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Abstract: Early detection of the most common pediatric neoplasm, B-cell precursor lymphoblastic
leukemia (BCP-ALL), is challenging and requires invasive bone marrow biopsies. The purpose
of this study was to establish new biomarkers for early screening to detect pediatric leukemia. In
this small cohort study, Fourier transform infrared (FTIR) spectra were obtained from blood sera
of 10 patients with BCP-ALL and were compared with the control samples from 10 children with
some conditions other than neoplasm. Using various analytical approaches, including a new physical
model, some significant differences were observable. The most important include: the different peak
area ratio 2965/1645 cm−1 (p = 0.002); the lower average percentage of both β-sheet and β-turn
protein structures in the sera of BCP-ALL patients (p = 0.03); an AdaBoost-based predictive model
for classifying healthy vs. BCP-ALL patients with 85% accuracy; and the phase shift of the first
derivative in the spectral range 1050–1042 cm−1 correlating with white blood cell (WBC) and blast
cell count in BCP-ALL patients contrary to the samples obtained from healthy controls. Although
verification in larger groups of patients will be necessary, these promising results suggest that FTIR
spectroscopy may have future potential for the early screening of BCP-ALL.

Keywords: acute lymphoblastic leukemia; cancer screening; spectroscopy FTIR; Lissajous curves

1. Introduction

Acute lymphoblastic leukemia (ALL) is the most frequent cancer diagnosed in children
and represents approximately 25% of all cancers diagnosed up to 15 years old [1]. The
annual incidence per 100,000 children is about 4–5, with a slight predominance of boys [2].
ALL arises from the malignant transformation and proliferation of lymphoid precursor cells
in bone marrow, and, in children, is usually derived (80% of cases) from B-cell precursors
(BCP-ALL) [3].

The diagnosis of ALL is usually established by examining bone marrow aspirates.
This invasive procedure is often performed under general anesthesia in children and
the indications for bone marrow biopsy should be considered carefully, particularly in
younger children. Unfortunately, there are many transient conditions, such as infections,

Molecules 2021, 26, 1174. https://doi.org/10.3390/molecules26041174 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-6862-9142
https://orcid.org/0000-0002-5353-7915
https://orcid.org/0000-0001-7577-8472
https://orcid.org/0000-0001-7992-9100
https://doi.org/10.3390/molecules26041174
https://doi.org/10.3390/molecules26041174
https://doi.org/10.3390/molecules26041174
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26041174
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/1420-3049/26/4/1174?type=check_update&version=2


Molecules 2021, 26, 1174 2 of 13

that can imitate acute leukemia in their clinical and laboratory presentation. Therefore, the
implementation of an effective, rapid tool for the early detection of leukemia from serum
could limit the number of unnecessary bone marrow aspirations under general anesthesia.

Fourier transform infrared spectroscopy (FTIR) is a non-destructive and label-free
spectroscopic tool that can shed light on the molecular composition of samples. It provides
a spectral fingerprint, usually in the mid-infrared (MIR) region (400–4000 cm−1), with
characteristic absorbance peaks corresponding to nucleic acids, proteins, carbohydrates,
and lipids. Contrary to standard diagnostic tools, FTIR is a rapid, cost-effective, and
reproducible tool. Significantly, it requires minimal sample pre-processing. In recent years,
many studies have demonstrated the application of FTIR spectroscopy to the early detection
of cancer-specific chemical changes in tissues, cells, and biofluids, thus raising the potential
that it could be used for screening and early diagnosis of neoplasms [4]. Unfortunately, few
studies have thus far applied FTIR spectroscopy for cancer detection in children. We have
previously shown that FTIR spectra can be helpful in pediatric Ewing sarcoma diagnosis
and that it can be used as an important prognostic factor in this cancer [5–8]. To date, FTIR
spectroscopy has not been extensively investigated in acute lymphoblastic leukemia, so its
significance as a diagnostic tool and/or prognostic factor in ALL remains unknown.

In this paper, we report a small cohort study of the FTIR spectra of the sera from pediatric
patients with suspected leukemia compared with the control sera obtained from children
with conditions other than neoplasm. Any significant difference between them was further
scrutinized to establish new biomarkers for early screening to detect pediatric leukemia.

2. Results
2.1. Exploratory Data Analysis

Figure 1 shows the average spectra of diagnosed BCP-ALL patients and healthy
persons (control). The maximal absorbance and wavenumbers of the principal observed
peaks along with their corresponding assigned vibrations are described in Table 1. No
obvious peak shift was observed between the averaged spectra of leukemia patients and
healthy individuals, though there were some differences between the intensities of some
peaks. The most significant shift was observed for the peak corresponding to the amide I
band (1700−1600 cm−1), which is due almost entirely to the C=O stretch vibrations of the
peptide linkages (approximately 80%). The frequencies of the amide I band components are
found to be correlated closely to the secondary structure of the proteins [9]. The position of
the amide I band maximum was at 1645 cm−1 in the average FTIR spectrum of the control
group, while the same peak maximum was shifted to 1641 cm−1 in the average spectrum
of BCP-ALL patients.Molecules 2021, 26, 1174 3 of 14 

 

 

 
Figure 1. Normalized average FTIR spectra of serum samples: control (black) and Acute Lympho-
blastic Leukemia Precursor B (red). Spectra cover the range of 800–3500 cm−1. 
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Table 1. FTIR peaks position with corresponding vibrations in the analyzed three groups.

FTIR Spectroscopy Peaks

Control Sample ALL Sample
ASSIGNMENTPeaks

[cm−1]
Average
[A.U.]

Peaks
[cm−1]

Average
[A.U.]

894 0.002 893 0.001 C-C, C-O deoxyribose, fatty acid, saccharide [10]

931 0.001 932 0.001 Left-handed helix DNA (Z form) [11]

1071 0.039 1070 0.029 vs(PO2
−) DNA, RNA phospholipid,

phosphorylated protein [12]

1166 0.013 1163 0.012 C-O group from groups of serine, threonine, and
tyrosine of protein [10]

1241 0.027 1239 0.025
PO2

− asymmetric and symmetric stretching
(nucleic acids, phosphorylated proteins, and
phospholipids) [13,14]

1311 0.022 1311 0.022 Amide III: proteins [15]

1340 0.02 1340 0.02 CH3, CH2 wagging: lipids/proteins [16]

1396 0.041 1396 0.037 νs(CH3): proteins, COO- symmetric stretching:
fatty acids [15,16]

1455 0.034 1454 0.033 CH3, CH2 bending modes: lipids/proteins [16]

1538 0.066 1537 0.064 Amide II due to N-H bending of proteins [15,17]

1645 0.07 1641 0.071 Amide I due to C=O stretching of α-helix
proteins [17]

2924 0.028 2926 0.02 asymmetric stretching symmetric CH2: lipids [18]

2965 0.027 2962 0.019 asymmetric stretching vibrations of CH3 [17]

3278 0.028 3277 0.034
υ-NH stretching of the peptide bond (-NHCO) of
proteins and υ-OH stretching of functional groups
of water [19]

There was no significant difference in the maximal absorbance values of representative
peaks corresponding to fundamental compounds (proteins, lipids, and nucleic acids).
Sheng et al. [20] have demonstrated that FTIR peak area ratios can differ between leukemia
patients and healthy controls. Consequently, we took the same approach and calculated
the ratios of representative peaks with one another [peaks at cm−1]: 1641/1537, 2926/1641,
2926/1537, 1070/1239, 3277/1537, 3277/1641, and 1641/1239 for the BCP-ALL group; as
well as corresponding to the peak area ratios in the control group: 1645/1538, 2924/1645,
2924/1538, 1071/1241, 3278/1538, 3278/1645, and 1645/1241. As might be expected, the
majority of the peak area ratios tested were not significantly different between both groups.
However, the peak area ratio 2965/1645 cm−1 was significantly different, with median
values for BCP-ALL vs. control of 0.54 (range 0.066–1.505) and 1.595 (range 0.585–2.527),
respectively (p = 0.002). The peak at 2965 cm−1 corresponds to asymmetric stretching
vibrations of CH3 group in lipids, while band 1645 cm−1 corresponds to C=O stretching
of α-helix proteins. Any other differences visible in the graphs of average spectra in both
BCP-ALL and controls (e.g., peaks corresponding to 1070 cm−1, 1241 cm−1, or 1396 cm−1)
were not statistically significant and are irrelevant for classification.

2.2. The Secondary Structure of Proteins

Figure 2 shows the d2A/dν2 normalized spectrum for the region from the 1600 cm−1

to the 1700 cm−1, and the Gaussian deconvolution of the amide I band for the control
and BCP-ALL samples. The positions of the second derivatives minima correspond to the
positions of the individual spectral lines. These lines overlap, forming the amide I band,
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but each of them can be assigned to a specific protein conformation [21–23]. The differences
in protein conformation may indicate changes due to the disease process.
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curve-fitting analysis in the amide I region in the control samples (B) and in the BCP-ALL samples (C). Assignement of
individual components to various protein secondary structures is described in table (D).

The position of the amide I band is similar for the control and the BCP-ALL samples;
however, its shape is slightly different. The second derivative spectra (shown in Figure 2A)
are very similar in terms of the lines’ composition, but some of their amplitude is noticeably
different. This corresponds with the different intensity of the individual spectral lines
forming the amide I band (Figure 2B,C).

FTIR allows access to bulk information on the secondary structure of the proteins
present. In the average spectrum of the control samples, the line located at 1649 cm−1

is associated with an α-helical protein structure [9,21,23,24], and the relative area of its
Gaussian provides a concentration of about 51%. The percentage of the β-sheets is half
the size and is about 25%, calculated by the relative area of the Gaussian for the lines
at 1623 cm−1, 1633 cm−1, 1694 cm−1 in the averaged spectra [21,24–26]. β-turns, which
are a type of non-regular secondary structure that causes a change in direction of the
polypeptide chain, has a 17.5% contribution. It is associated with the relative area of
lines at 1672 cm−1 and 1685 cm−1 [9,23,26]. The line at 1614 cm−1 corresponds to the
intermolecular β-sheets [25], and its contribution in the averaged spectra is about 6%. The
intermolecular β-sheets are characterized by stronger hydrogen bonds [16]. The bands
originating from the amino acid side chains vibrations are also observed (1607 cm−1) [21].

The positions of the lines observed after deconvolution of the amide I for BCP-ALL
samples are very similar. The recorded shifts are at the 1–2 cm−1 level. Major differences
relate to the surface of the registered lines and the contribution of individual protein
structures. The α-helical protein structure is distinctly smaller and is about 40% (a decrease
of about 11%), whereas the percentage of the β-sheets is larger (about 34%, an increase of
approximately 6%). Similarly, the β-turn structure participation also increases (about 23%,
an increase of approximately 5%). The proportion of intermolecular β-sheets decreased by
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about two times (about 3%) compared with the control sample. The same line is recorded
for the amino acid side chain vibrations. The values above were calculated on the analysis
of the average spectra for BCP-ALL and controls.

When the average percentage composition of secondary protein structure is calculated
as the average of the sum of the individual values in each sample, then both β-sheet and
β-turn (% βs + βt) protein structures content is significantly lower in the sera of BCP-ALL
patients compared to the control group (42.34% vs. 48.19%; p = 0.030); see Table 2 and
Figure 3.

Table 2. The secondary structure composition (%) for the control and BCP-ALL average samples.
They were calculated as the average of the sum of the individual values in each sample.

Sample
Secondary Structure

α-Helix (%) β-Sheet + β-Turn (%) Other Structure (%)

Control 44.55 48.19 7.26
BCP-ALL 50.42 42.34 7.24
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The discrepancy between the secondary structure protein composition calculated
directly from the averaged FTIR spectrum and that calculated as the average of the sum of
the individual values follows from the non-linearity of biological systems.

Thus, the % βs + βt seems to be a suitable biomarker to distinguish the ALL cohort
from controls. Therefore, in the next step, the cut-off values of % βs + βt were determined
using receiver operating characteristic analysis (ROC) implementing the Youden index,
which can differentiate BCP-ALL patients and controls with the greatest accuracy. The cut-
off value 42.3 was obtained with AUC 0.82; 95% AUC 0.615–1.0; sensitivity 0.6; specificity
1.0; accuracy 0.8.
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2.3. Methods for Dimensionality Reduction

To differentiate the FTIR serum spectra of the BCP-ALL patients and controls, we
turned in the first instance to unsupervised dimensionality reduction. Dimensionality
reduction approaches are broadly based on the selection of the informative features, or
the generation of variables, that retain the information present in the original dataset.
We analyzed the spectra by a range of matrix decomposition (including principal and
independent components analysis (PCA and ICA); various kernel PCA methods; and
manifold learning approaches, which included t-distributed stochastic neighbor embedding
(tSNE), locally linear embedding (LLE), and isometric feature mapping (IsoMap)), as
implemented in the Python library Scikit-Learn. We did not observe any clustering of the
analyzed groups. When the first derivative of analyzed spectral data was taken instead,
some separation of the data became possible, although still with significant overlap. It was
clear though that the first derivative spectra were more discriminating for classification
than the raw spectra alone.

Reducing the data to the first principal components of the first derivative spectra (see
Supplementary Figures S2 and S4 for scores and loadings plots, respectively) and screening
a range of classification algorithms, we were able to generate an AdaBoost-based predictive
model that was capable of classifying healthy vs. BCP-ALL patients with 85% accuracy
(Figure 4 shows the confusion matrix for this model using leave-one-out cross-validation).
Due to the small cohort size, leave-one-out cross-validation was used for model accuracy
assessment. Leave-one-out cross-validation has been shown to have low bias and low
variance in tasks that contain low numbers of samples, such as in this case, and hence
minimizes the risk of over-fitting.
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2.4. The Types of Absorbance Dynamics FTIR Spectra—Lissajous Curves Construction

Based on the findings outlined above, and to focus only on dynamics of the spectra
(i.e., the rate of absorbance change as a function of the wavenumber), the first derivative
of the IR spectra was considered. This approach can also help eliminate variable sample
thicknesses during preparation.

In the first derivative IR spectra A, for a carefully chosen range of wavenumbers k,
one can distinguish two types of absorbance dynamics.

For the first type, we have dA
dk > 0, where A denotes the IR spectra, and for the second

type, dA
dk < 0 (see Supplementary Figures S5 and S6).
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Physically, this means that we have opposite changes in the absorption. In the case
when dA

dk > 0, the absorption is raising, whereas if dA
dk < 0, the absorption is lowering

in time. To show explicitly the difference between these types of dynamics, which take
place in spectra obtained for leukemia and control groups, we have developed a method
that is based on the technique of Lissajous curves. A Lissajous curve is the graph of a
system of parametric equations which describe harmonic motion. The shape of this curve
allows the determination of, among other things, the phase shift between equations. In
our approach, instead of two parametric equations, we use two IR spectra, and Lissajous
curves help us to determine the phase shift between these spectra in particular regions
of wavenumbers. The first IR spectra is a reference spectrum (RefSpec), calculated as an
average of all IR spectra obtained for healthy persons (control group), whereas the second
is the IR spectra of individual patients (PatSpec) belonging to BCP-ALL group or spectra
(ConSpec) of persons in the control group.

Presentation of the data on the Cartesian space R2 of the form (RefSpec(k), PatSpec(k))
or (RefSpec(k), ConSpec(k)), where k denotes wavenumbers in [cm−1], reveals graphical
patterns which can be used to classify patients or persons from the control group, according
to the absorption dynamics. Strictly speaking, the graphs (RefSpec(k), PatSpec(k)) and
(RefSpec(k), ConSpec(k)) on Cartesian space for the region k ∈ (k1, k2) correspond to
Lissajous curve. The shape of these curves is directly related to the phase shift between the
considered IR spectra. In this way, we obtained a very sensitive method, which allows the
discovery of useful markers for patient classification. Markers can be found in carefully
selected narrow regions of wavenumbers:

(k1, k2), k1 < k2, k2 = k1 + ∆ (1)

where ∆ is the width of the region. As an example, in Figures 5 and 6 we present mark-
ers in the region k ∈ (1042, 1050)

[
cm−1] for BCP-ALL patients and the control group,

respectively.
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In these narrow regions of wavenumbers, two opposite dynamics can be noticed for
the patients, namely covariant and contravariant compared to the reference IR spectra.
These dynamics can be labelled by phase shift between the first derivative of reference IR
spectra (RefSpec) and the first derivative of IR spectra for patients, PatSpec or ConSpec. In
the covariant case, the phase shift is equal to 0, and in the contravariant case, it is equal to
π (see examples in Figures 5 and 6).

This classification in terms of phase shift for leukemia patients is strictly correlated
with their level of white blood count (see Table 3), and even more so, it relates to the
number of circulating blast cells in peripheral blood.

Table 3. Correlations between phase shift and WBC and blast cell counts in peripheral blood for BCP-ALL patients.

Patients BCAx076
ALL

BCAx077
ALL

BCAx079
ALL

BCAx083
ALL

BCAx084
ALL

BCAx094
ALL

BCAx103
ALL

BCAx113
ALL

BCAx146
ALL

BCAx167
ALL

Phase Shift 0 0 π 0 π π π π π 0
WBC [103/µL] 205.8 21.08 1.7 9.08 3.33 2.22 0.13 1.62 4.15 22.43
Blast Cells in

Peripheral Blood
[103/µL]

183.16 11.80 0.24 2.81 0.66 0 0 0.19 0.33 10.99

A level of blast cells greater than 1.0 × 103/µL and total white blood cells count
greater than 9.0 × 103/µL corresponds to a phase shift equal to zero, and in the opposite
case, corresponds to π. For persons in the control group, no relationship with WBC level
was observed (Table 4).



Molecules 2021, 26, 1174 9 of 13

Table 4. Correlations between phase shift and WBC level for the control group.

Controls BCAx099K
All

BCAx101K
All

BCAx102K
All

BCAx105K
All

BCAx106K
All

BCAx109K
All

BCAx119K
All

BCAx127K
All

BCAx130K
All

BCAx131K
All

Phase Shift 0 π 0 π 0 π 0 π π π

WBC [103/µL] 3.98 7.38 4.86 5.37 10.63 5.61 10.50 7.99 3.6 5.24

3. Discussion

The possibility of the early detection of leukemia in children based only on the analysis
of their serum FTIR spectra seems an attractive tool for routine medical practice. Although
acute leukemia is the most common pediatric neoplasm and one of the more frequent
neoplasms in adults [27], there are few studies on the application of FTIR spectroscopy to
early diagnostics, compared to other cancer entities [4].

Sheng et al. [20] showed that the ratios of particular corrected peaks heights (measured
following Yano’s method) could differentiate the serum of leukemia patients from that
of healthy controls. The H2959/H2931 ratio, representing the ratio of CH3/CH2 groups,
had the highest significant difference. Furthermore, from curve fitting, the RNA/DNA
(A1115/A1028) ratios were lower in leukemia patients’ serum. Unfortunately, the examined
sera were obtained from patients with different types of leukemia (AML, 22 pts; CML,
4 pts.; ALL, 4 pts).

In another study (Erukhimovitch et al. [28]), the authors showed that peaks at
1056 cm−1 (corresponding to carbohydrates), 1270 cm−1 (amid III), and 1592 cm−1 (amino
acids) were significantly reduced in spectra obtained from plasma of healthy persons
compared to patients with chronic lymphocytic leukemia. Furthermore, cluster analysis
of the obtained spectra at those specific regions provided an excellent classification of the
healthy and the patient samples, which correlate completely with clinical data.

Previous publications have reported the application of FTIR to the diagnosis and
monitoring of acute lymphoblastic leukemia. These studies have focused, however, on
the examination of bone marrow or isolated lymphocytes examination [29–32]. To our
knowledge, this is the first report of the FTIR analysis of sera obtained from a homogenous
group of ALL patients for early diagnostics. We were able to show differences between
leukemic and control sera at two levels. The first distinction has concerned the pattern
of the whole spectrum. Moreover, there have been identified some different regions and
peaks of the spectrum which could be applied to separate control and ALL patient sera.

In our initial data analysis, we found that the first derivative of the spectral data
allowed for greater discrimination between the patient groups. From this, we developed
a new original approach for spectral data analysis based on Lissajous figures and on the
dynamics of the absorbance in spectra. The first derivative of the spectra was used to plot
Lissajous figures. Their phase shift in the spectral range 1050–1042 cm−1 is correlated with
WBC as well as blast cell count in BCP-ALL patients, contrary to the samples obtained from
healthy controls, wherein no relationship with WBC was confirmed. We have shown that
this connection is not random. It can be explained by different composition of leukemic
sera resulting in the rapid proliferation of leukemic cells in blood and bone marrow. Com-
pared with controls, patients with acute leukemia show serum metabonomic differences
involving aberrant metabolism pathways including glycolysis, TCA cycle, lipoprotein
changes, choline, and fatty acid metabolisms [33,34]. The next major difference we have
shown was a significantly lower content of β-sheet and β-turn in the protein component of
sera of leukemic children. This is contrary to the results obtained by G.A. Raouf et al. [32],
who studied free bone marrow samples, which showed that there was a relatively high
proportion of anti-parallel β-sheet protein in ALL patients. This difference may arise from
the nature of the analyzed tissue (serum vs. bone marrow cells). The accuracy of the test
based solely on the β-sheet and β-turn protein content in serum was about 80%. Finally,
we have found some detailed differences concerning the single peaks in the spectra, like
the ratio of peaks at 2965 cm−1 and 1645 cm−1 (2965/1645) and the position of the peak for
the amide I band maximum in the average leukemic and normal FTIR spectrum.



Molecules 2021, 26, 1174 10 of 13

We are conscious that the number of analyzed samples is too small to draw definitive
and strong conclusions about the clinical importance and practical application of the
obtained results. We believe though that these results are promising and that they justify
further studies in larger groups of patients. After positive verification, this tool could be
applied for early ALL screening.

In conclusion, there are some interesting differences between the FTIR spectral profile
of leukemic and normal serum. These differences may offer a potential route to the early
identification of children with ALL using FTIR spectroscopy and in so doing could limit the
number of invasive procedures and accelerate the diagnosis of individuals. These results
must be verified in prospective studies in larger groups of patients and healthy individuals.

4. Materials and Methods
4.1. Patients

Ten patients with newly diagnosed BCP-ALL were included in this study. They all
were hospitalized in the Department of Pediatric Hemato-oncology, Clinical Regional
Hospital in Rzeszow, Poland. The median age of our study group was 8 years (range:
2–17 years), and the male/female ratio was 3:2. All serum samples were obtained at
diagnosis for routine medical tests. The diagnosis was confirmed by bone marrow biopsy
with the expression of the antigens corresponding to precursor B lymphocytes.

Four healthy pediatric donors and six children with conditions other than neoplasm
and benign conditions were included in the control group. All blood samples were taken
because of other medical indications. The median age in this group was 8 years. (range:
0.5–15.5 years), and the male/female ratio was 1:1.

The study was conducted under Institutional Review Board Protocol No. 1/01/2020
from 30/01/2020 at the University of Rzeszow. The experimental protocols used in this
study were approved by the institutional ethics committees (IECs) of the University of
Rzeszow and were carried out following the approved guidelines. Informed consent was
obtained from all subjects or their guardians before blood sample collection.

4.2. Sample Preparation

Following standard procedures, whole blood samples were collected into clot activator
tubes and were left to clot at room temperature for a minimum of 30 min and a maximum
of 2 h. Blood serum was obtained by two-step centrifugation; first at 3000 rcf for 5 min,
and then the supernatant from this was recentrifuged (5000 rpm for 5 min) to prevent
blood cells contaminating the FTIR spectrum. All serum samples were frozen (−80 ◦C)
until analysis.

4.3. FTIR Spectroscopy

Shortly before analysis, serum samples were thawed at room temperature and 10 µL
of blood serum was pipetted onto the calcium fluoride (CaF2) slides and left to dry for
approximately one hour to eliminate water interference in FTIR spectra.

All sera spectra were acquired in the mid-infrared (MIR) range of 400–4000 cm−1, with
a spectral resolution of 2 cm−1, and are the average of 64 scans without air compensation,
using a Bruker Vertex 70v FTIR spectrometer (Bruker, Poznan, Poland) equipped with
attenuated total reflection (ATR) plate, single-reflection snap ATR crystal as a source of
mid-infrared radiation, and MCT (Mercury–Cadmium–Telluride) IR (infrared) detector.

The plate was cleaned with ethanol (95%) before each spectrum was recorded and
the air was measured as a background. For each serum sample spectra were recorded in
duplicate or triplicate. A total of 63 spectra were collected during this study.

4.4. The Secondary Structure of Proteins

To investigate the secondary structure of proteins contained in the tested serum
samples, the second derivative analysis and the curve-fitting procedure in the amide I
spectral region was applied. The lines forming this band are highly sensitive to molecular



Molecules 2021, 26, 1174 11 of 13

geometry and hydrogen bonding, which allows for the analysis of the protein secondary
structure [9,21,35]. The analysis of protein secondary structure was performed by studying
the contribution of the individual lines composing the amide I band (1600–1700 cm−1).
In the first step, the analysis of the second derivative for a given region of individual
spectra was calculated using the Savitzky–Golay differentiation (baseline correction: Y = 0;
differentiation order, 2; window size, 21; polynomial order, 7). The obtained information
was used for the curve-fitting procedure. Gaussian functions were then fitted to the
observed bands. The analyzed band consists of 8 spectral lines. The sum of the value of all
maxima absorbance corresponding to α-helix and β-sheet were considered.

4.5. Data Analysis

For all obtained spectra, vector normalization and baseline correction were applied.
These operations were performed using OPUS 7.0 (provided by Bruker Optik GmbH/version
7.0, 2011, https://opus-application.software.informer.com/7.0/) and KnowItAll Academic
Edition (John Wiley & Sons, Inc., version 2018, https://sciencesolutions.wiley.com/academic-
edition/). Moreover, in each FTIR spectrum, vibrations corresponding to nucleic acid,
phospholipids, proteins, and lipids were analyzed. The number of obtained data was from
FTIR; therefore, to determine a similarity between analyzed groups, a PCA analysis was
done. PCA reduces the dimensionality, the number of variables of the data, by maintaining
as much variance as possible. This analysis was done using Past software (version 4.04,
https://www.nhm.uio.no/english/research/infrastructure/past/). Moreover, to deter-
mine the similarity between samples within the groups, a hierarchical cluster analysis
(HCA), using Past software, was done. Further data analysis including clustering and
dimensionality reduction was performed using Python 3.6 (Python Software Foundation,
version 3.6, https://www.python.org/downloads/) and Scikit Learn 0.19.1 (BSD License,
version 0.19.1, https://pypi.org/project/scikit-learn/0.19.1/).

The t-test was used to determine the statistical significance of the difference between
two sets of data with a normal distribution.

The optimal cut-off points for distinguishing BCP-ALL vs. the control group using an
average α-helix percentage/β-sheet + β-turn percentage were determined using receiver
operating characteristic analysis (ROC) by implementing the Youden index.

The level of significance was p < 0.05. The calculations were performed using Dell
Inc.’s Dell Statistica (data analysis software system), version 13 (2016).

Supplementary Materials: The following are available online: Supplementary Figures S1–S6, Sup-
plementary Excel File 1.
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