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Wireless capsule endoscopy (WCE) has developed rapidly over the last several years and now enables physicians to examine the
gastrointestinal tract without surgical operation. However, a large number of images must be analyzed to obtain a diagnosis. Deep
convolutional neural networks (CNNs) have demonstrated impressive performance in different computer vision tasks. ,us, in
this work, we aim to explore the feasibility of deep learning for ulcer recognition and optimize a CNN-based ulcer recognition
architecture for WCE images. By analyzing the ulcer recognition task and characteristics of classic deep learning networks, we
propose a HAnet architecture that uses ResNet-34 as the base network and fuses hyper features from the shallow layer with deep
features in deeper layers to provide final diagnostic decisions. 1,416 independent WCE videos are collected for this study. ,e
overall test accuracy of our HAnet is 92.05%, and its sensitivity and specificity are 91.64% and 92.42%, respectively. According to
our comparisons of F1, F2, and ROC-AUC, the proposed method performs better than several off-the-shelf CNN models,
including VGG, DenseNet, and Inception-ResNet-v2, and classical machine learning methods with handcrafted features forWCE
image classification. Overall, this study demonstrates that recognizing ulcers inWCE images via the deep CNNmethod is feasible
and could help reduce the tedious image reading work of physicians. Moreover, our HAnet architecture tailored for this problem
gives a fine choice for the design of network structure.

1. Introduction

Gastrointestinal (GI) diseases pose great threats to human
health. Gastric cancer, for example, ranks fourth among the
most common type of cancers globally and is the second
most common cause of death from cancer worldwide [1].
Conventional gastroscopy can provide accurate localization
of lesions and is one of the most popular diagnostic mo-
dalities for gastric diseases. However, conventional gas-
troscopy is painful and invasive and cannot effectively detect
lesions in the small intestine.

,e emergence of wireless capsule endoscopy (WCE)
has revolutionized the task of imaging GI issues; this
technology offers a noninvasive alternative to the con-
ventional method and allows exploration of the GI tract

with direct visualization. WCE has been proven to have
great value in evaluating focal lesions, such as those related
to GI bleeding and ulcers, in the digestive tract [2].

WCE was first induced in 2000 by Given Imaging and
approved for use by the U.S. Food and Drug Administration
in 2001 [3]. In the examination phase, a capsule is swallowed
by a patient and propelled by peristalsis or magnetic fields to
travel along the GI tract [3, 4]. While travelling, the WCE
takes colored pictures of the GI tract for hours at a frame rate
of 2–4 photographs per second [3] and transmits the same to
a data-recording device. ,e recorded images are viewed by
physicians to arrive at a diagnosis. Figure 1 illustrates a
wireless capsule.

Examination of WCE images is a time-consuming and
tedious endeavor for doctors because a single scan for a
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patient may include up to tens of thousands of images of
the GI tract. Experienced physicians may spend hours
reviewing each case. Furthermore, abnormal frames may
occupy only a tiny portion of all of the images obtained [5].
,us, physicians may miss the actual issue due to fatigue or
oversight.

Several features have motivated researchers to turn to
computer-aided systems, including improved ulcer de-
tection, polyp recognition, and bleeding area segmentation
[3, 5–15], to reduce the burden on physicians and guarantee
diagnostic precision.

Ulcers are one of the most common lesions in the GI
tract; an estimated 1 out of every 10 persons is believed to
suffer from ulcers [13]. An ulcer is defined as an area of
tissues destroyed by gastric juice and showing a disconti-
nuity or break in a bodily membrane [9, 11]. ,e color and
texture of the ulcerated area are different from those of a
normal GI tract. Some representative ulcer frames in WCE
videos are demonstrated in Figure 2. Ulcer recognition
requires classification of each image in a WCE video as
ulcerated or not, similar to the classification work in
computer vision tasks.

Deep learning methods based on the convolutional
neural network (CNN) have seen several breakthroughs in
classification tasks in recent years. Considering the diffi-
culty in mathematically describing the great variation in the
shapes and features of abnormal regions in WCE images
and the fact that deep learning is powerful in extracting
information from data, we propose the application of deep
learning methods to ulcer recognition using a large WCE
dataset of big volume to provide adequate diversity. In this
paper, we carefully analyze the problem of ulcer frame
classification and propose a deep learning framework based
on a multiscale feature concatenated CNN, hereinafter
referred to as HAnet, to assist in the WCE video exami-
nation task of physicians. Our network is verified to be
effective on a large dataset containing WCE videos of 1,416
patients.

Our main contributions can be summarized in terms
of the following three aspects: (1) ,e proposed archi-
tecture adopts state-of-the-art CNN models to efficiently
extract features for ulcer recognition. It incorporates a
special design that fuses hyper features from shallow
layers and deep features from deep layers to improve the
recognition of ulcers at vastly distributed scales. (2) To the
best of our knowledge, this work is the first experimental
study to include a large dataset consisting of over 1,400
WCE videos from ulcer patients to explore the feasibility

of deep CNN for ulcer diagnosis. Some representative
datasets presented in published works are listed in Table 1.
,e 92.05% accuracy and 0.9726 ROC-AUC of our pro-
posed model demonstrate its great potential for practical
clinic applications. (3) An extensive comparison with
different state-of-the-art CNN network structures is
provided to evaluate the most promising network for ulcer
recognition.

2. Materials and Methods

2.1. Abnormality Recognition in WCE Videos. Prior related
methods for abnormality recognition in WCE videos can be
roughly divided into two classes: conventional machine
learning techniques with handcrafted features and deep
learning methods.

Conventional machine learning techniques are usually
based on manually selected handcrafted features followed by
application of some classifier. Features commonly employed
in conventional techniques include color and textural
features.

Lesion areas are usually of a different color from the
surrounding normal areas; for example, bleeding areas may
present as red and ulcerated areas may present as yellow or
white. Fu et al. [12] proposed a rapid bleeding detection
method that extracts color feature in the RGB color space.
Besides the RGB color space, other color spaces, like the HSI/
HSV [9] and YCbCr [3], are also commonly used to extract
features.

Texture is another type of feature commonly used for
pattern recognition. Texture features include local binary
patterns (LBP) and filter-based features [7]. An LBP
descriptor is based on a simple binary coding scheme that
compares each pixel with its neighbors [19]. ,e LBP
descriptor, as well as its extended versions, such as
uniform LBP [8] and monogenic LBP [20], has been
adopted in various WCE recognition tasks. Filter-based
features, such as Gabor filters and wavelet transforms, are
widely used in WCE image recognition tasks for their
ability to describe images in multistage space. In addi-
tion, different textural features can be combined for
better recognition performance. As demonstrated in [8],
the combination of wavelet transformation and uniform
LBP can achieve automatic polyp detection with good
accuracy.

CNN-based deep learning methods are known to show
impressive performance. ,e error rate in computer vision
challenges (e.g., ImageNet, COCO) has decreased rapidly
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Figure 1: Illustration of a wireless capsule. ,is capsule is a product of Ankon Technologies Co., Ltd. (Wuhan, Shanghai, China).
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Figure 2: Typical WCE images of an ulcer. Ulcerated areas in each image are marked by a white box.

Table 1: Representative studies and datasets of WCE videos in the literature.

Experiment Cases Detail
Li and Meng [5] 10 patients’ videos 10 patients’ videos, 200 images

Li and Meng [16] 10 patients’ videos 10 patients’ videos (five for bleeding and the other five
for ulcer)

Li et al. [17] — 80 representative small intestine ulcer WCE images
and 80 normal images

Karargyris and Bourbakis [9] — A WCE video containing 10 frames with polyps and
40 normal frames and extra 20 frames with ulcer

Li and Meng [8] 10 patients’ videos

10 patients’ videos, 600 representative polyp images
and 600 normal images from data; 60 normal images

and 60 polyp images from each patient’s video
segments

Yu et al. [10] 60 patients’ videos
60 patients’ videos, 344 endoscopic images for

training; another 120 ulcer images and 120 normal
images for testing

Fu et al. [12] 20 patients’ videos 20 patients’ videos, 5000 WCE images consisting of
1000 bleeding frames and 4000 nonbleeding frames

Yeh et al. [11] — 607 images containing 220, 159, and 228 images of
bleeding, ulcers, and nonbleeding/ulcers, respectively

Yuan et al. [3] 10 patients’ videos 10 patients’ videos, 2400 WCE images that consist of
400 bleeding frames and 2000 normal frames

Yuan and Meng [7] 35 patients’ videos
35 patients’ videos, 3000 normal WCE images (1000
bubbles, 1000 TIs, and 1000 CIs) and 1000 polyp

images
He et al. [6] 11 patients’ videos 11 patients’ videos, 440K WCE images

Aoki et al. [18] 180 patients’ videos
115 patients’ videos, 5360 images of small-bowel
erosions and ulcerations for training; 65 patients’
videos, 10,440 independent images for validation

Ours 1,416 patients’ videos 1,416 patients’ videos with 24,839 representative ulcer
frames
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with the emergence of various deep CNN architectures, such
as AlexNet, VGGNet, GoogLeNet, and ResNet [21–28].

Many researchers have realized that handcrafted fea-
tures merely encode partial information in WCE images
[29] and that deep learning methods are capable of
extracting powerful feature representations that can be
used in WCE lesion recognition and depth estimation
[6, 7, 15, 18, 30–34].

A framework for hookworm detection was proposed in
[14]; this framework consists of an edge extraction network
and a hookworm classification network. Inception modules
are used to capture multiscale features to capture spatial
correlations.,e robustness and effectiveness of this method
were verified in a dataset containing 440,000WCE images of
11 patients. Yuan and Meng [7] proposed an autoencoder-
based neural network model that introduces an image
manifold constraint to a traditional sparse autoencoder to
recognize polyps in WCE images. Manifold constraint can
effectively enforce images within the same category to share
similar features and keep images in different categories far
way, i.e., it can preserve large intervariances and small
intravariance among images. ,e proposed method was
evaluated using 3,000 normal WCE images and 1,000 WCE
images with polyps extracted from 35 patient videos. Uti-
lizing temporal information of WCE videos with 3D con-
volution has also been explored for poly detection [33]. Deep
learning methods are also adopted for ulcer diagnosis. ,ere
are also some investigations of ulcer recognition with deep
learning methods [18, 35]. Off-the-shelf CNN models are
trained and evaluated in these studies. Experimental results
and comparisons in these studies clearly demonstrate the
superiority of deep learning methods over conventional
machine learning techniques.

From ulcer size analysis of our dataset, we find that most
of the ulcers occupy only a tiny area in the whole image.
Deep CNNs can inherently compute feature hierarchies
layer by layer. Hyper features from shallow layers have high
resolution but lack representation capacity; by contrast, deep
features from deep layers are semantically strong but have
poor resolution [36–38]. ,ese features motivate us to
propose a framework that fuses hyper and deep features to
achieve ulcer recognition at vastly different scales. We will
give detailed description of ulcer size analysis and the
proposed method in Sections 2.2 and 2.3.

2.2. Ulcer Dataset. Our dataset is collected using a WCE
system provided by Ankon Technologies Co., Ltd.
(Wuhan, Shanghai, China). ,e WCE system consists of
an endoscopic capsule, a guidance magnet robot, a data
recorder, and a computer workstation with software for
real-time viewing and controlling. ,e capsule is
28mm × 12mm in size and contains a permanent magnet
in its dome. Images are recorded and transferred at a
speed of 2 frames/s. ,e resolution of the WCE image is
480 × 480 pixels.

,e dataset used in this work to evaluate the perfor-
mance of the proposed framework contains 1,416 WCE
videos from 1,416 patients (males 73%, female 27%), i.e., one

video per patient. ,e WCE videos are collected from more
than 30 hospitals and 100 medical examination centers
through the Ankon WCE system. Each video is in-
dependently annotated by at least two gastroenterologists. If
the difference between annotation bounding boxes of the
same ulcer is larger than 10%, an expert gastroenterologist
will review the annotation and provide a final decision. ,e
age distribution of patients is illustrated in Figure 3. ,e
entire dataset consists of 1,157 ulcer videos and 259 normal
videos. In total, 24,839 frames are annotated as ulcers by
gastroenterologists. To balance the volume of each class,
24,225 normal frames are randomly extracted from normal
videos for this study to match the 24,839 representative ulcer
frames. A mask of diameter 420 pixels was used to crop the
center area of each image in preprocessing. ,is pre-
processing did not change the image size.

We plot the distribution of ulcer size in our dataset in
Figure 4. ,e vertical and horizontal axes denote the
number of images and the ratio of the ulcerated area to the
whole image size, respectively. Despite the inspiring suc-
cess of CNNs in ImageNet competition, ulcer recognition
presents some challenge to the ImageNet classification task
because lesions normally occupy only a small area of WCE
images and the structures of lesions are rather subtle. In
Figure 4, about 25% of the ulcers occupy less than 1% of the
area of the whole image and more than 80% of the ulcers
found occupy less than 5% of the area of the image. Hence,
a specific design of a suitable network is proposed to ac-
count for the small ulcer problem and achieve good
sensitivity.

2.3. HAnet-Based Ulcer Recognition Network with Fused
Hyper and Deep Features. In this section, we introduce our
design and the proposed architecture of our ulcer recog-
nition network.

Inspired by the design concept of previous works that
deal with object recognition in vastly distributed scales
[36–38], we propose an ulcer recognition network with a
hyperconnection architecture (HAnet). ,e overall pipeline
of this network is illustrated in Figure 5. Fundamentally,
HAnet fuses hyper and deep features. Here, we use ResNet-
34 as the base feature-extraction network because, according
to our experiments (demonstrated in Section 3), it provides
the best results. Global average pooling (GAP) [39] is used to
generate features for each layer. GAP takes an average of
each feature layer, so that it reduces tensors with dimensions
h× w × d to 1× 1× d. Hyper features can be extracted from
multiple intermediate layers (layers 2 and 3 in this case) of
the base network; they are concatenated with the features of
last feature-extraction layer (layer 4 in this case) to make the
final decision.

Our WCE system outputs color images with a resolution
of 480× 480 pixels. Experiments by the computer vision
community [36, 40] have shown that high-resolution input
images are helpful to the performance of CNN networks. To
fully utilize the output images from the WCE system, we
modify the base network to receive input images with a size
of 480× 480× 3 without cropping or rescaling.
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2.4. Loss ofWeightedCross Entropy. Cross-entropy (CE) loss
is a common choice for classification tasks. For binary
classification [40], CE is defined as

CE(p, y) � − y log(p) − (1 − y)log(1 − p), (1)

where y ∈ 0, 1{ } denotes the ground-truth label of the
sample and p ∈ [0, 1] is the estimated probability of a
sample belonging to the class with label 1. Mathematically,
the minimization process of CE is to enlarge the probabilities
of samples with label� 1 and suppress the probabilities of
samples with label� 0.

To deal with possible imbalance between classes, a
weighting factor can be applied to different classes, which
can be called weighted cross-entropy (wCE) loss [41].

wCE(p, y; w) � −
w

w + 1
· y log(p) −

1
w + 1

· (1 − y)log(1 − p),

(2)

where w denotes the weighting factor to balance the loss of
different classes. Considering the overall small and varia-
tional size distribution of ulcers, as well as possible imbal-
ance in the large dataset, we set wCE as our loss function.

2.5. Evaluation Criteria. To evaluate the performance of
classification, accuracy (AC), sensitivity (SE), and specificity
(SP) are exploited as metrics [6].

AC �
(TP + TN)

N
,

SE �
TP

(TP + FN)
,

SP �
TN

(TN + FP)
.

(3)

Here, N is the total number of test images and TP, FP,
TN, and FN are the number of correctly classified images
containing ulcers, the number of normal images falsely
classified as ulcer frames, the number of correctly classified
images without ulcers, and the number of images with ulcers
falsely classified as normal images, respectively.

AC gives an overall assessment of the performance of the
model, SE denotes the model’s ability to detect ulcer images,
and SP denotes its ability to distinguish normal images.
Ideally, we expect both high SE and SP, although some trade-
offs between these metrics exist. Considering that further
manual inspection by the doctor of ulcer images detected by
computer-aided systems is compulsory, SE should be as high
as possible with no negative impact on overall AC.

We use a 5-fold cross-validation strategy at the case level
to evaluate the performances of different architectures; this
strategy splits the total number of cases evenly into five
subsets. Here, one subset is used for testing, and the four
other subsets are used for training and validation. Figure 6
illustrates the cross-validation operation. In the present
study, the volumes of train, validation, and test are about
70%, 10%, and 20%, respectively. Normal or ulcer frames are
then extracted from each case to form the training/valida-
tion/testing dataset. We perform case-level splitting because
adjacent frames in the same case are likely to share similar
details. We do not conduct frame-level cross-validation
splitting to avoid overfitting.,e validation dataset is used to
select the best model in each training process, i.e., the model
with the best validation accuracy during the training iter-
ation is saved as the final model.

3. Results

In this section, the implementation process of the proposed
method is introduced, and its performance is evaluated by
comparison with several other related methods, including
state-of-the-art CNN methods and some representative
WCE recognition methods based on conventional machine
learning techniques.

3.1. Network Architectures and Training Configurations.
,e proposed HAnet connects hyper features to the final
feature vector with the aim of enhancing the recognition of
ulcers of different sizes. ,e HAnet models are distinguished
by their architecture and training settings, which include
three architectures and three training configurations in total.
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Figure 3: Age distribution of patients providing videos for this
study. ,e horizontal axis denotes the age range and the vertical
axis denotes the case portion.
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We illustrate these different architectures and configurations
in Table 2.

,ree different architectures can be obtained when
hyper features from layers 2 and 3 are used for decision in
combination with features from layer 4 of our ResNet
backbone: in Figure 7(a), hyper(l2), which fuses the hyper
features from layer 2 with the deep features of layer 4, in
Figure 7(b), hyper(l3), which fuses features from layers 3
and 4, and in Figure 7(c), hyper(l23), which fuses features
from layers 2, 3, and 4 to form the third HAnet. Figure 7
provides comprehensive diagrams of these different HAnet
architectures.

Each HAnet can be trained with three configurations.
Figure 8 illustrates these configurations.

3.1.1. ImageNet. ,e whole HAnet is trained using pre-
trained ResNet weights from ImageNet from initialization
(denoted as ImageNet in Table 2). ,e total training process
lasts for 40 epochs, and the batch size is fixed to 16 samples.
,e learning rate was initialized to be 10− 3 and decayed by a
factor of 10 at each period of 20 epochs. ,e parameter of
momentum is set to 0.9. Experimental results show that 40
epochs are adequate for training to converge. Weighted
cross-entropy loss is used as the optimization criterion. ,e
best model is selected based on validation results.

3.1.2. All-Update. ResNet(480) is first fine-tuned on our
dataset using pretrained ResNet weights from ImageNet for

initialization. ,e training settings are identical to those in
(1). Convergence is achieved during training, and the best
model is selected based on validation results. We then train
the whole HAnet using the fine-tuned ResNet (480)
models for initialization and update all weights in HAnet
(denoted as all-update in Table 2). Training lasts for 40
epochs. ,e learning rate is set to 10− 4, momentum is set to
0.9, and the best model is selected based on validation
results.

3.1.3. FC-Only. ,e weights of the fine-tuned ResNet(480)
model are used, and only the last fully connected (FC) layer
is updated in HAnet (denoted as FC-only in Table 2). ,e
best model is selected based on validation results. Training
lasts for 10 epochs, the learning rate is set to 10− 4, and
momentum is set to 0.9.

For example, the first HAnet in Table 2, hyper(l2) FC-
only, refers to the architecture fusing the features from layer
2 and the final layer 4; it uses ResNet (480) weights as the
feature extractor and only the final FC layer is updated
during HAnet training.

To achieve better generalizability, data augmentation was
applied online in the training procedure as suggested in [7].
,e images are randomly rotated between 0° and 90° and
flipped with 50% possibility. Our network is implemented
using PyTorch.

,e experiments are conducted on an Intel Xeon ma-
chine (Gold 6130 CPU@2.10GHz) with Nvidia Quadro

GAP (global average pooling)

GAP

Input Layer 1 Layer 2 Layer 3 Layer 4

GAP

Features

120 × 120 × 64 60 × 60 × 128 30 × 30 × 256 15 × 15 × 512 1 × 1 × 512 1 × 1 × 256 1 × 1 × 128480 × 480 × 3

Figure 5: Ulcer recognition network framework. ResNet-34, which has 34 layers, is selected as the feature extractor. Here, we only display
the structural framework for clarity. Detailed layer information can be found in Appendix.
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Figure 6: Illustration of cross-validation (green: test dataset; blue: train dataset; yellow: validation dataset).
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GP100 graphics cards. Detailed results are presented in
Sections 3.2–3.4.

3.2. Refinement of the Weighting Factor for Weighted Cross-
Entropy. To demonstrate the impact of different weighting
factors, i.e., w in equation (2), we examine the cross-vali-
dation results of model recognition accuracy with different
weighting factors. ,e AC, SE, and SP curves are shown in
Figure 9.

AC varies with changes in weighting factor. In general,
SE improves while SP is degraded as the weighting factor
increases. Detailed AC, SE, and SP values are listed in
Table 3. ResNet-18(480) refers to experiments on a ResNet-
18 network with a WCE full-resolution image input of
480× 480 × 3. A possible explanation for the observed effect
of the weighting factor is that the ulcer dataset contains
many consecutive frames of the same ulcer, and these
frames may share marked similarities. ,us, while the
frame numbers of the ulcer and normal dataset are com-
parable, the information contained by each dataset remains
unbalanced. ,e weighting factor corrects or compensates
for this imbalance.

In the following experiments, 4.0 is used as the weighting
factor as it outperforms other choices and simultaneously
achieves good balance between SE and SP.

3.3. Selection of Hyper Architectures. We tested 10 models in
total, as listed in Table 4, including a ResNet-18(480) model
and nine HAnet models based on ResNet-18(480). ,e
resolution of input images is 480× 480× 3 for all models.

According to the results in Table 4, the FC-only and all-
update hyper models consistently outperform the ResNet-
18(480) model in terms of the AC criterion, which dem-
onstrates the effectiveness of HAnet architectures. More-
over, FC-only models generally perform better than all-
update models, thus implying that ResNet-18(480) extracts
features well and that further updates may corrupt these
features.

,e hyper ImageNet models, including hyper(l2)
ImageNet, hyper(l3) ImageNet, and hyper(l23) ImageNet,
seem to give weak performance. Hyper ImageNet models
and the other hyper models share the same architectures.
,e difference between these types of models is that the
hyper ImageNet models are trained with the pretrained
ImageNet ResNet-18 weights while the other models use
ResNet-18(480) weights that have been fine-tuned on the
WCE dataset.,is finding reveals that a straightforward base
net such as ResNet-18(480) shows great power in extracting
features. ,e complicated connections of HAnet may pro-
hibit the network from reaching good convergence points.

To fully utilize the advantages of hyper architectures, we
recommend a two-stage training process: (1) Train a ResNet-
18(480) model based on the ImageNet-pretrained weights
and then (2) use the fine-tuned ResNet-18(480) model as a
backbone feature extractor to train the hyper models. We
denote the best model in all hyper architectures as HAnet-
18(480), i.e., a hyper(l23) FC-only model.

Additionally, former exploration is based on ResNet-18,
and results indicate that a hyper(l23) FC-only architecture
based on the ResNet backbone feature extractor fine-tuned
byWCE images may be expected to improve the recognition

Table 2: Illustration of different architectures and configurations.

Model
Features

Network initialization weights Training
Layer 2 Layer 3 Layer 4

ResNet(480) ✓ ImageNet Train on WCE dataset
hyper(l2) FC-only ✓ ✓

ResNet(480) Update FC-layer onlyhyper(l3) FC-only ✓ ✓
hyper(l23) FC-only ✓ ✓ ✓
hyper(l2) all-update ✓ ✓

ResNet(480) Update all layershyper(l3) all-update ✓ ✓
hyper(l23) all-update ✓ ✓ ✓
hyper(l2) ImageNet ✓ ✓

ImageNet Update all layershyper(l3) ImageNet ✓ ✓
hyper(l23) ImageNet ✓ ✓ ✓
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Figure 7: Illustrations of HAnet architectures. (a) hyper(l2), (b) hyper(l3), (c) hyper(l23).
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capability of lesions in WCE videos. To optimize our net-
work, we examine the performance of various ResNet series
members to determine an appropriate backbone. ,e cor-
responding results are listed in Table 5; ResNet-34(480) has
better performance than ResNet-18(480) and ResNet-
50(480). ,us, we take ResNet-34(480) as our backbone to
train HAnet-34(480). ,e training settings are described in
Section 3.1. Figure 10 gives the overall progression of
HAnet-34(480).

3.4. Comparison with Other Methods. To evaluate the per-
formance of HAnet, we compared the proposed method
with several other methods, including several off-the-shelf
CNN models [26–28] and two representative handcrafted-
feature based methods for WCE recognition [3, 42]. ,e off-
the-shelf CNN models, including VGG [28], DenseNet [26],
and Inception-ResNet-v2 [27], are trained to converge with
the same settings as ResNet-34(480), and the best model is
selected based on the validation results. For handcrafted-
feature based methods, grid searches to optimize hyper
parameters are carried out.

We performed repeated 2× 5-fold cross-validation to
provide sufficient measurements for statistical tests. Table 6
compares the detailed results of HAnet-34(480) with those
of other methods. On average, HAnet-34(480) performs
better in terms of AC, SE, and SP than the other methods.
Figure 11(a) gives the location of each model, considering its
inference time and accuracy. Figure 11(b) is the statistical
results of paired T-Test.

Among the models tested, HAnet-34(480) yields the best
performance with good efficiency and accuracy. Addition-
ally, the statistical test results demonstrate the improvement
of our HAnet-34 is statistically significant. Number in each
grid cell denotes the p value of the two models in the
corresponding row and column. We can see that the

improvement of HAnet-34(480) is statistically significant at
the 0.01 level compared with other methods.

Table 7 gives more evaluation results based on several
criteria, including precision (PRE), recall (RECALL), F1 and
F2 scores [33], and ROC-AUC [6]. HAnet-34 outperforms
all other models based on these criteria.

4. Discussion

In this section, the recognition capability of the proposed
method for small lesions is demonstrated and discussed.
Recognition results are also visualized via the class activation
map (CAM) method [43], which indicates the localization
potential of CNN networks for clinical diagnosis.

4.1. Enhanced Recognition of Small Lesions by HAnet. To
analyze the recognition capacity of the proposed model, the
sensitivities of ulcers of different sizes are studied, and the
results of ResNet-34(480) and the best hyper model, HAnet-
34(480), are listed in Table 8.

Based on the results of each row in Table 8, most of the
errors noticeably occur in the small size range for both
models. In general, the larger the ulcer, the easier its rec-
ognition. In the vertical comparison, the ulcer recognition of
HAnet-34(480) outperforms that of ResNet-34(480) at all
size ranges including small lesions.

4.2. Visualization of Recognition Results. To better un-
derstand our network, we use a CAM [43] generated from
GAP to visualize the behavior of HAnet by highlighting the
relatively important parts of an image and providing object
location information. CAM is the weighted linear sum of the
activation map in the last convolutional layer. ,e image
regions most relevant to a particular category can be simply
obtained by upsampling the CAM. Using CAM, we can
verify what indeed has been learned by the network. Six cases
of representative results are displayed in Figure 12. For each
pair of images, the left image shows the original frame, while
the right image shows the CAM result.

,ese results displayed in Figure 12 demonstrate the
potential use of HAnet for locating ulcers and easing the
work of clinical physicians.

Table 3: Cross-validation accuracy of ResNet-18(480) with different weighting factors.

Weighting factor (w) 1.0 2.0 3.0 4.0 5.0 6.0
AC (%) 90.95± 0.64 91.00± 0.49 90.96± 0.68 91.00± 0.70 90.95± 0.83 90.72± 0.75
SE (%) 88.65± 0.64 89.85± 0.47 89.86± 1.01 90.67± 0.93 91.50± 0.76 91.12± 1.94
SP (%) 93.27± 1.05 92.15± 1.22 92.05± 1.09 91.45± 1.84 90.38± 1.26 90.32± 1.88

Table 4: Performances of different architectures.

Model
Cross validation

AC (%) SE (%) SP (%)
ResNet-18(480) 91.00± 0.70 90.55± 0.86 91.45± 1.84
hyper(l2) FC-only 91.64± 0.79 91.22± 1.08 92.05± 1.65
hyper(l3) FC-only 91.62± 0.65 91.15± 0.56 92.07± 1.45
hyper(l23) FC-only 91.66 ± 0.81 91.48 ± 0.90 91.83 ± 1.75
hyper(l2) all-update 91.39± 1.02 91.28± 1.04 91.47± 1.86
hyper(l3) all-update 91.50± 0.81 90.63± 1.06 92.33± 1.74
hyper(l23) all-update 91.37± 0.72 91.33± 0.63 91.4± 1.42
hyper(l2) ImageNet 90.96± 0.90 90.52± 1.10 91.38± 2.01
hyper(l3) ImageNet 91.04± 0.80 90.52± 1.34 91.54± 1.31
hyper(l23) ImageNet 90.82± 0.85 90.26± 1.33 91.37± 1.48

Table 5: Model recognition accuracy with different settings.

ResNet-18(480) ResNet-34(480) ResNet-50(480)
AC (%) 91.00± 0.70 91.50± 0.70 91.29± 0.91
SE (%) 90.55± 0.86 90.74± 0.74 89.63± 1.83
SP (%) 91.45± 1.84 92.25± 1.72 92.94± 1.82
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Figure 10: Progression of HAnet-34(480).

Table 6: Comparison of HAnet with other methods.

AC (%) SE (%) SP (%)
SPM-BoW-SVM [42] 61.38± 1.22 51.47± 2.65 70.67± 2.24
Words-based-color-histogram [3] 80.34± 0.29 82.21± 0.39 78.44± 0.29
vgg-16(480) [28] 90.85± 0.98 90.12± 1.17 92.02± 2.52
dense-121(480) [26] 91.26± 0.43 90.47± 1.67 92.07± 2.04
Inception-ResNet-v2(480) [27] 91.45± 0.80 90.81± 1.95 92.12± 2.71
ResNet-34(480) [25] 91.47± 0.52 90.53± 1.14 92.41± 1.66
HAnet-34(480) 92.05± 0.52 91.64± 0.95 92.42± 1.54
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Figure 11: Continued.
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5. Conclusion

In this work, we proposed a CNN architecture for ulcer
detection that uses a state-of-the-art CNN architecture
(ResNet-34) as the feature extractor and fuses hyper and
deep features to enhance the recognition of ulcers of various
sizes. A large ulcer dataset containing WCE videos from
1,416 patients was used for this study.,e proposed network
was extensively evaluated and compared with other methods
using overall AC, SE, SP, F1, F2, and ROC-AUC as metrics.

Experimental results demonstrate that the proposed ar-
chitecture outperforms off-the-shelf CNN architectures, es-
pecially for the recognition of small ulcers. Visualization with

CAM further demonstrates the potential of the proposed
architecture to locate a suspicious area accurately in a WCE
image. Taken together, the results suggest a potential method
for the automatic diagnosis of ulcers from WCE videos.

Additionally, we conducted experiments to investigate
the effect of number of cases. We used split 0 datasets in the
cross-validation experiment, 990 cases for training, 142 cases
for validation, and 283 cases for testing. We constructed
different training datasets from the 990 cases while fixed the
validation and test dataset. Firstly, we did experiments on
using different number of cases for training. We randomly
selected 659 cases, 423 cases, and 283 cases from 990 cases.
,en, we did another experiment using similar number of

0.0096
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0.01–0.05

(b)

Figure 11: Comparison of different models. (a) Accuracy and inference time comparison. ,e horizontal and vertical axes denote the
inference time and test accuracy, respectively. (b) Statistical test results of paired T-Test. Number in each grid cell denotes the p value of the
two models in the corresponding row and column.

Table 7: Evaluation of different criteria.

PRE RECALL F1 F2 ROC-AUC
vgg-16(480) 0.9170 0.9012 0.9087 0.9040 0.9656
dense-121(480) 0.9198 0.9047 0.9118 0.9074 0.9658
Inception-ResNet-v2(480) 0.9208 0.9081 0.9138 0.9102 0.9706
ResNet-34(480) 0.9218 0.9053 0.9133 0.9084 0.9698
HAnet-34(480) 0.9237 0.9164 0.9199 0.9177 0.9726

Table 8: Recognition of ulcer with different sizes.

Model
Ulcer size

<1% 1–2.5% 2.5–5% >5%
ResNet-34(480) 81.44± 3.07 91.86± 1.40 94.16± 1.26 96.51± 1.43
HAnet-34(480) 82.37± 3.60 92.78± 1.33 95.40± 0.74 97.11± 1.11

Computational and Mathematical Methods in Medicine 11



frames as last experiment that distributed in all 990 cases.
Results demonstrate that when similar number of frames are
used for training, test accuracies using training datasets with
more cases are better. ,is should be attributed to richer
diversity introduced by more cases. We may recommend to
use as many cases as possible to train the model.

While the performance of HAnet is very encouraging,
improving its SE and SP further is necessary. For example,
the fusion strategy in the proposed architecture involves

concatenation of features from shallow layers after GAP.
Semantic information in hyper features may not be as strong
as that in deep features, i.e., false-activated neural units due
to the relative limited receptive field in the shallow layers
may add unnecessary noise to the concatenated feature
vector when GAP is utilized. An attention mechanism [44]
that can focus on the suspicious area may help address this
issue. Temporal information from adjacent frames could
also be used to provide external guidance during recognition

(a) (b)

(c) (d)

(e) (f )

Figure 12: Visualization network results of some representative ulcers with CAM. A total of six groups of representative frames are obtained. For
each group, the left image reflects the original frame, while the right image shows the result of CAM. (a) Typical ulcer, (b) ulcer on the edge, (c) ulcer
in a turbid backgroundwith bubbles, (d)multiple ulcers in one frame, (e) ulcer in a shadow, and (f) ulcer recognition in the framewith a flashlight.

Table 9: Architectures of ResNet series members.

Layer name Output size 18-Layer 34-Layer 50-Layer 101-Layer 152-Layer
Conv1 240 × 240 7 × 7, 64, stride 2
Maxpool 120 × 120 3 × 3, max pool, stride 2

Layer 1 120 × 120 3 × 3 64
3 × 3 64  × 2 3 × 3 64

3 × 3 64  × 3
1 × 1 64
3 × 3 64
1 × 1 256

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 4

1 × 1 64
3 × 3 64
1 × 1 256

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 3

1 × 1 64
3 × 3 64
1 × 1 256

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 3

Layer 2 60 × 60 3 × 3 128
3 × 3 128  × 2 3 × 3 128

3 × 3 128  × 4
1 × 1 128
3 × 3 128
1 × 1 512

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 4

1 × 1 128
3 × 3 128
1 × 1 512

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 4

1 × 1 128
3 × 3 128
1 × 1 512

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 8

Layer 3 30 × 30 3 × 3 256
3 × 3 256  × 2 3 × 3 128

3 × 3 128  × 6
1 × 1 256
3 × 3 256
1 × 1 1024

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 6

1 × 1 256
3 × 3 256
1 × 1 1024

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 23

1 × 1 256
3 × 3 256
1 × 1 1024

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 36

Layer 4 15 × 15 3 × 3 512
3 × 3 512  × 2 3 × 3 512

3 × 3 512  × 3
1 × 1 512
3 × 3 512
1 × 1 2048

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 3

1 × 1 512
3 × 3 512
1 × 1 2048

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 3

1 × 1 512
3 × 3 512
1 × 1 2048

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ × 3

Avgpool and fc 1 × 1 Global average pool, 2-d fc
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of the current frame. In future work, we will explore more
techniques in network design to improve ulcer recognition.

Appendix

,e architectures of members of the ResNet series, including
ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-
152, are illustrated in Table 9.,ese members share a similar
pipeline consisting of seven components (i.e., conv1,
maxpool, layer 1, layer 2, layer 3, layer 4, and avgpool + fc).
Each layer in layers 1–4 has different subcomponents
denoted as [ ] × n, where [ ] represents a specific basic
module consisting of 2-3 convolutional layers and n is the
number of times the basic module is repeated. Each row in
[ ] describes the convolution layer setting, e.g., [(3 × 3)64]

means a convolution layer with a kernel size and channel of
3 × 3 and 64, respectively.
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