC when it was combined
with CT (SMD = 1.26; 95% CI = 0.42, 2.10; p = 0.003) or isolated (SMD = 1.30; 95% CI = 0.76,
1.83; p < 0.001) versus CT.
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3.6. Effect of LMC-Video Game Based Therapy on Grip Strength in Non-Acute CNSDs

Three studies [76–78] provided data from 83 patients (42.32 ± 26.64 years old) with
various non-acute CNSDs, where the effect of LMC was assessed to restore the GS in
the most and least affected UE independently (3 independent comparisons on each UE
side). Forty-three participants (42.18 ± 18.21 years old) received LMC as the experimental
intervention, and 40 subjects (42.45 ± 31.18 years old) received CT as the comparison
intervention. Our results suggested low-quality evidence of a medium-high effect of LMC
(SMD = 0.47; 95% CI = 0.03, 0.90; p = 0.036) on the recovery of GS in the most affected UE
compared to CT (Table 4, Figure 3). However, in the least affected UE, LMC did not show a
statistically significant effect with low-quality evidence (SMD = 0.30; 95% CI = −0.12, 0.74;
p = 0.165) compared to CT (Table 4, Figure 3). The risk of publication bias was not present
in the most affected UE (Figure S1 in online supplementary files) and in the least affected
UE (Figure S2 in online supplementary files). Heterogeneity was not present in any UE,
and the precision level was low (27.6 participants per study). After the sensitivity analysis,
the pooled effect varied by 45% with respect to the original SMD in the most affected UE
and 67% in the least affected UE.

When the subgroup analysis was performed in the most affected UE, LMC did not
produce an effect on GS independently if it was used alone (SMD = 0.38; 95% CI = −0.23,
1.00; p = 0.21) or combined with CT (SMD = 0.63; 95% CI = −0.09, 1.37; p = 0.089) com-
pared to CT. Similar results were found in the least affected UE when LMC was used
alone (SMD = 0.20; 95% CI = −0.36, 0.77; p = 0.482) or when a CT program was added
(SMD = 0.50; 95% CI = −0.22, 1.23; p = 0.177).
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3.7. Effect of LMC-Video Game Based Therapy on Gross Motor Dexterity in Non-Acute CNSD

Three studies [76–78] reported data from 83 patients (42.32 ± 26.64 years old) with
various non-acute CNSDs. The effect of LMC on GMD in the most affected UE was
determined from data from 3 independent comparisons [76–78] and in the least affected
UE from 2 comparisons [77,78]. Our findings suggested low-quality evidence of a medium-
high effect of the use of LMC (SMD = 0.73; 95% CI = 0.28, 1.17; p = 0.001) on GMD in the
most affected UE compared to CT (Table 4, Figure 4). However, when the meta-analysis was
performed, taking into account the least affected UE, no statistically significant differences
were found between the use of LMC and CT (SMD = 0.24; 95% CI = −0.29, 0.78; p = 0.376)
(Table 4, Figure 4). The risk of publication bias was not present in the most affected UE
(Figure S3 in online supplementary files ), and in the least affected UE, it could not be
calculated. Heterogeneity was not present, and the precision level was low in both. Finally,
the one study removed provided variations of 20% with respect to the original SMD in the
most affected UE and 11% in the least affected UE.
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After performing the subgroup analysis in the most affected UE, very low-quality
evidence of a high effect of LMC and more CT (SMD = 0.80; 95% CI = 0.06, 1.55; p = 0.039)
and a moderate effect of LMC used alone (SMD = 0.69; 95% CI = 0.12, 1.26; p = 0.018)
were found in the comparison CT. However, when the subgroup analysis was performed
in the least affected UE, LMC did not show an effect versus CT when it was combined
with CT (SMD = 0.22; 95% CI = −0.49, 0.94; p = 0.671) or when it was used independently
(SMD = 0.27; 95% CI = −0.54, 0.65; p = 0.625).

3.8. Effect of LMC-Video Game Based Therapy on Fine Motor Dexterity in Non-Acute CNSD

Three studies [76–78] provided data from 83 patients (42.32 ± 26.64 years old) with var-
ious non-acute CNSDs in which the effect of LMC was assessed to restore FMD in the most
affected UE (2 independent comparisons [77,78]), on the least affected side (2 independent
comparisons [77,78]) and bilaterally (3 independent comparisons [76–78]). Very low-quality
evidence of no effect of LMC was found in the most affected UE (SMD = 0.37; 95% CI = −0.57,
1.33; p = 0.435), in the least affected UE (SMD = 0.18; 95% CI = −0.77, 1.12; p = 0.709), and bi-
lateral UE (SMD = 0.01; 95% CI = −0.76, 0.77; p = 0.99) on FMD in comparison with CT
(Table 4, Figure 5). The publication bias risk was not able to be assessed in the most and
least affected UEs, and in bilateral UE, the risk was not present (Figure S4 in the online
supplementary files). Heterogeneity was not found in any comparison, and the precision
level was low in all meta-analyses due to the low number of participants per study.
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When subgroup analysis was performed, only very low-quality evidence of a high
effect of LMC and more CT (SMD = 0.82; 95% CI = 0.07, 1.57; p = 0.032) was found in
the most affected UE and in bilateral UE (SMD = 0.91; 95% CI = 0.15, 1.66; p = 0.018),
both versus CT, on FMD in patients with non-acute CNSD.

4. Discussion

Severe motor impairments in the UE, mainly muscle weakness and spasticity [81],
are among the most disabling consequences that appear in patients diagnosed with CNSD
and can reduce their and their families’ quality of life [82,83]. The recovery of the UE
motor function of these patients is essential to improve the functional capacity and increase
personal autonomy to perform ADLs. VR implementations have made possible the devel-
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opment of devices with therapeutic purposes, such as LMC. Only a few studies [76–80]
have been carried out to evaluate the ability of LMC to recover UE motor function in
patients with CNSD, and a meta-analysis to analyze its effect has not been performed.
Therefore, we present the first systematic review with meta-analysis to assess the effect of
LMC on different aspects of UE motor function in patients with CNSD, such as stroke, CP,
Parkinson’s disease, or multiple sclerosis. In addition, this review provides a higher level
of evidence than an isolated RCT on the use of LMC in UE rehabilitation in CNSD subjects,
favoring the inclusion of LMC-based video games in novel protocols of UE motor function
rehabilitation of patients with CNSDs.

LMC is postulated to be a ludic tool that could favor the inclusion of participants in a
playful and different environment in which they can face new challenges and reach new
goals interacting in real time with hand and finger movements [84]. It works as an active
therapy that requires high commitment and motivation. LMC is a VR device that may act
on brain plasticity, improving UE motor function. The brain is a complex neural network
with the ability to reprogram itself through repetitive tasks [85]. Recovery of lost functions
after stroke is a complex process through which the brain can reorganize itself and create
new synapses between undamaged neurons [86] to restore, replace, and/or compensate
for impaired functions [87]. For these reasons, it is essential to develop new effective and
safe therapeutic strategies.

Initially, we assessed the effect of video game-based LMC therapy on UE mobility
in patients diagnosed with stroke. Stroke is the second leading cause of death and is
mainly responsible for causing large amounts of disability in adults and middle-aged
people worldwide [88]. Motor impairments in the UE, such as spasticity of hemiplegia,
are the main cause of disability after stroke [89] and appear in 80% of stroke patients [90],
resulting in decreased functional capacity that persists at 6 months after stroke in 30–66% of
stroke survivors [91]. Finding effective therapies to reduce UE motor function restrictions
is crucial. In recent years, non-immersive VR tools have started to be applied in the
motor neurorehabilitation of stroke patients [92]. Our results suggested that LMC could
be effective on UE mobility in patients with stroke. Specifically, we found a higher effect
of LMC when it was combined with CT compared to CT to improve UE mobility and
UE mobility-oriented tasks. LMC requires continuous interaction between the patient
and the game through UE movements, especially in the elbow, hand, and fingers. The
repetitive tasks of the different games could favor brain plasticity. Different studies have
suggested that non-immersive VR therapy produces improvements in UE motor function
in patients with stroke and increases gray matter volume in the motor and premotor regions
of the affected hemisphere and could be correlated with an improvement in motor skills
in undamaged brain areas, suggesting plasticity changes related to imagining, planning,
and performing motor tasks [93]. In recent studies, other non-immersive VR devices, such
as Doctor Kinetic [94] and the Nintendo® Wii gaming system [95], have proven effective
in improving UE motor function in stroke patients, demonstrating that they are a good
tool to be used in neurorehabilitation, although they are not superior to CT when used
alone [96,97]. One of the main strengths of the LMC in retraining mobility in stroke patients
is that it allows the recognition and reproduction of the movements of the elbow, wrist,
hand, and fingers in the three planes of space with high accuracy [36], improving the
overall mobility of any joint of the damaged UE. Another interest is that LMC has shown a
high precision in gesture recognition in LMC-developed games, allowing training of the
functional movement of damaged UE with games that include ADLs such as dressing,
cooking, eating, playing the piano, garden work, and other functional activities [98]. Finally,
another of the main clinical implications of the findings of this meta-analysis in patients
with stroke is that when LMC is combined with CT, the effect on UE mobility oriented to
performing an activity is higher compared to CT. This supports the inclusion of LMC in
physiotherapy and occupational therapy protocols and the subsequent development of
new LMC-based video games to be used in neurorehabilitation.
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The effectiveness of LMC in the treatment of non-acute CNSD (multiple sclerosis,
Parkinson’s disease, and cerebral palsy) was analyzed in other meta-analyses. Our overall
findings showed a moderate effect of LMC therapy on GS in the most affected UE. However,
LMC did not report an effect on GS in the least affected UE. With very low-quality evidence,
we suggest that LMC may be a valid tool to train GS in subjects with CP, multiple sclerosis,
or Parkinson’s disease. Quantitatively, LMC has been demonstrated to be a valid tool
to improve GS in healthy subjects [99], and this meta-analysis summarizes the available
evidence to postulate LMC as a non-immersive VR haptic device that is portable and inex-
pensive for use in physiotherapy or occupational therapy sessions. In addition, the LMC
does not require the placement of sensors in the UE and it does not request manual contact
interaction for use favors the movement of the damaged UE, restricted by muscle weakness
or spasticity, in patients with poor or no GS and without having to overcome any resistance
of the material used [33].

When LMC was used to improve the GMD in these patients with respect to CT,
our findings showed its positive effects in the most affected UE, which were higher when
it was combined with CT. To date, only Clutterbuck et al. [100], in a systematic review
without meta-analysis, has found that non-immersive VR, such as Nintendo® Wii or Sony
Eye, produces a positive and weak effect for improving gross motor function in patients
with cerebral palsy. Jonsdottir et al. [101], in a recent randomized controlled pilot study,
reported that virtual reality in a serious gaming (Rehab@Home) approach was feasible and
beneficial to the arm function of persons with multiple sclerosis. However, Chiu et al. [53]
support that non-immersive VR through Nintendo® Wii does not improve GS or hand
function in cerebral palsy patients. The main difference between LMC and the major
non-immersive VR devices, such as Nintendo® Wii, is that LMC does not need a manual
controller, allowing the reproduction of natural hand gestures when the patients interact
with the game. This may explain the differences in gross motor recovery and GS between
the use of LMC therapy or Nintendo® Wii. Our results can complement the previous
findings, support a guarantee to use LMC to improve GMD in subjects with cerebral palsy
and other non-acute CNSDs and suggest the use of LMC with one of the best non-immersive
VR devices, without manual contact, to be used in the neurorehabilitation of UE in patients
with CNSDs. Unlike other VR devices, such as the Kinect®, which are more geared towards
reproducing global movements while standing to maintain balance [39], LMC is a highly
accurate and validated device to primarily rehabilitate the damaged UE [41,42].

Finally, in relation to the FMD, in an overall analysis, LMC did not produce an effect
on this outcome. However, when LMC was used in combination with CT, very low-quality
evidence of a higher effect in the most affected and bilateral UE was shown. Our results
are consistent with those recently published by Şahin S. et al. (2020) [102], who showed
that a program of non-immersive VR with more CT and occupational therapy in this case
produced higher gross and FMD improvements in comparison with the use of CT alone.
A previous systematic review conducted by Rathinam C. et al. (2019) [103] reported that
the improvement in hand function, especially in FMD, of patients with non-acute CNSD,
such as cerebral palsy, using non-immersive VR devices is weak, although it suggests that
non-immersive VR devices may be used as an adjunct to CT. Currently, different haptic VR
devices are being developed to train FMD in patients with non-acute CNSD. The majority of
these systems use glove orthoses and button devices to press or screens to touch [104,105];
however, LMC does not need gloves or devices to be pressed or touched with the hands
and fingers, allowing free fine and gross movements of their hands and fingers without
mechanical restrictions. The high accuracy in the hand and finger detection position
and movement [106] indicates that the LMC was integrated into very specific treatment
protocols for UE rehabilitation, such as those carried out from occupational therapy.

The results derived from this review are consistent with previously published litera-
ture because, in most cases, a higher recovery in UE motor function was obtained when
LMC was used in combination with CT in different CNSD patients [97,102,107]. In a recent
meta-analysis, Johansen et al. (2020) [108] showed that the use of non-immersive games,
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including in a CT program, produced higher improvement in the disabled hand of patients
with CNSD, such as cerebral palsy. LMC is also a motion-controlled video game, and com-
bined with CT, LMC may be presented as an excellent adjuvant tool to improve UE motor
function, especially manual skills, as it is able to customize and adapt the therapy to each
patient, making it more specific and attractive for increasing UE recovery.

Vanbellingen et al. [32] described 4 motives for why LMC is useable. First, LMC is a
lightweight, small, USB-powered device that can be plugged into every computer. Second,
the installed software is easy to use. Third, no skilled technician is needed, as there is
no need to place device markers on the hands, making the tool easier to use than other
upper-extremity VR tools, such as exoskeletons or virtual gloves. Fourth, the LMC system
is relatively inexpensive and easy to buy and can be easily integrated into the home
environment, resulting in high feasibility of video game-based training with an LMC
device. Due to all these advantages, in addition to our results, it would be interesting for
LMC to be used in future studies in which non-immersive virtual reality treatment will
be planned.

Finally, our review supports LMC as the leading haptic VR sensor for UE mobility
recovery compared to other non-immersive VR devices, such as Doctor Kinetic® and
Nintendo® Wii gaming systems, which are more specialized for posture and balance.
The LMC is a highly accurate sensor; therefore, it will allow training of fine and precise
hand and finger movements. The low cost of LMC favors its inclusion in well-designed
home treatments and could increase the level of UE recovery in patients with difficulties
accessing the rehabilitation center. In addition, LMC is being implemented to develop a 3D
point of intent determination method using multimodal fusion between hand pointing and
gaze for a virtual 3D display, which will expand its use to new challenges in the future [109].

Some limitations must be considered in this review. First, the low number of studies
included can reduce the generalization of our findings. Second, the low sample size reduces
the precision level of our findings and increases the possibility of selection bias. However,
a lower sample size is a characteristic of the majority of studies published with CNSD
patients. The low number of comparisons in each meta-analysis considerably decreased
the quality evidence of our findings. It is important to take into account the impossibility
of blinding the participants in each group, which can increase the risk of performance
bias. Finally, another limitation is the difficulty of studying the risk of publication bias
in meta-analyses of fewer than three studies. For further research, it will be necessary to
increase the sample size in each study and perform more RCTs with the aim of obtaining
more robust findings regarding the use of LMC as a successful therapy on different aspects
of UE motor function, such as UE mobility, UE mobility-oriented tasks, GS, GMD, and FMD,
in patients with different CNSDs. In the future, it will be essential to develop RCTs to
assess hand skills in disabled UE patients with stroke.

5. Conclusions

Our results suggest that LMC may be considered a useful and effective a haptic VR
device to improve different aspects of UE motor function in patients with CNSD. Very low-
quality evidence of a large effect favoring LMC therapy compared to CT was found on UE
mobility and UE mobility-oriented tasks in patients with stroke, and LMC showed large
effects on these outcomes when it was used combined with CT. In patients with non-acute
CNSD, our findings showed (1) low-quality evidence of a moderate effect of LMC on GS
of the most affected UE in comparison with CT; (2) low-quality evidence of a moderate
effect of LMC on GMD on the most affected UE, which was higher when LMC was used
combined with CT in comparison with CT alone; and (3) very low-quality evidence of a
large effect of LMC in combination with CT was shown on FMD of the most affected UE
and bilateral CNSD. Finally, our findings postulate the higher effect of LMC on UE motor
function when it is added to a CT program in patients with CNSD.

Supplementary Materials: The following are available online at https://www.mdpi.com/1424-8
220/21/6/2065/s1: Figure S1. Funnel plot of the effect of LMC-based therapy on recovery of grip
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strength in the most affected UE in patients with non-acute CNSD; Figure S2. Funnel plot of the effect
of LMC-based therapy on recovery of grip strength in the least affected UE patients with non-acute
CNSD; Figure S3. Funnel plot of the effect of LMC-based therapy on the recovery of gross motor
dexterity in the most affected UE in patients with non-acute CNSD; Figure S4. Funnel plot of the
effect of LMC-based therapy on the recovery of fine motor dexterity in the bilateral side in patients
with non-acute CNSD.
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