
1 
 

M3NetFlow: A novel multi-scale multi-hop graph AI model for 

integrative multi-omic data analysis  

 

Heming Zhang1, S. Peter Goedegebuure2,3, Li Ding3,4, David DeNardo3,4, Ryan C. Fields2,3, Yixin 

Chen6, Philip Payne1, Fuhai Li1,5# 

 

1Institute for Informatics, Data Science and Biostatistics (I2DB), 2Department of Surgery, 

3Siteman Cancer Center, 4Department of medicine, 5Department of Pediatrics, Washington 

University School of Medicine, 6Department of Computer Science and Engineering, Washington 

University in St. Louis, St. Louis, MO, USA. #Correspondence: Fuhai.Li@wustl.edu   

 

Summary: Multi-omic data-driven studies, characterizing complex disease signaling system from 

multiple levels, are at the forefront of precision medicine and healthcare. The integration and 

interpretation of multi-omic data are essential for identifying molecular targets and deciphering 

core signaling pathways of complex diseases. However, it remains an open problem due the large 

number of biomarkers and complex interactions among them. In this study, we propose a novel 

Multi-scale Multi-hop Multi-omic graph model, M3NetFlow, to facilitate generic multi-omic data 

analysis to rank targets and infer core signaling flows/pathways. To evaluate M3NetFlow, we 

applied it in two independent multi-omic case studies: 1) uncovering mechanisms of synergistic 

drug combination response (defined as anchor-target guided learning), and 2) identifying 

biomarkers and pathways of Alzheimer ’s disease (AD). The evaluation and comparison results 

showed M3NetFlow achieves the best prediction accuracy (accurate), and identifies a set of 

essential targets and core signaling pathways (interpretable). The model can be directly applied 

to other multi-omic data-driven studies. The code is publicly accessible at: 

https://github.com/FuhaiLiAiLab/M3NetFlow 
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1. Introduction 

Multi-omic data-driven studies are at the forefront of precision medicine and healthcare. Recently, 

multi-omic datasets, like genetic, epigenetic, transcriptomic, and proteomic, have been being 

generated to characterize dysfunctional biological processes and signaling pathways from 

multiple levels/views, and to elucidate the panoramic view of the disease pathogenesis 1–5. For 

example, The Cancer Genome Atlas (TCGA) program have generated multi-omic datasets of 

over 20,000 samples spanning 33 cancer types, to understand the key molecular targets and 

signaling pathways of cancer 6. Moreover, the multi-omic data of >10,000 cancer cell lines were 

profiled in the Cancer Cell Line Encyclopedia (CCLE) project, which are valuable to investigate 

the mechanism of cancer response to given drugs and drug combinations7. In addition, the multi-

omic data of Alzheimer's disease (AD) are generated and publicly available in the ROSMAP8 

project to uncover the pathogenesis of AD. Also, the exceptional longevity (EL), like the Long-Life 

Family Study (LLFS) project, have been generating multi-omic data9–11 to identify protective 

biomarkers and pathways for long and healthy life. The multi-omic data are valuable and essential 

for understanding the key molecular targets and mechanisms of diseases, identifying novel 

therapeutic targets, predicting effect drugs and drug cocktails to guide the development of 

precision medicine.  

 

However, it remains an open problem and a challenging task for integrative and interpretable omic 

data analysis, though a set of computational models has been proposed. A comprehensive review 

of existing multi-omic data integration analysis models was reported12. Specifically, these models 

were clustered into a few categories, like similarity, correlation, Bayesian, multivariate, fusion and 

network-based models. The PAthway Representation and Analysis by Direct Inference on 

Graphical Models (PARADIGM13) is one of the most widely used methods among these traditional 

computational methods. Aside from that, the NMTF-based method called iCell14 was also 
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proposed to integrate the multi-omic data and only the direct connection was considered. The 

timeOmics15 was recently developed to identify signaling patterns over time of biomarkers in multi-

omic data, allowing for the analysis of time-series data in biological systems.  

 

Problem formulation. The problem to be tackled in this study using graph AI models is to identify 

or rank disease or drug response associated molecular biomarkers from a large number of multi-

omic features, and infer the potential signaling network among the selected biomarkers. The two 

specific biological problems to be tackled using the graph AI models are as follows. The first task 

is an anchor-biomarker (like known molecular targets, or drug targets) guided learning, e.g., to 

identify targets and pathways regulating drug cocktail response by integrating multi-omic data of 

cells and drug targets. The input data of the first case study is the multi-omic profiling of individual 

cell lines, kegg signaling pathways (graph), drug targets, and synergistic scores of a set of drug 

combinations. The output of the model is a set of top-ranked biomarkers and signaling pathways 

linking to the given anchor-biomarkers (information flowing to the anchor-biomarkers), which are 

informative to predict and explain the mechanism of drug combination response. In addition to 

drug-targets, the anchor-biomarkers can be generic given targets of interested to study the up- or 

down-stream signaling pathways of the anchor-biomarkers. The second task is to identify disease 

associated biomarkers and signaling pathways of Alzheimer’s disease (AD). It is a generic 

biomarker ranking and pathway inference problem without the guide/constraint of anchor-

biomarkers. The input is multi-omic data, like the AD and control/normal samples and kegg 

signaling pathways (graph). The output of the model is a set of top-ranked biomarkers and 

signaling pathways, which are informative to classify AD from normal samples explaining the 

pathogenesis of AD. The two biological problems/case studies represent two of the most needed 

multi-omic data analysis tasks. 

 

Related work. Graph Neural Networks (GNNs) have gained prominence due to their capability 
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to model relationships within graph-structured data16–19. And numerous studies have applied the 

Graph Neural Network (GNN) with the integration of the multi-omic data. MOGONET20 initially 

creates similarity graphs among samples by leveraging each omic data, then employs a Graph 

Convolutional Network (GCN16) to learn a label distribution from each omic data independently. 

Subsequently, a Cross-omic discovery tensor is implemented to refine the prediction by learning 

the dependency among multi-omic data. MoGCN21 adopts a similar approach by constructing a 

patient similarity network using multi-omic data and then using GCN to predict the cancer subtype 

of patients. GCN-SC22 utilizes a GCN to combine single-cell multi-omic data derived from varying 

sequencing methodologies. MOGCL23 takes this further by exploiting the potency of graph 

contrastive learning to pretrain the GCN on the multi-omic dataset, thereby achieving impressive 

results in downstream tasks with fine-tuning. Nevertheless, none of the aforementioned 

techniques contemplate incorporating structured signaling data like KEGG into the model. 

Moreover, general GNN models are limited by their expression power, i.e., the low-pass filtering 

or over-smoothing issues, which hampers their ability to incorporate many layers. The over-

smoothing problem was firstly mentioned by extending the propagation layers in GCN24. Moreover, 

theoretical papers using Dirichlet energy showed diminished discriminative power by increasing 

the propagation layers25. And multiple attempts were made to compare the expressive power of 

the GCNs19,26, and it is shown that WL subtree kernel27 is insufficient for capturing the graph 

structure. Hence, to improve the expression powerful of GNN, the 𝑲-hop information of local 

substructure was considered in various recent research28–33. However, none of these studies was 

specifically designed to well integrate the biological regulatory network and provide the 

interpretation with important edges and nodes. 

  

In this study, we present a novel graph AI model, named M3NetFlow (Multi-scale, Multi-Hop, 

Multi-omic NETwork Flow inference) to address the challenges mentioned above. Specifically, 

using an attention mechanism, our approach tackles these challenges by first incorporating local 
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𝑲-hop information within each subgraph by integrating the gene regulatory network such as 

KEGG34 and BioGrid35,36. Subsequently, we establish global-level bi-directional propagation to 

facilitate message passing between genes/proteins. In the interpretation phase, we leverage the 

attention mechanism to aggregate the weights of all connected paths for genes, and a reweighting 

process inspired by (Term Frequency – Inverse Document Frequency) TF-IDF37 is employed to 

redistribute the importance scores of genes across different cell lines. Afterward, a visualization 

tool, NetFlowVis, was developed for the better analysis of targets and signaling pathways of 

drugs and drug combinations. To assess and demonstrate the effectiveness of our proposed 

model, M3NetFlow, applied it in two independent multi-omic case studies: 1) uncovering 

mechanisms of synergistic drug combination response (defined as anchor-target guided 

learning), and 2) identifying biomarkers and pathways of Alzheimer’s disease (AD). The 

evaluation and comparison results showed M3NetFlow achieves the best Pearson correlation or 

prediction accuracy (accurate), and identifies a set of essential targets and core signaling 

pathways (interpretable, which can be directly applied to other multi-omic data-driven studies. 

  

2. Methodology 

Table 1 provided the links from which four types of datasets, drug combination effects, multi-omic 

data, gene-gene interactions, and drug-gene interactions, were collected to predict drug 

combinations for cancer cell lines. What’s more, to investigate Alzheimer’s disease, we also 

obtained corresponding multi-omic datasets and clinical dataset from publicly available sources, 

particularly the ROSMAP datasets (see Table 2). Comprehensive details regarding the data and 

the preprocessing results are thoroughly documented in Appendix Section A.  This section 

provides an in-depth explanation of the methodologies employed, as well as the specific 

parameters and outcomes obtained during the preprocessing stage. 
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Table 1. Multi-omic data and drug combination screening data of cancer cell lines. 

Database Type Database Name Website Link 

Drug Combination 
Effect Data 

NCI ALMANAC41  

And O’Neil 42 drug combination 

https://wiki.nci.nih.gov/display/NCIDTPdata/NCI-ALMANAC 

and https://drugcomb.fimm.fi/ 

 

 

 

 

 

Multi-omic Data 

Cell Model Passports43 RNA-Seq https://cog.sanger.ac.uk/cmp/download/rnaseq_20191101.zip  

Cell Model Passports43 CNV https://cog.sanger.ac.uk/cmp/download/cnv_20191101.zip  

CCLE44 Methylation https://data.broadinstitute.org/ccle/CCLE_RRBS_TSS1kb_2018
1022.txt.gz 

CCLE44 Gene Amplification https://data.broadinstitute.org/ccle_legacy_data/binary_calls_for
_copy_number_and_mutation_data/CCLE_MUT_CNA_AMP_D
EL_binary_Revealer.gct  

CCLE44 Gene Deletion https://data.broadinstitute.org/ccle_legacy_data/binary_calls_for
_copy_number_and_mutation_data/CCLE_MUT_CNA_AMP_D
EL_binary_Revealer.gct  

Gene-Gene 
Interaction Data 

KEGG45 Gene Interactions Network https://www.genome.jp/kegg/  

Drug-Target 
Interaction Data 

DrugBank46 https://go.drugbank.com/ 

 

Table 2. Multi-omic data and clinical data from ROSMAP database resources 

Database Type Database Name Website Link 

Clinical Data ROSMAP_clinical https://www.synapse.org/#!Synapse:syn3191087  

 
 
 
 
 
Multi-omic Data 

ROSMAP_arrayMethylation_imputed https://www.synapse.org/#!Synapse:syn3168763 

ROSMAP.CNV.Matrix(Mutation) https://www.synapse.org/#!Synapse:syn26263118 

ROSMAP_RNAseq_FPKM_gene https://www.synapse.org/#!Synapse:syn3505720 
C2.median_polish_corrected_log2(Proteomic) https://www.synapse.org/#!Synapse:syn21266454 

Mapping Data GEO GPL16304 Platform 
 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=G
PL16304 
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Figure 1. Model architecture of M3NetFlow. ❶Integrate the one-hot encoded and multi-omic features into 
a vector for each node. Afterwards, Merge drug-gene and gene-gene interactions into an adjacency matrix. 
❷ Multi-hop attention-based propagation was performed in the subgraphs. ❸ Use combined weighted 
adjacency matrix for global signaling propagation.❹ Downstream tasks. (1) Decode the pair of drug nodes 
to predict the drug synergy scores. (2) Use pooling strategy to predict the patient outcomes. 
 

 

2.1 Model Architecture of M3NetFlow 

Figure 1 shows the schematic architecture of the proposed M3NetFlow model. The model input 

parameters are: 𝒳 = ൛(𝑋(ଵ), 𝑇(ଵ)),  (𝑋(ଶ), 𝑇(ଶ)), … , (𝑋(௠), 𝑇(௠)), … , (𝑋(ெ), 𝑇(ெ))ൟ ൫𝑋(௠) ∈ ℝ௡×ௗ , 𝑇 ∈

ℝ௡×ଶ൯, 𝐴 ∈ ℝ௡×௡, 𝑆 = ൛𝑆ଵ, 𝑆ଶ, … , 𝑆௣, … , 𝑆௉ൟ(𝑆௣ ∈ ℝ௡೛×௡೛),  𝐷௜௡ ∈  ℝ௡×௡ , 𝐷௢௨௧ ∈ ℝ௡×௡ , where 𝑀 

represents number of data points in the drug screening dataset. To predict the drug combination 

effect scores 𝑌 (𝑌 ∈ ℝெ×ଵ), we would like to build up the machine learning model 𝑓(⋅) with 

𝑓(𝒳, 𝐴, 𝑆, 𝐷௜௡, 𝐷௢௨௧) = 𝑌, where 𝒳 denotes all of the data points in the dataset and (𝑋(௠), 𝑇(௠)) is 

𝑚-th data points in the dataset, where 𝑋(௠) denotes the node features matrix with 𝑛 nodes of 𝑑 

features and 𝑇(௠) denotes the one-hot encoding of the number of drugs targeted on those 𝑛 

nodes. The matrix 𝐴 is the adjacency matrix that demonstrates the node-node interactions, and 

the element in adjacency matrix 𝐴 such as 𝑎௜௝  indicates an edge from 𝑖 to 𝑗, and 𝑆 is a set of 

subgraphs that partition the whole graph adjacent matrix 𝐴 into multiple subgraphs with 𝑆௣ ∈

ℝ௡೛×௡೛  of nodes interactions between its internal 𝑛௣  nodes and each subgraph has its own 

corresponding subgraph node feature matrix 𝑋௣ ∈ ℝ௡೛×ௗ. 𝐷௜௡ is an in-degree diagonal matrix for 

nodes in directed graph, and 𝐷௢௨௧ is an out-degree diagonal matrix for nodes in directed graph.  

 

Network Modular and Multi-hop Message Propagation In the graph message passing stages 

of our architecture (see Figure 1 step3 and step4), the multi-scale design, i.e., the local network 

module/subgraph module message passing stage for each signaling pathway, and the global 

message passing stage were designed. The multi-scale design will ensure the message fully 

interacts in the internal subgraph. Moreover, we opted for a 𝐾-hop attention-based graph neural 
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network because it further allows for the consideration of longer distance information, which can 

be interpreted as signaling flow in a single message propagation layer. With those initial 

embedding features 𝑋(௠) ∈ ℝ௡×ௗ , (𝑚 = 1, 2, … , 𝑀) , the 𝐾 -hop attention-based graph neural 

network was built to incorporate the long-distance information for each subgraph with 

  ቀ𝛼௜௝
(௠)

ቁ
௣

(௞)

= ATT௛௢௣ ቂ𝑋௣
(௠)

ቃ (1) 

ቀ𝐻௣
(௠)

ቁ
௜

= MSG௛௢௣ ൤𝑋௣
(௠)

, ቀ𝛼௜௝
(௠)

ቁ
௣

(௞)

൨ (2) 

, where ቀ𝛼௜௝
(௠)

ቁ
௣

(௞)
 is the attention score between node 𝑖  and node 𝑗  in the 𝑘 -th kop of the 

subgraph 𝑆௣  for the data point 𝑚  and the updated node feature ቀ𝐻௣
(௠)

ቁ
௜
 for node 𝑖  will be 

generated via 𝐾-hop message propagation (see Appendix B.1 for details). 

 

Global Bi-directional Message Propagation Following the message propagation in the multiple 

internal subgraphs, the global weighted bi-directional message propagation will be performed, 

where nodes-flow contains both ‘upstream-to-downstream’ (from up-stream signaling to drug 

targets) and ‘downstream-to-upstream’ (from drug targets to down-stream signaling) (see Figure 

1 step 3). Before the global level message propagation, the node feature for data point 𝑚 in each 

subgraph 𝐻௣
(௠)

 (𝑝 = 1, 2, … , 𝑃) will be combined into a new unified node features matrix ൫𝐻(௠)൯
(଴)

 

as the initial node features with 

 ൫𝐻(௠)൯
(଴)

௜
=

1

∑ 𝐼ൣ𝒱௜ ∈ 𝑆௣൧௉
௣ୀଵ

෍ ቀ𝐻௣
(௠)

ቁ
௜

⋅ 𝐼ൣ𝒱௜ ∈ 𝑆௣൧

௉

௣ୀଵ

 (3) 

, where 𝑉௜ represents the node/vertex 𝑖 in the graph and 𝐼ൣ𝑉௜ ∈ 𝑆௣൧ is the indicator function, whose 

value will be one if 𝒱௜ ∈ 𝑆௣. In the end, the initial node features for global level propagation will be 

൫𝐻(௠)൯
(଴)

∈ ℝ௡×ௗ(బ)
, 𝑑(଴) = 𝑑ᇱ + 𝑑 . Then (𝐻(௠))(௅)  will be generated by weighted bi-directional 

message propagation via 
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൫𝐻(௠)൯
(௅)

= MPN ቀ ൫𝐻(௠)൯
(଴)

ቁ (4) 

, where MPN is the global bi-directional message propagation network (see Appendix B.2 for 

details). 

 

2.2 Downstream tasks 

Drug combination response predictions by decoding drug node embeddings. After 

obtaining the embedded node features (𝐻(௠))(௅) ∈  ℝ௡×ଷௗ(ಽ)
 from the global message passing 

network, the features for drug A are represented as (𝐻ௗ௥௨௚஺
(௠)

)(௅) ∈  ℝଵ×ଷௗ(ಽ)
and the features for 

drug B are represented as (𝐻ௗ௥௨௚஻
(௠)

)(௅) ∈  ℝଵ×ଷௗ(ಽ)
. Utilizing the decagon decoder47, the prediction 

of combo score will be calculated in the following equation: 

𝑔 ቀ(𝐻ௗ௥௨௚஺
(௠)

)(௅), (𝐻ௗ௥௨௚஻
(௠)

)(௅)ቁ =  (𝐻ௗ௥௨௚஺
(௠)

)(௅)𝐷𝑈𝐷୘((𝐻ௗ௥௨௚஻
(௠)

)(௅))୘  (5) 

, where 𝐷 ∈  ℝଷௗ(ಽ)×ா and 𝑈 ∈  ℝா×ா are trainable decoder matrices, as illustrated in Figure 1 from 

step 4. 

 

Patient outcome predictions. With the embedded node features, the global mean pooling 

strategy was applied to predict the patient outcome with 

𝑦(௠)෣ = arg max ቆMLP ቀAVG ቂ൫𝐻(௠)൯
(௅)

ቃቁቇ (6) 

, where 𝑦(௠)෣ ∈ ℝ஼ and 𝐶 is the number of sample types (see Figure 1 step 4). 

 

2.3 Interpretation using subgraph attention-based score 

As aforementioned, we added the 𝐾-hop subgraph message propagation with attention in each 

subgraph, and the attentions or weights on each edge can potentially indicate and interpret the 

signaling flow on the signaling network to affect the drug combination response. Specifically, 
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putting the attentions/weights on each edge will use the trained parameters 𝑎 ∈ ℝଶௗᇲ
 and 𝑊 ∈

ℝௗ×ௗᇲ
. And for cell lines set, the set 𝒞 = {𝐶ଵ, 𝐶ଶ, … , 𝐶௥, … , 𝐶ோ}  contains 𝑅 = 39  cell lines; for 

ROSMAP AD dataset, 𝑅 = 128, and we can choose the input node feature matrix within a specific 

cell line or sample to form the cell-line / sample specific attention matrix in 𝑘-hop by 

 ቀ𝛼௜௝
(஼ೝ)

ቁ
(௞)

= ෍ ቀ𝛼௜௝
(௠)

ቁ
௣

(௞)
௉

௣ୀଵ

, ൫∀𝑋(௠) ∈ 𝐶௥൯ (7) 

, where (𝛼௜௝
(஼ೝ)

)(௞) will be the element in ൫𝒜(஼ೝ)൯
(௞)

, the 𝑘-hop attention matrix for cell line 𝐶௥. And 

above formula shows the calculation for the 1-head attention matrix. For the multi-head attention 

mechanism, the averaged value will be used for the attention matrix. 

 

3. Results 

3.1 Experimental Setup 

To validate the proposed model on drug prediction task, we implemented a 5-fold cross-validation 

approach. This method involved the use of a four-element vector, <DA, DB, CC, SABC>, as the 

model input. In this tuple, DA and DB denote the specific drug combinations being analyzed. CC 

represents the cell line name, which is integrated with multi-omic data to provide comprehensive 

contextual information. Lastly, SABC reflects the synergistic drug effect observed on the cell line 

CC. In total, there are 2788 model input data points for the NCI ALMANAC dataset and 1008 

model input data points for the O’Neil dataset. In each fold model, 4 folds of the data points will 

be used as the training dataset, and the rest 1-fold will be used as the testing dataset. For those 

1489 genes, their 8 features indicate the RNA sequence number, copy number variation, gene 

amplification, gene deletion, gene methylation maximum and minimum value and whether they 

have a connection spanning DA and DB respectively. Regarding the AD samples outcome 

prediction on ROSMAP dataset, we utilized 138 samples from the ROSMAP dataset, categorized 
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by disease status (74 AD, 64 non-AD). To address the data imbalance, we performed 

downsampling for the classification task. For the AD vs. non-AD classification, we downsampled 

the AD samples to match the 64 non-AD samples, resulting in a dataset with 64 AD and 64 non-

AD samples.  Afterwards, 5-fold cross-validation was leveraged to evaluate the performance of 

our model. For those 2099 genes, their 10 features indicate the methylation values on upstream, 

distal promoters, proximal promoters, core promoters and downstream, the genetic mutations 

with (number of duplicates, deletions and mCNV), the gene expression values and protein 

expression values. For each drug pair, their 8 features in drug prediction task or 10 features in 

ROSMAP sample outcome prediction task were initiated with zeros. Furthermore, to indicate 

connections between nodes, adjacency matrices were also created. Those matrices were formed 

from the KEGG, which contains gene pairs with sources and destinations. For drug-gene edges, 

the connections are bidirectional, which means that in adjacency matrices, those elements are 

symmetric. 

 

3.2 Hyperparameters 

Subsequently, a model was developed by using pytorch and torch geometric. For both drug 

prediction and ROSMAP sample outcome prediction tasks, the learning rate started at 0.002 and 

was reduced equally within each batch for a certain epoch stage. And the epochs after 60 will 

keep the learning rate at 0.0001. Adam optimizer was chosen for optimization with eps=1e-7 and 

weight_decay=1e-20. We empirically set the K-hop Subgraph Message Propagation part with 

𝐾 = 3  and the Global Bi-directional Message Propagation part with 𝐿 = 3 . Afterward, the 

feature dimensions will vary at the different layers and will be denoted by: 

(𝑑(ଵ), 𝑑(ଶ), … , 𝑑(௟), … , 𝑑(௅)). At the global message propagation part, the layer will concatenate 

biased node features and transformed node features of the previous layer for both upstream and 

downstream, generating concatenated dimensions for the output dims being 3 × 𝑑(௟) in 𝑙-th layer. 
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Output dims of the previous layer served as the input dims for the current layer, as follows: (1) 

First layer (input dims, output dims):  (𝑑(଴), 3𝑑(ଵ)); (2) Second layer (input dims, output dims): 

(3𝑑(ଵ), 3𝑑(ଶ)); (3) Third layer (input dims, output dims): (3𝑑(ଶ), 3𝑑(ଷ)). The final embedded drug 

node dims were 3𝑑(ଷ), (𝐿 = 3). For drug prediction task, the decoder trainable transformation 

matrix dims: 𝐷 ∈  ℝଷௗ(ಽ)×ா  and 𝑈 ∈  ℝா×ா  were used as trainable decoder matrices, with 

changeable parameters of 𝐸  to adapt model performance and the model used 𝐸 = 150 . In 

ROSMAP sample prediction task, the trainable graph mean pooling was leveraged to predict the 

sample outcome. As for the LeakyReLU function, the parameter 𝛼 was set as 0.1 for both tasks. 

 

3.3 M3NetFlow improves drug combination synergy and AD prediction accuracy. 

To evaluate the model performance in terms of synergy score prediction for drug combinations 

and predictions on ROSMAP AD samples, we conducted 5-fold cross-validation. As shown in 

Table 3, the average prediction (using the Pearson correlation coefficient), was about 61% 

Pearson correlation using the test data in the NCI ALMANAC dataset and was about 64% Pearson 

correlation using the test data in the O’Neil dataset. Regarding the ROSMAP dataset, the average 

prediction accuracy was about 66% using the test data in the ROSMAP dataset. These prediction 

results are comparable with existing deep learning models38,39. Moreover, we also compared our 

proposed model M3NetFlow with other deep learning models, which included the GCN40 , Graph 

Attention network41 (GAT), UniMP42, MixHop30, Principal Neighborhood Aggregation43 (PNA) and 

GIN44. By checking the p values over 5-fold cross validation, the performances of the M3NetFlow 

have significant improvement over most of the GNN-based methods (see Table 3 and Figure 2a). 
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Figure 2. Model performance and overview of input dataset NCI ALMANAC, O’Neil (drug combination multi-

omic data) and ROSMAP (AD multi-omic data). a. Pearson correlation comparisons for GCN, GAT, UniMP, 

MixHop, PNA, GIN and M3NetFlow models for NCI ALMANAC, O’Neil and ROSMAP dataset.  b. Scatter 

plot of the model with data points in whole NCI ALMANAC dataset.   c. Distributions of all cell lines in whole 

NCI ALMANAC dataset.  d. Box plots across all cell lines in the whole NCI ALMANAC dataset. 
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Table 3. Model comparisons using average Pearson correlation and prediction accuracy of 5-fold 

cross-validation using NCI ALMANAC, O’Neil datasets and ROSMAP datasets. 

Dataset NCI ALMANAC NCI ALMANAC 

P values 

O’Neil O’Neil  

P values 

ROSMAP ROSMAP 

P values 

GCN  51.93% ± 3.24% 0.006670411 44.47% ± 6.02% 0.002229 59.43% ± 4.53% 0.049650832 

GAT 49.16% ± 2.07% 0.000221277 57.06% ± 3.40% 0.014098 62.80% ± 7.11% 0.332946723 

UniMP  49.02% ± 4.21% 0.006497083 55.84% ± 9.98% 0.196887 61.83% ± 3.78% 0.124477379 

MixHop 57.78% ± 3.34% 0.185206079 27.15% ± 9.14% 0.00123 57.20% ± 3.92% 0.014849014 

PNA 55.63% ± 2.26% 0.01219272 62.20% ± 2.07% 0.240673 57.83% ± 1.82% 0.017236825 

GIN 53.76% ± 2.25% 0.003440775 33.12% ± 9.03% 0.002405 49.83% ± 5.71% 0.001882831 

M3NetFlow 60.72% ± 0.70% - 64.36% ± 2.31% - 67.34% ± 5.12% - 

 

 

3.4 M3NetFlow ranks important targets via attention score 

Based on the attention matrix of each sample (like a cell line or an AD patient sample) between 

neighboring nodes (genes) on the graph in each fold of cross validation, the average attention 

matrix in was calculated. Therefore, the weighted importance of each node (gene) of each sample 

will be calculated based on the attention with 

  𝒟௚
(஼ೝ)

= ෍ 𝒜̅௜௚
(஼ೝ)

௡

௜

+ ෍ 𝒜̅௚௝
(஼ೝ)

௡

௝

 (8) 

, where 𝒜̅௜௚
(஼ೝ)

 is the element of averaged 5-fold attention matrix in 1st hop from a sample 𝐶௥ in the 

𝑖-th row and 𝑗-th column and 𝒟௚
(஼ೝ) is the node importance score for gene 𝑔 in the sample 𝐶௥ 

Combining all the node importance vectors, the matrix 𝒟 ∈ ℝ௡×ோ will be generated, where n is the 

number of nodes, and R is the number of samples. However, some of genes may show the 

importance of relatively higher scores in each sample, which weakens the analysis of the sample-

specific analysis. In this way, the idea of reweighting the gene importance score was created 

based on the TF-IDF to reweight the node importance in each sample with 
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 𝒲௚ = 𝐿𝑜𝑔 ቆ
𝑅 + 1

𝑆௚ + 0.01
ቇ (9) 

 𝒟ᇱ
௚ =  𝒲௚ ⋅ 𝒟௚ (10) 

, where 𝑆௚ is the number of samples with a higher node importance score than the threshold 𝒮 in 

all samples. Here, the 95 percentile of node degree values in the whole matrix 𝒟 was used for 𝒮. 

Finally, the reweighted node degree (importance score) matrix 𝒟′ will be generated. Based on the 

reweighted matrix 𝒟′, the node (gene) importance score will be calculated. The sum of importance 

score of individual genes across samples of disease will be used as the disease importance score 

of genes. 

 

3.5 Case 1: Synergistic drug combinations are associated with the identified key targets 

Based on the attention score calculated for each specific cell line in the section 3.4, the highest 

5, and lowest 5 drug scores and their corresponding drugs and drug-targeted genes were 

collected for each cancer cell lines in NCI ALMANAC dataset (check Figure 3a). Comparing the 

targeted genes by drugs from the highest 5 drug scores and lowest drug scores, the differences 

are statistically significant with p values in more than half cell lines. Since the SK-MEL-2 cell line 

only has 3 drug screen data points and all of them are smaller than 0, this cell line was excluded 

from the statistical analysis. In total, there are 27 out of 41 (~65%) cell lines have p values smaller 

than 0.1 (filled with deep orange color in Table S1) and 32 out of 41 (~78%) cell lines have p 

value smaller than 0.3 (filled with light orange color in Table S1). And 37 out of 41 (~90%) cell 

lines have higher gene importance scores on both mean and median values (filled with light green 

in Table S1). Figures 4-6 provided more explicit evidence of a trend where genes targeted by 

drugs with higher scores exhibited higher node degrees (gene importance scores). In each cell 

line, the left boxplots compared the node degree distribution of genes targeted by the top 5 drugs 

with the highest scores against those targeted by the bottom 5 drugs with the lowest scores. The 

right boxplots in each cell line represented the overall comparisons between the top 5 and bottom 
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5 drug scores. Consequently, we could assign prior targets to genes with the highest node degree 

(gene importance scores) using our calculations. This allowed us to rank the genes in each cell 

line according to their node degree (importance scores), which can be found in Table S2. We 

generated a list of the top 20 genes in each cell line, available in Table S3. Subsequently, we 

identified overlapping genes among the cell lines of the same cancer type based on the top 20 

genes in each line for cancer-specific analysis, as depicted in Figure S1 from Appendix Section 

C. 

 

 

 

 
 
Figure 3. Validation and visualization through important node analysis  a. Procedures of analyzing the important 
genes targeted by by the highest 5 and lowest 5 drug combinations  b. Visualization tool NetFlowVis (check 
Appendix Section D for details of this tool) for core signaling network interactions of cell line DU-145  c-f. Density 
and box plots by comparing the genes targeted by the highest 5 and lowest 5 drug combinations in DU-145 and 
SK-MEL-28 cell lines. 
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Figure 4. Cell line A498, A549/ATCC, ACHN, BT-549, CAKI-1, DU-145, EKVX, HCT-116, HCT-15, HOP-62, HOP-92, 
HS 578T, IGROV1, K-562, KM12 genes degree distribution targeted by highest 5 and lowest 5 drug scores. 
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Figure 5. Cell line LOX IMVI, MCF7, MDA-MB-231/ATCC, MDA-MB-468, NCI-H23, HCI-H460, NCI-H522, OVCAR-3, 
OVCAR-4, OVCAR-8, PC-3, RPMI-8226, SF-268, SF-295, SF-539 genes degree distribution targeted by highest 5 
and lowest 5 drug scores. 
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3.6 Case 2: Alzheimer’s disease associated biomarkers and pathways 

Generating attention-based scores from M3NetFlow (see Section 3.4), the sample specific edge 

weight matrices will be aggregated by 

𝒜̅(஺஽) =
1

𝑅
෍ 𝒜̅(஼ೝ)

ோ

௥ୀଵ

(11) 

, where 𝑅 = 64 is the number of AD samples in the set 𝒞 and 𝒜̅(஺஽) ∈ ℝ௡×௡ is the aggregated 

 

 
Figure 6. Cell line SK-MEL-28, SK-MEL-5, SK-OV-3, SNB-75, SR, SW-620, T-47D, U251, UACC-257, UACC-62, UO-
31 genes degree distribution targeted by highest 5 and lowest 5 drug scores. 
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edge weight for AD patients. By setting the filters (edge threshold as 0.106 and a small component 

threshold as 15), we identified 100 potential important genes for AD. Among those genes, 28 

genes are filtered out by setting the threshold of attention-based node weight as 2.0, and 15 of 

them with p values smaller than 0.1 in at least one of the 10 multi-omic features (see Figure 7a-

b). To evaluate the top targets ranked by attention-based node weight, the top-ranked 28 AD 

associated biomarkers were further analyzed via pathway enrichment analysis. Interestingly, a 

set of AD associated signaling pathways are identified. As shown in Figure 7c, the top-ranked 

targets are involved in a set of signaling transduction pathways, which indicates the importance 

of these targets.  

 

Among them, several signaling pathways play critical roles in Alzheimer's disease (AD), 

particularly through mechanisms involving inflammation, immune responses, and cellular growth 

and death. For instances, the B cell receptor (BCR) and T cell receptor (TCR) signaling pathways 

are vital for B cell and T cell activation, which plays a crucial role in immune surveillance and 

inflammation. Shared molecular components between the BCR and TCR pathways, including 

MAP2K1, JUN, CHUK, RELA, NFKB1, IKBKB, and AKT genes, suggest significant cross-talk that 

contributes to neuroinflammatory processes in AD. Prolonged activation of these immune 

pathways may exacerbate chronic inflammation and contribute to AD pathology by sustaining 

harmful neuroinflammatory responses45. The NF-κB signaling axis, a critical component in both 

BCR and TCR pathways, is particularly relevant in AD due to its role in regulating inflammatory 

cytokine production. Chronic activation of NF-κB has been linked to increased amyloid-beta (Aβ) 

deposition and neurofibrillary tangle formation, both of which are hallmark features of AD 

pathology46,47. Additionally, activation of NF-κB, MAPK, and AKT signaling cascades can induce 

neuronal apoptosis, leading to cognitive decline associated with the disease.  

 

The MAPK, RAS, PI3K-Akt, and FoxO signaling pathways also play critical roles in modulating 
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immune responses and neuronal survival. The p38 MAPK pathway, for example, drives 

neuroinflammation by activating microglia and promoting the release of pro-inflammatory 

cytokines, which can result in neuronal death48. Dysregulation of the RAS-RAF-MEK-ERK 

signaling cascade, another crucial pathway in AD, affects neuronal survival and apoptosis. 

Overactivation of RAS signaling increases oxidative stress, contributing to Aβ accumulation and 

tau pathology, both of which are central to neurodegeneration in AD49. While Aβ accumulation is 

an early event in AD, tau pathology is more closely associated with cognitive decline, and together, 

these processes are considered the primary drivers of neuronal death in AD50,51. 

 

The Akt signaling pathway, which promotes cell survival by inhibiting apoptosis through 

downstream effectors such as BCL2, is also impaired in AD. Reduced Akt activity has been linked 

to increased neuronal apoptosis and the accumulation of Aβ and hyperphosphorylated tau. 

Notably, the PI3K-Akt pathway is intimately connected to insulin signaling, which is disrupted in 

AD and is characterized by reduced Akt signaling, impaired glucose metabolism, and an 

increased vulnerability to neurodegeneration52. Furthermore, dysregulation of the FoxO 

transcription factors due to impaired PI3K-Akt signaling leads to enhanced expression of pro-

apoptotic genes such as BIM and PUMA, contributing to synaptic and neuronal loss53. 

 

Neurotrophin signaling, which regulates axonal growth and regeneration via MAPK and PI3K-Akt 

pathways, is another pathway that becomes disrupted in AD. This disruption impairs axonal repair 

mechanisms and contributes to synaptic loss and neuronal degeneration54. Additionally, 

endocrine-related pathways, including insulin and relaxin signaling, play crucial roles in 

maintaining cellular homeostasis and survival. Dysregulation of these pathways in AD contributes 

to neuronal apoptosis, neuroinflammation, and impaired protein clearance, further exacerbating 

disease pathology52,55,56.  
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Figure 7. Biomarkers and pathways associated with Alzheimer’s disease. a. Visualization tool NetFlowVis 

for core signaling network interactions of AD. The important nodes are set as red filtered by attention-based 

node weight threshold of 2.0 and nodes with significant (p values <0.1) differences between AD and non-

AD samples are circled with purples b. Barplot of the attention-based importance score measured by 

M3NetFlow. The gene names and bars marked with red are important genes selected by setting attention-

based node weight as 2.0, and the borders of the bar are set as purple if significant (p values <0.1) 

differences existed between AD and non-AD samples. c. Sankey plot of enriched signaling pathways of the 

identified AD associated genes selected by attention-based node weight (threshold as 2.0). 

 

4. Discussion and conclusion 

Along with the advancement of next-generation sequencing (NGS) technology, multi-omic data 

of diseases are being generated to characterize the dysfunctional molecular targets and signaling 

pathways of complex diseases, like cancer and AD, which are valuable and essential for the 

development of personalized medicine or precision medicine prediction. However, it remains a 

challenging task to identify key molecular targets and core signaling pathways from a large 

signaling network with thousands of signaling targets and extensive signaling interactions. Herein, 

we present a novel graph AI model, named M3NetFlow, for generic multi-omic data integrative 

analysis. In this model, multi-omic data are used as the numerical features of individual proteins, 

and the protein-protein interactions form a large-scale signaling graph. Unlike existing graph 

models, we divided the large-scale network into signaling modules and applied a multi-hop 

strategy to better infer the essential proteins and their interactions. The experimental evaluation 

on two real multi-omic data analysis applications showed that the proposed model outperformed 

existing graph models in accuracy and is able to identify essential targets and core signaling 

pathways, demonstrating its interpretability for Alzheimer's disease or drug combination synergy. 

The proposed model can be applied to 1) anchor-target guided or 2) generic target and pathway 

inference, as indicated by the two multi-omic data analysis applications that represent widely 
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conducted tasks in omic data analysis. In the first scenario, a set of targets of interest, such as 

drug targets or known molecular targets, are used as the anchor nodes. Then, the signaling 

flows/information from neighboring graph nodes propagate to the anchor nodes. The embeddings 

of the anchor nodes are used as input for decoders to predict sample classes or drug combination 

responses. In the second scenario, the embeddings of graph nodes are pooled together as input 

for decoders to predict sample classes. Based on the attention scores of graph nodes, the 

essential targets and signaling pathways are further identified. Therefore, the proposed model 

can be applied for generic, integrative, and interpretable multi-omic data analysis tasks, and the 

code is publicly accessible. 

 

It is still an exploratory study for multi-omic data analysis. There are some limitations that need 

further investigation. For example, more signaling pathways and larger protein-protein 

interactions should be evaluated. Moreover, dividing large signaling graphs into subnetworks or 

network modules can be achieved by using biologically meaningful annotations, such as gene 

ontology (GO) terms. Additionally, more multi-omic datasets are being generated. Combining 

multi-omic data from different diseases can provide a larger sample size than individual disease 

datasets, which could improve the training or pre-training of graph AI models and help identify 

pan-disease or disease-specific targets. It is also interesting to expand graph models from tissue-

level multi-omic data to single-cell multi-omic data, which can be more challenging due to the 

large number of single-cell samples. Therefore, novel and improved graph AI models are needed 

to integrate and interpret multi-omic datasets, identify and infer key molecular targets and 

signaling pathways of complex diseases, and guide the development of precision medicine. 

 

Appendix 

Section A. Data collection and preprocessing 
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A.1 Drug combination screening datasets  

In this paper, we utilized the NCI ALMANAC and O’Neil57 drug screening datasets to train the 

deep learning models. The NCI ALMANAC dataset consists of combo scores for various 

permutations of 104 FDA-approved drugs, representing their impact on tumor growth in NCI60 

human tumor cell lines. For evaluating the synergy score of two drugs on a specific tumor cell line, 

we utilized the average combo-score of two drugs at different doses, employing a 4-element tuple: 

<DA, DB, CC, SABC>. On the other hand, the O'Neil dataset, obtained from the DrugComb58 platform, 

served as another drug combination screening dataset. We extracted the processed dataset from 

this platform, which provided average synergy Loewe scores. These scores assessed the synergy 

score of two drugs on a given tumor cell line, employing a 4-element tuple: <DA, DB, CC, SABC>. 

 

A.2 Multi-omic data of cancer cell lines 

In this study, multi-omic data comprising RNA-seq, copy number variation, gene methylation, and 

gene mutation data for a total of 1,489 genes were incorporated into the model. These data were 

obtained from the Cell Model Passports59 and CCLE60 databases. Through the identification of 

overlapping cell lines from these databases, we identified 42 cell lines that were present in both 

the Cell Model Passports database and the NCI ALMANAC dataset, which are A498, A549/ATCC, 

ACHN, BT-549, CAKI-1, DU-145, EKVX, HCT-116, HCT-15, HOP-62, HOP-92, HS 578T, 

IGROV1, K-562, KM12, LOX IMVI, MCF7, MDA-MB-231/ATCC, MDA-MB-468, NCI-H23, NCI-

H460, NCI-H522, OVCAR-3, OVCAR-4, OVCAR-8, PC-3, RPMI-8226, SF-268, SF-295, SF-539, 

SK-MEL-2, SK-MEL-28, SK-MEL-5, SK-OV-3, SNB-75, SR, SW-620, T-47D, U251, UACC-257, 

UACC-62, UO-31. Additionally, we found 24 cell lines that were present in both the Cell Model 

Passports database and the O'Neil dataset, which are A2058, A2780, A375, CAOV3, HCT116, 

HT144, LOVO, MDAMB436, NCI-H460, NCIH1650, NCIH2122, NCIH23, OV90, OVCAR3, RKO, 

RPMI7951, SK-OV-3, SKMEL30, SKMES1, SW-620, SW837, T-47D, UACC62, VCAP. 
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A.3 Multi-omic data and clinical phenotypes datasets from ROSMAP 

Following the acquisition of the datasets, they were reformatted into 2-dimensional data frames, 

with columns dedicated to sample identifiers, such as IDs and names, and rows corresponding to 

probes, gene symbols, and gene IDs. To successfully integrate the multi-omic data with clinical 

information, it was essential to match identical samples across the various datasets. This required 

standardizing the row data—including probes, gene symbols, and gene IDs—into a unified gene-

level format, either by aggregating gene-specific measurements or by resolving duplicates from 

gene synonyms. Genes were subsequently mapped to a reference genome to ensure precise 

annotation within the multi-omic datasets. Gene counts were then normalized across the datasets, 

with missing values imputed using zeros or negative ones as needed. After aligning all columns 

to standard sample IDs and rows to standardized gene IDs, and ensuring a consistent number of 

samples and genes, the data was prepared for integration into Graph Neural Network (GNN) 

models, where epigenomic, genomic, transcriptomic and proteomic data were employed as 

features for nodes. 

 

A.4 KEGG Signaling Pathways 

About 59,241 gene-gene interactions for over 8,000 genes across different signaling pathways 

were collected from KEGG61 database. And 48 signaling pathways in the KEGG dataset were 

selected as the ground truth of subgraphs in the gene-gene interactions, which were AGE-RAGE 

signaling pathway in diabetic complications, AMPK signaling pathway, Adipocytokine signaling 

pathway, Apelin signaling pathway, B cell receptor signaling pathway, C-type lectin receptor 

signaling pathway, Calcium signaling pathway, Chemokine signaling pathway, ErbB signaling 

pathway, Estrogen signaling pathway, Fc epsilon RI signaling pathway, FoxO signaling pathway, 

Glucagon signaling pathway, GnRH signaling pathway, HIF-1 signaling pathway, Hedgehog 
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signaling pathway, Hippo signaling pathway, Hippo signaling pathway - multiple species, IL-17 

signaling pathway, Insulin signaling pathway, JAK-STAT signaling pathway, MAPK signaling 

pathway, NF-kappa B signaling pathway, NOD-like receptor signaling pathway, Neurotrophin 

signaling pathway, Notch signaling pathway, Oxytocin signaling pathway, PI3K-Akt signaling 

pathway, PPAR signaling pathway, Phospholipase D signaling pathway, Prolactin signaling 

pathway, RIG-I-like receptor signaling pathway, Rap1 signaling pathway, Ras signaling pathway, 

Relaxin signaling pathway, Signaling pathways regulating pluripotency of stem cells, Sphingolipid 

signaling pathway, T cell receptor signaling pathway, TGF-beta signaling pathway, TNF signaling 

pathway, Thyroid hormone signaling pathway, Toll-like receptor signaling pathway, VEGF 

signaling pathway, Wnt signaling pathway, cAMP signaling pathway, cGMP-PKG signaling 

pathway, mTOR signaling pathway, p53 signaling pathway. After preprocessing the dataset, 

17,259 gene-gene interactions for 1,489 genes were obtained. And 28,843 gene-gene 

interactions for 2,144 genes were obtained for ROSMAP AD dataset. 

 

A.5 Drug-Target interactions derived from DrugBank 

Drug-target information was extracted from the DrugBank62 database (version 5.1.5, released 

2020-01-03). In total, 15,263 drug-target interactions were obtained for 5435 drugs/investigational 

agents and 2775 targets. Further, 17 drugs with known targets to the 1489 genes previously 

identified were selected for use in our model for NCI ALMANAC63, specifically: Celecoxib, 

Cladribine, Dasatinib, Docetaxel, Everolimus, Fulvestrant, Gefitinib, Lenalidomide, Megestrol 

acetate, Mitotane, Nilotinib, Paclitaxel, Romidepsin, Sirolimus, Thalidomide, Tretinoin, Vorinostat. 

And 10 drugs with known targets to the 1489 genes previously identified were selected for use in 

our model, specifically: Dasatinib, Erlotinib, Lapatinib, Sorafenib, Sunitinib, Vorinostat, 

Geldanamycin, Metformin, Paclitaxel, Vinblastine. 

 

Section B. Method Details 
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B.1 𝑲-hop attention-based graph neural network  

To incorporate the long-distance information, for each subgraph 𝐾 -hop attention based 

mechanism was constructed with 

                                ቀ𝛼௜௝
(௠)

ቁ
௣

(௞)
=

exp (LeakyReLU(𝑎[𝑊 ቀ𝑋௣
(௠)

ቁ
௜

||𝑊 ቀ𝑋௣
(௠)

ቁ
௝
]))

∑ exp (LeakyReLU(𝑎[𝑊 ቀ𝑋௣
(௠)

ቁ
௜

||𝑊 ቀ𝑋௣
(௠)

ቁ
௤

]))
௤∈𝒩೔

(ೖ)

                   (10) 
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1
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௣
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(௠)
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೔
(ೖ)

௄

௞

]                                  (11) 

, where ቀ𝛼௜௝
(௠)

ቁ
௣

(௞)
 is the attention score mentioned in equation (1) and 𝒩௜

(௞) is the neighbor 

nodes calculated by the adjacency matrix in 𝑘-th hop 𝐴(௞) for the node 𝑖 (See Appendix B.3 for 

the algorithm of 𝑘-th hop adjacency matrix). The linear transformation vector 𝑎 ∈ ℝଶௗᇲ
 was also 

defined. At the same time, the linear transformation for features of each node will be defined as 

𝑊 ∈ ℝௗ×ௗᇲ
. And ቀ𝑋௣

(௠)
ቁ

௧
, ቀ𝐻௣

(௠)
ቁ

௧
 represent the feature and updated feature of node 𝑡  (𝑡 =

1, 2, … , 𝑛) . Aside from that, 𝑄௧  represents the number of signaling pathway the node 𝑡 (𝑡 =

1, 2, … , 𝑛) belongs to. And above formula shows the calculation for the 1-head attention. The 

number of head ℎ will be modified in the model, and the node embeddings for each subgraph will 

take the average of embeddings in every head attention. 

 

B.2 Weighted Bi-directional Message Propagation 

The weight matrices are represented as 𝑊௨௣
(௟)

∈ ℝ௡×௡, 𝑊ௗ௢௪௡
(௟)

∈ ℝ௡×௡ for each of the 𝐿  global 

message propagation layers , (𝑙 = 1, 2, … , 𝐿). The weighted adjacency matrices are defined as 

follows: 

𝐴ᇱ
௨௣
(௟)

=  𝑊௨௣
(௟)

 ∙ 𝐴 (12) 

𝐴ᇱ
ௗ௢௪௡
(௟)

=  𝑊ௗ௢௪௡
(௟)

 ∙ 𝐴୘ (13) 
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Here, 𝐴′௨௣
(௟)

∈  ℝ௡×௡ and 𝐴ᇱ
ௗ௢௪௡
(௟)

∈  ℝ௡×௡ maintain the parameters for drug-gene relationships as in 

the original adjacency matrix. The mean aggregation of each node's neighbors’ features from 

upstream to downstream from layer 𝑙 − 1 to layer 𝑙 is achieved using the following equation: 

ቀ𝐻௨௣_௡௘௜
(௠)

ቁ
(௟)

= 𝐷௜௡
ିଵ(𝐴′௨௣

(௟)
)୘ ൫𝐻(௠)൯

(௟ିଵ)
𝑍௨௣

(௟)
 (14)

Similarly, the mean aggregation of each node's neighbors’ features from downstream to upstream 

is computed as: 

ቀ𝐻ௗ௢௪௡_௡௘௜௚௛
(௠)

ቁ
(௟)

= 𝐷௢௨௧
ିଵ (𝐴′ௗ௢௪௡

(௟)
)୘ ൫𝐻(௠)൯

(௟ିଵ)
𝑍ௗ௢௪௡

(௟)
 (15) 

The biased transformation of nodes and their features is given by: 

ቀ𝐻௦௘௟௙
(௠)

ቁ
(௟)

= ൫𝐻(௠)൯
(௟ିଵ)

𝐵(௟) (16) 

In these equations,  𝑍௨௣
(௟)

∈ ℝௗ(೗షభ)×ௗ(೗)
 and 𝑍ௗ௢௪௡

(௞)
∈ ℝௗ(೗షభ)×ௗ(೗)

are the linear transformation 

matrices for each layer 𝑙 , (𝑙 = 1, 2, … , 𝐿). For each layer, the model employs a normalization 

function 𝑁: ℝ௡×ଷௗ(೗)
→ ℝ௡×ଷௗ(೗)

 and a LeakyReLU activation function with parameter 𝛼 to map the 

concatenated node features ቀ𝐻௖௢௡௖௔௧
(௠)

ቁ
(௟)

= ൬ቀ𝐻௨௣_௡௘௜௚
(௠)

ቁ
(௟)

| ቀ𝐻ௗ௢௪௡_௡௘௜௚௛
(௠)

ቁ
(௟)

 |  ቀ𝐻௦௘௟௙
(௠)

ቁ
(௟)

൰ ∈

 ℝ௡×ଷௗ(೗)
 to 𝐻(௟) ∈ ℝ௡×ଷௗ(೗)

  as follows 

(𝐻(௠))(௟) = LeakyReLU(𝑁(ቀ𝐻௖௢௡௖௔௧
(௠)

ቁ
(௟)

)) (17) 

, where the normalization function 𝑁 performs L2 normalization on the demo matrix 𝑉 ∈  ℝ௣×௤ 

along the row axis using the equation: 

𝑣ᇱ
௜௝ =  

𝑣௜௝

ට∑௝ୀଵ
௤

 𝑣௜௝
ଶ

 (18)
 

, where 𝑣′௜௝ is an element of the new matrix 𝑉ᇱ ∈  ℝ௣×௤. 

 

B.3 𝑲-hop adjacency matrix generation algorithm 
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 Algorithm: 𝒌-th hop adjacency matrix 

Input: initial adjacency matrix 𝐴 ∈ ℝ௡×௡ 
Step 1:  𝐴𝑠𝑢𝑚 = 𝐴 
Step 2:  For 𝑘 in  2, 3, … , 𝐾: 
Step 3:     𝐴(𝑘) = 𝐴𝑘 
Step 4:     For 𝑖 in 1, 2, 3, … , 𝑛: 
Step 5:         For 𝑗 in 1, 2, 3, … , 𝑛: 
Step 6:             If 𝐴𝑖𝑗

(𝑘)
> 1: 

Step 7:                 𝐴𝑖𝑗

(𝑘)
= 1 

Step 8:             End If 
Step 9:             If 𝑖 = 𝑗: 
Step 10:                 𝐴𝑖𝑗

(𝑘)
= 𝐴𝑖𝑗

(𝑘)
− (𝐴𝑠𝑢𝑚)𝑖𝑗 − 1 

Step 11:             Else: 
Step 12:                 𝐴𝑖𝑗

(𝑘)
= 𝐴𝑖𝑗

(𝑘)
− (𝐴𝑠𝑢𝑚)𝑖𝑗 

Step 13:             End if 
Step 14:             If 𝐴𝑖𝑗

(𝑘)
< 0: 

Step 15:                 𝐴𝑖𝑗

(𝑘)
= 0 

Step 16:             End If 
Step 17:         End For 
Step 18:     End For 
Step 19:     𝐴𝑠𝑢𝑚 =  𝐴𝑠𝑢𝑚 + 𝐴(𝑘) 
Step 20: End For 
Output:  𝐴(2), 𝐴(3), … , 𝐴(𝐾) 

 

Section C. Downstream analysis of important targets for cancer cell lines 
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Figure S1. Downstream analysis of important genes and signaling pathways.  a. Procedures of identifying 

the important genes in different cell lines and cancers, and identifying the important signaling pathways in 

different cell lines.  b. Overlapped genes for the cell lines in each type of cancer.  c. Heatmap of sum of 

edge weights in different signaling pathways in whole NCI ALMANAC dataset. 

 

Section D. NetFlowVis: a tool to visualize core signaling pathways associated with 

synergistic drug combinations 

To visualize the results and gain a better understanding of the underlying mechanism of drug 

effects, we generated a core network of signaling interactions by applying a threshold. To 

enhance the interactions, we utilized the RShiny package and developed a visualization tool 

called NetFlowVis (The website link has been provided in the code availability part). This tool 

allows users to control the edge threshold and set a minimum number of nodes in each network 

component. Users have the option to select the desired cell line for visualization and mark specific 

signaling pathways for detailed analysis. As an example, Figure 3b demonstrates the 
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visualization of the cell line DU-145. Furthermore, by referring to the top 20 prior gene targets and 

their corresponding gene degree (node importance scores) for cell line DU-145, we observed that 

the majority of gene targets were included in the filtered signaling network interactions. 

 

By utilizing the NetFlowVis visualization tool, users could take control of the size of the core 

signaling network. In the case of the DU-145 cell line, an edge threshold of 0.31 was selected, 

which corresponded to approximately the 98.5th percentile for edge weight among all edges. 

Additionally, a threshold of 23 was chosen for marking important nodes/genes in red, representing 

~99.9th percentile for node importance scores across all nodes. To gain a deeper understanding 

of the underlying mechanism, the interactions between drugs and genes were analyzed, with the 

highest and lowest drug-gene interactions being represented by the colors purple and green, 

respectively. The analysis revealed that the drug Paclitaxel targeted the important gene BCL2, 

while the drug Celecoxib targeted less essential genes (see Figure 3b). This finding 

demonstrated that targeting the important genes selected by the M3NetFlow model led to higher 

drug scores, as depicted in Figure 3c-f. Moreover, by choosing a specific signaling pathway 

within the core signaling network, it was observed that the IL-17 signaling pathway was 

downstream of the critical gene TRAF6. Interestingly, experimental validation has shown the 

involvement of the IL-17 signaling pathway in promoting migration and invasion of DU-145 cell 

lines through the upregulation of MTA1 expression in prostate cancer64.  

 

Section E. Code Availability 

M3NetFlow code: https://github.com/FuhaiLiAiLab/M3NetFlow 

NetFlowVis app: https://m3netflow.shinyapps.io/NetFlowVis/ 
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