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Abstract
Fungi represent a significant portion of Earth's biological diversity and are essential for ecosystem functions like organic 
matter decomposition and nutrient cycling. While fungi associated with plant roots have been extensively studied, our 
understanding of fungi in the forest canopies remains limited. To investigate the landscape-scale variation in the canopy 
mycobiome of temperate beech and spruce forest stands in the Bavarian Forest National Park (Germany), we examined the 
influence of geophysical conditions and host traits. We found that elevation significantly influenced fungal diversity and 
composition, with distinct effects observed in both beech and spruce stands. Moreover, canopy water content, a key indica-
tor of tree vitality, was also strongly associated with changes in the canopy fungi community, suggesting a potential link 
between forest water stress and the forest canopy mycobiome. Our differential abundance analysis further identified a total of 
41 fungal families as potential bioindicators: 17 families in beech stands and 9 in spruce stands were significantly associated 
with elevation, while 9 families in beech stands and 6 in spruce stands were linked to variations in leaf water content. These 
findings enhance our understanding of the spatial patterns of forest canopy microbial biodiversity and species distributions.
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Introduction

Fungi represent a large proportion of the biological diversity 
on Earth (Peay et al. 2016) and are indispensable for various 
ecosystem functions such as organic matter decomposition 
(van der Wal et al. 2013) and nutrient cycling (Read and 
Perez‐Moreno 2003). Plant-associated fungi form intimate 
relationships with their plant hosts, establishing symbiotic 
relationships that can be mutualistic, parasitic, or com-
mensal (Zeilinger et al. 2016). These interactions can influ-
ence the health and survival of the host plants. (Gupta et al. 
2021; Horbach et al. 2011). Despite extensive research on 
root-associated fungi (Toju et al. 2013; Bonfante and Genre 
2010), our understanding of leaf-associated fungi remains 
limited. This gap in knowledge is particularly critical in 
forests, where the above-ground portions of plants are esti-
mated to constitute 78% of the total forest biomass glob-
ally (Ma et al. 2021). Forest canopies offer a unique habitat 
to various organisms (Vieira and Monteiro‐Filho 2003). 
These canopies are classified as extreme environments due 
to constant temperature oscillations, strong UV light, and 
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fluctuating water conditions. Identifying the variables and 
processes that shape the canopy mycobiomes is essential for 
understanding host plants’ response to a changing environ-
ment, including climate-driven stress (Vandenkoornhuyse 
et al. 2015).

Geophysical conditions are well-established drivers of 
plant and animal distributions, shaping species assemblages 
through temperature, moisture availability, and resource 
gradients across landscapes (Amatulli et al. 2018; Seibert 
et al. 2007; Lausch et al. 2019). These same forces also 
structure microbial communities (Li et al. 2022; Rodriguez 
et al. 2022), yet their role in shaping the fungal communities 
inhabiting the forest canopies, remains poorly understood. 
The forest canopy is an extreme environment where eleva-
tion, solar radiation, and topographic variation create dis-
tinct microclimatic conditions, altering moisture retention, 
UV exposure, and temperature fluctuations—factors known 
to affect fungal colonization and community composition 
(Ren et al. 2018; Hughes et al. 2003; Linacre 1982; Körner 
2007; Bale et al. 1998; Stage and Salas 2007; Debray et al. 
2022). Unlike the forest floor, where soil buffers against 
environmental extremes, the canopy is directly exposed 
to these geophysical gradients, potentially making canopy 
fungi more responsive to subtle shifts in abiotic conditions. 
Examining how these factors influence the canopy mycobi-
ome is therefore critical for understanding the environmen-
tal constraints and ecological processes that govern fungal 
diversity and composition in forest stands.

In addition to geophysical factors, the canopy mycobiome 
is also influenced by its close associations with host trees. 
Significant variation in the canopy microbiome is observed 
both between tree species (interspecifically) (Siegenthaler 
et al. 2024) and within a species (intraspecifically) (Xu et al. 
2022; Unterseher et al. 2016). Given that temperate Euro-
pean forests are dominated by a few key tree species (Simons 
et al. 2021), it is crucial to study the canopy microbiome by 
considering both interspecific and intraspecific variation, as 
well as forest stand characteristics (Duan et al. 2024). For 
instance, the leaf area index, which measures the total sur-
face area of leaves per unit of ground area, is directly related 
to the light distribution in a forest stand and many vegetation 
functions (Parker 2020). Other host-related factors, such as 
canopy water content, chlorophyll content, and nutrient lev-
els, vary across forest stands and are key drivers of the leaf 
mycobiome. Canopy water content, which is heavily influ-
enced by soil water availability, with lowered values usually 
indicative of forest drought stress, has been shown to impact 
the canopy mycobiome diversity (Yadav et al. 2005) and 
the abundance of different fungal functional guilds (Pajares-
Murgó et al. 2023). Another crucial indicator of tree stress is 
canopy chlorophyll content which can, among other biotic 
and abiotic stressors, signal fungal pathogen infection (Guidi 
et al. 2007; El Omari et al. 2001). Besides water content and 

chlorophyll content, canopy nutrients can be another critical 
driving variable in microbial community assembly as phyl-
losphere can be an oligotrophic environment for microorgan-
isms. For example, phosphorus, an essential nutrient in the 
leaf substrate, has been suggested to be a limiting variable 
for fungal diversity (Sun et al. 2023; Kembel and Mueller 
2014).

Although the canopy mycobiome is integral to forest 
ecosystem function, the environmental and host-driven fac-
tors that shape its spatial variability remain poorly under-
stood. Unlike the well-characterized soil and root fungal 
communities, the canopy—marked by rapid microclimatic 
fluctuations and complex host-fungal interactions—repre-
sents a distinct ecological niche whose underlying drivers 
have yet to be fully elucidated. In this study, we examine 
how selected geophysical conditions and host traits explain 
intraspecific variation in canopy fungal communities in tem-
perate Fagus sylvatica (European beech) and Picea abies 
(Norway spruce) forest stands in Bavarian Forest National 
Park, Germany. We hypothesize that a suite of selected geo-
physical variables—elevation, solar radiation, topographic 
position, and topographic wetness index, along with a suite 
of host-related factors—leaf water content, leaf chlorophyll, 
leaf phosphorus, and Leaf Area Index, contribute to canopy 
fungal community composition and diversity. By integrat-
ing microbial and landscape-scale perspectives, this study 
advances our understanding of the ecological processes 
shaping fungal communities in forest canopies.

Experimental procedures

Study site and sampling design

The Bavarian Forest National Park is located along the bor-
der between Germany and the Czech Republic. Encompass-
ing an area of about 250 km2, the Bavarian Forest National 
Park together with the neighboring Sumava National Park 
and the surrounding protected areas, forms the largest con-
tiguous forested areas in Central Europe, the Bohemian For-
est Ecosystem that spans approximately 4000 km2 (Heurich 
et al. 2010; van der Knaap et al. 2020). Elevations in the park 
range from 650 to 1453 m above sea level. The park's veg-
etation is predominantly forested, covering 97% of the area. 
The dominant forest tree species include European beech 
(Fagus sylvatica) and Norway spruce (Picea abies) (van der 
Knaap et al. 2020). The park's management strategy, particu-
larly the non-intervention policy adopted in 1983, aims to 
facilitate the recovery of natural forest dynamics and diver-
sity, providing a site of extensive biodiversity, forestry, and 
remote sensing research (Latifi et al. 2021; van der Knaap 
et al. 2020).
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We sampled 40 beech and 37 spruce stands from May to 
July in 2020 and 2021 (Supplementary Table 1). Each forest 
stand had a size of 30 m × 30 m and dominated by (≥ 75% 
canopy coverage) one tree species of either beech or spruce. 
The center of each stand was measured using Differential 
Global Positioning System (DGPS) Leica GPS 1200 (Leica 
Geosystems AG, Heerbrugg, Switzerland) with an accuracy 
of better than 1 m after post-processing. The stand-based 
sampling design followed a stratified random design over 
elevation gradient and forest stand age (Duan et al. 2024). 
For each stand, two trees of the dominant tree species were 
sampled. Leaf samples were collected from the top canopy 
using a crossbow and sling shot. Further details about the 
collection of leaf samples can be found in (Duan et al. 2024).

Stand geophysical conditions and host traits

Geophysical variables collected included elevation, topo-
graphic wetness index (TWI), solar radiation, and topo-
graphic position index (TPI). Host factors obtained included 
leaf area index (LAI), leaf chlorophyll content, leaf phos-
phorus content, and leaf water content. High-resolution 5-m 
digital elevation model (DEM) data was used to calculate 
and generate the stand geophysical conditions based on 
LIDAR data obtained during a flight campaign in August 
2016. See (Zhu et al. 2020) for details on LIDAR collection 
and processing.

Using the DEM data, we generated TPI, TWI, and solar 
radiation data in ArcMap 10.8.2. The TPI was calculated 
using the approach proposed by (Weiss 2001), with the same 
resolution as the DEM (i.e., 5 m × 5 m cell size). Positive TPI 
values represent locations higher than the average of their 
surroundings (ridges), whereas negative TPI values repre-
sent locations lower than their surroundings (valleys). TPI 
values near zero indicate either flat areas (where the slope is 
near zero) or areas of constant slope (where the point's slope 
is significantly greater than zero) (Wilson and Gallant 2000). 
TWI was generated to serve as a proxy for soil moisture 
(Kopecký et al. 2021). Finally, the solar radiation data was 
calculated following (Fu and Rich 2002). Elevation, TPI, 
TWI, and solar radiation values were then extracted for each 
30 by 30-m stand using all relevant pixels within the plot, 
considering the 5-m pixel size of the DEM data.

Stand-scale host traits measured included Leaf Area Index 
(LAI), stand-average leaf chlorophyll content, stand-average 
leaf water content and stand-average phosphorus content. 
The LAI was measured in each forest stand using a plant 
canopy analyzer (LI-COR LAI-2000) (Darvishzadeh et al. 
2008). Other stand-scale host traits were derived by averag-
ing per stand from measurements of two individual trees that 
were always of the same tree species. For each individual 
tree, leaf water content, leaf chlorophyll content, and leaf 
phosphorus content were obtained from leaves pooled per 

tree and processed in the lab through oven-drying, UV–VIS, 
and ICP/OES, respectively, as previously described (Duan 
et al. 2024).

DNA metabarcoding

For each tree, 0.1 g of leaf material was pooled from a 
composite of ten leaves or needle branches. A sterile paper 
hole puncher (0.6 cm Ø) was used to obtain leaf disks from 
broadleaf samples. To preserve both epiphytic and endo-
phytic fungal communities, samples were not surface steri-
lized and were homogenized using a Benchmark Beadbug™ 
Mini Homogenizer (D1030). DNA was extracted using the 
Qiagen DNeasy Plant Pro Kit and processed with the Qiagen 
Qiacube Connect, following the manufacturer’s protocol. 
Samples were processed in batches of 22 to ensure consist-
ency. DNA concentration was quantified using the Quant-iT 
PicoGreen dsDNA Assay Kit and a Biotek Synergy HTX 
Multi-Mode Reader, and extracts were normalized to 5 ng/
µl, except for samples with lower concentrations (Duan et al. 
2024). DNA extracts were normalized to 5 ng/ml, except 
for samples with a lower concentration. Fungal DNA was 
amplified using the ITS86 / ITS4-ngs primer set (Tedersoo 
et al. 2014; Turenne et al. 1999). Polymerase chain reaction 
(PCR) protocols can be found in the supplementary mate-
rials (Supplementary Tables 2 and 3). To mitigate DNA 
contamination (Welsh and Eisenhofer 2024), we employed 
the following strategies: (1) one negative extraction control 
per 23 DNA extractions, (2) two negative PCR controls per 
96-well plate, and (3) three spike-in positive controls (Sup-
plementary Table 2) per 96-well plate to control for sample 
cross-contamination and tag-switching. Each type of control 
was pooled and sequenced separately. Library preparation 
and amplicon sequencing (Illumina NovaSeq 6000 SP plat-
form with kit PE250) were performed by Genome Quebec 
(Montreal, Canada). During library preparation, the Fluid-
igm Access Array System (Fluidigm, South San Francisco, 
CA) was utilized for multiplexing, employing CS1 as the 
forward primer and CS2 as the reverse primer. An indexing 
PCR with 15 cycles was then conducted to attach indexes 
and i5/i7 Illumina adapter sequences to the amplicons.

Bioinformatic and data analyses

Bioinformatic analyses were done in QIIME 2™ (Bolyen 
et al. 2019) and all data analyses were done in R version 
4.2.3 (https://​www.R-​proje​ct.​org/). Amplicon Sequence Var-
iants (ASVs), as determined by DADA2 integrated within 
Qiime2 (v. 2021.8.0), were used to retain a high taxonomic 
resolution and to improve reproducibility and comparabil-
ity across datasets (Joos et al. 2020; Callahan et al. 2016). 
LULU was employed for post-clustering curation to refine 
ASVs by merging potential artifacts to ensure that rare but 

https://www.R-project.org/
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ecologically relevant ASVs are preserved while reducing 
noise in the dataset (Froslev et al. 2017). Taxonomy was 
assigned using a Naive Bayes classifier implemented in 
QIIME 2, pre-trained on the UNITE database version 8.3 
(10.05.2021) with dynamic clustering thresholds (Nilsson 
et al. 2019; Abarenkov et al. 2021). Reads retained at each 
bioinformatic step can be found in Supplementary Table 4. 
Fungal ASVs were further blank corrected, filtered to only 
contain fungal reads, and corrected for tag-switching as 
described previously (Siegenthaler et al. 2024). Low-fre-
quency noise (ASVs with ≤ 5 reads) was excluded (Polling 
et al. 2022). Read depth was rarefied to 37,636 per sample, 
based on lowest read depth (Duan et al. 2024). To obtain 
a canopy mycobiome profile for each stand, samples from 
individual trees were pooled per stand by averaging the num-
ber of reads per ASV after rarefaction. This approach was 
necessary to align the spatial scale of fungal community 
analyses with that of the geophysical variables, all of which 
were measured at the stand level (e.g., Leaf Area Index and 
solar radiation). Pooling samples at this scale minimizes 
pseudoreplication while ensuring that fungal community 
variation is assessed in relation to broader environmental 
gradients.

No multicollinearity was detected for all explanatory 
variables based on pairwise correlations and variance 
inflation factors (VIF < 5). Fungal diversity was calculated 
using package ‘phyloseq’ (McMurdie and Holmes 2013). 
The R package ‘ggplot2’ (Wickham and Wickham 2016) 
and ‘microeco’ (Liu et al. 2021) were used for visualization. 
Linear regression and PERMANOVA were used to test the 
explanatory power of geophysical conditions and host traits 
on canopy mycobiome diversity and community composi-
tion, respectively. For PERMANOVA (using 9999 permuta-
tions), Bray–Curtis dissimilarity of Hellinger-transformed 

reads was used to represent differences in fungal community 
composition. Differential abundance analysis was performed 
at the fungal family level to identify fungal indicators for 
significant explanatory variables of diversity and composi-
tion, with a minimal occurrence threshold of 30% of samples 
(Nearing et al. 2022), and on centered log ratio transformed 
read counts data using the ‘ALDEX2’ package (Fernandes 
et al. 2014).

Results

DNA Illumina sequencing and the forest canopy 
mycobiome

Across the 77 stand mycobiome profiles remaining after 
bioinformatic processing, quality filtering, rarefaction, and 
averaging by forest stand (Supplementary Table 3), 4528 
ASVs and 2,897,942 fungal reads were recovered, with an 
average of 335 ± 126 ASVs (mean ± std) and 37,636 ± 16 
reads (mean ± std) per sampled forest stand. These fungal 
ASVs were from seven phyla, 32 classes, 100 orders, 235 
families, and 581 genera. Our results highlighted the dis-
tinct and diverse fungal communities associated with beech 
and spruce canopies in the Bavarian Forest National Park. 
Notably, beech canopies harbored a higher proportion of 
Leotiomycetes compared to spruce canopies (Fig. 1). As con-
firmed by PERMANOVA, significant differences in com-
munity composition existed between the two host species 
(Fig. 2), with host tree species accounting for 42% of the 
observed variation (F(1) = 54.9, p < 0.01). In addition, the 
Shannon diversity of the canopy mycobiome differed sig-
nificantly between beech and spruce stands (χ2(1) = 46.94, 
p < 0.01; Fig. 2a).

Fig. 1   Top five fungal classes in the canopies of beech and spruce forests. Percentages represent relative read abundance
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Limited influence of geophysical conditions 
and host traits on forest canopy mycobiome

The only geophysical variable tested significantly influenced 
the canopy mycobiome community composition in both 
beech and spruce stands was elevation. However, its impact 
was more pronounced in beech stands. Specifically, elevation 
accounted for 12% of the variation in the canopy mycobiome 
community composition in beech stands and 8% in spruce 
stands (Table 1). Additionally, lower elevations were associ-
ated with higher canopy fungal Shannon diversity in beech 

stands (Table 2) but showed no significant association in 
spruce stands (F(4, 29) = 1.96, Adj.R2 = 0.10, p = 0.13). 

Host traits tested that significantly influenced the 
canopy mycobiome of beech and spruce were leaf water 
content, leaf phosphorus, and leaf chlorophyll. Leaf 
water content emerged as the most significant host trait 
influencing the canopy mycobiome in both beech and 
spruce stands. It accounted for 13% of the variation in 
the canopy mycobiome community composition in beech 
stands and 8% in spruce stands (Table 1). Additionally in 
spruce stands, higher leaf water content was associated 

Fig. 2   Canopy mycobiome of beech and spruce in Bavarian Forest National Park. (a) Variation in Shannon diversity. Rarefied to 37,636 reads 
per sample. (b) Variation in community composition (Bray–Curtis distance)

Table 1   Geophysical conditions 
and host traits’ effects on forest 
canopy mycobiome composition

Variation partition using PERMANOVA on Bray–Curtis distance on Hellinger-transformed reads. Testing 
was done “by margin”, using 9999 permutations

Geophysical conditions Host traits

Df R2 F p-value Df R2 F p-value

Beech Elevation 1 0.12 5.25  < 0.01 Water content 1 0.13 5.60  < 0.01
TPI 1 0.03 1.10 0.31 P 1 0.06 2.48 0.01
TWI 1 0.02 0.84 0.60 Chlorophyll 1 0.02 0.87 0.55
Solar radiation 1 0.02 0.68 0.84 LAI 1 0.03 1.26 0.19
Residual 34 0.78 Residual 34 0.76
Total 38 1.00 Total 38 1.00

Spruce Df R2 F p-value Df R2 F p-value
Elevation 1 0.08 3.06  < 0.01 Water content 1 0.08 3.02  < 0.01
TPI 1 0.04 1.50 0.08 Chlorophyll 1 0.04 1.67 0.03
TWI 1 0.03 0.99 0.42 P 1 0.03 1.09 0.31
Solar radiation 1 0.02 0.82 0.70 LAI 1 0.03 1.29 0.15
Residual 29 0.79 Residual 30 0.79
Total 33 1.00 Total 34 1.00
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with higher Shannon diversity (Table 2b). In contrast, no 
significant association was observed in beech stands (F(4, 
34) = 1.40, Adj.R2 = 0.04, p = 0.26). Besides leaf water 
content, leaf phosphorus also explained 6% of the vari-
ation in canopy mycobiome community composition in 
beech. While leaf chlorophyll content also explained 4% 
of the variation in canopy mycobiome community com-
position in spruce (Table 1).

Fungal indicators for elevational gradient 
and canopy water content

We identified 41 fungal families as indicators for specific 
elevational conditions and canopy water content in beech 
and spruce forest canopies. Seventeen fungal families in 
beech stands and nine fungal families in spruce stands 
were differentially abundant along the elevational gradi-
ent (Table 3). For canopy water content, we identified 
nine fungal families in beech stands and six fungal fami-
lies in spruce stands to be the indicators for leaf water 
content level (Table 3).

Discussion

Our study demonstrated that geophysical conditions and 
host traits, specifically elevation and leaf water content, 
were closely associated with the canopy mycobiome of 
beech and spruce stands in Bavarian Forest National Park. 
We identified 41 fungal indicators for specific altitudinal 
and canopy water conditions, demonstrating the sensitivity 
of these taxa to these environmental conditions.

Influence of elevation on canopy mycobiome 
diversity and composition

Elevation had a significant, albeit limited, impact on 
shaping the canopy mycobiome in both beech and spruce 
stands. Lower fungal diversity was observed at higher 
elevations in beech canopies but not spruce canopies. 
This suggests that the effect of elevation on phyllosphere 
fungal communities may be host-specific. One plausi-
ble explanation is that beech, as a deciduous broadleaf 

Table 2   Geophysical conditions on forest canopy mycobiome Shannon diversity of beech (a) and host traits’ effects on forest canopy mycobiome 
Shannon diversity of spruce stands (b) in Bavarian Forest National Park, based on linear regression

Samples have been rarefied to 37,636 reads/sample. Linear regression models on the effect of geophysical conditions on spruce stands and host 
traits’ effects on beech stands have been omitted since the overall models did not significantly describe the variation in the data (p = 0.13 and 
p = 0.26, respectively)

a

Geophysical conditions

Coefficient Std.Error t p-value

Beech (Intercept) 5.54 1.99 2.79 0.01
Elevation −0.002 0.00 −2.65 0.01
TPI 0.00 0.01 0.08 0.94
TWI −0.07 0.05 −1.50 0.14
Solar radiation 0.00 0.00 −0.37 0.71

F(4, 34) = 3.12, Adj.R2 = 0.18, 
p < 0.05

b

Host traits

Coefficient Std.Error t p-value

Spruce (Intercept) 2.18 0.62 3.52  < 0.01
Water content 3.04 0.75 4.05  < 0.01
Leaf P 0.00 0.00 −0.65 0.52
Chlorophyll 0.00 0.01 0.48 0.64
LAI 0.06 0.09 0.66 0.52

F(4, 30) = 5.79, Adj.R2 = 0.36, 
p < 0.01
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species typically found at lower elevations, experiences 
increased environmental stress at higher altitudes (Cordier 
et al. 2012). In such environment, its broad leaves provide 
less effective protection against extremes—such as lower 
temperatures and reduced moisture—thereby reducing 

fungal diversity, whereas spruce needles, with their more 
robust structure, better buffer the phyllosphere from such 
environmental fluctuations (Yuan et al. 2023). These host-
specific differences in leaf morphology and the consequent 
microhabitat conditions likely contribute to the contrasting 

Table 3   Significant differentially abundant fungal families in forest canopies identified by ALDEX2. (aldex.corr, and occurring in at least 30% 
of the samples). Mean relative abundance was calculated across stands of the same tree species

Stands Variable Phylum Class Order Family Spearman rank 
correlation rho

Mean Rela-
tive abun-
dance

Beech Elevation Ascomycota Dothideomycetes Pleosporales Didymellaceae 0.68 0.0060
Ascomycota Dothideomycetes Pleosporales Pleosporaceae 0.62 0.0011
Ascomycota Lecanoromycetes Ostropales Stictidaceae 0.62 0.0001
Ascomycota Lecanoromycetes Lecanorales Lecanoraceae 0.61 0.0009
Ascomycota Leotiomycetes Helotiales Sclerotiniaceae 0.60 0.0002
Ascomycota Dothideomycetes Pleosporales Didymosphaeriaceae 0.59 0.0011
Ascomycota Taphrinomycetes Taphrinales Taphrinaceae 0.58 0.0600
Ascomycota Dothideomycetes Pleosporales Massarinaceae 0.53 0.0012
Ascomycota Arthoniomycetes Lichenostigmatales Phaeococcomycetaceae 0.44 0.0005
Basidiomycota Microbotryomycetes unidentified Chrysozymaceae −0.42 0.0003
Basidiomycota Tremellomycetes Tremellales Phaeotremellaceae −0.44 0.0010
Ascomycota Leotiomycetes Helotiales Helotiaceae −0.49 0.0015
Ascomycota Leotiomycetes Helotiales Hyaloscyphaceae −0.55 0.0040
Basidiomycota Exobasidiomycetes Exobasidiales Exobasidiaceae −0.55 0.0008
Ascomycota Eurotiomycetes Chaetothyriales Trichomeriaceae −0.56 0.0060
Ascomycota Dothideomycetes Capnodiales Teratosphaeriaceae −0.56 0.0078
Basidiomycota Tremellomycetes Filobasidiales Filobasidiaceae −0.65 0.0045

Beech Water Basidiomycota Agaricomycetes Russulales Russulaceae 0.56 0.0001
content Basidiomycota Agaricomycetes Boletales Boletaceae 0.53 0.0001

Basidiomycota Tremellomycetes Cystofilobasidiales Mrakiaceae 0.51 0.0011
Basidiomycota Tremellomycetes Filobasidiales Filobasidiaceae 0.49 0.0045
Ascomycota Orbiliomycetes Orbiliales Orbiliaceae 0.41 0.0052
Ascomycota Leotiomycetes Helotiales Dermateaceae −0.43 0.4284
Ascomycota Dothideomycetes Pleosporales Didymellaceae −0.43 0.0060
Ascomycota Dothideomycetes Pleosporales Massarinaceae −0.46 0.0012
Ascomycota Taphrinomycetes Taphrinales Taphrinaceae −0.56 0.0600

Spruce Elevation Ascomycota Eurotiomycetes Chaetothyriales Epibryaceae 0.55 0.0015
Basidiomycota Cystobasidiomycetes unidentified Symmetrosporaceae 0.52 0.0001
Ascomycota Dothideomycetes Pleosporales Melanommataceae 0.48 0.0013
Ascomycota Orbiliomycetes Orbiliales Orbiliaceae 0.46 0.0144
Ascomycota Leotiomycetes Helotiales Leotiaceae −0.49 0.0009
Basidiomycota Agaricostilbomycetes Agaricostilbales Ruineniaceae −0.50 0.0001
Ascomycota Arthoniomycetes Arthoniales Roccellaceae −0.56 0.0002
Basidiomycota Tremellomycetes Tremellales Cuniculitremaceae −0.66 0.0020
Ascomycota Eurotiomycetes Chaetothyriales Cyphellophoraceae −0.71 0.0021

Spruce Water Basidiomycota Tremellomycetes Tremellales Bulleribasidiaceae 0.62 0.0015
content Ascomycota Eurotiomycetes Chaetothyriales Trichomeriaceae 0.61 0.0072

Basidiomycota Tremellomycetes Filobasidiales Filobasidiaceae 0.49 0.0001
Ascomycota Dothideomycetes Capnodiales Teratosphaeriaceae −0.48 0.1038
Ascomycota Taphrinomycetes Taphrinales Taphrinaceae −0.48 0.0072
Ascomycota Lecanoromycetes Lecanorales Lecanoraceae −0.57 0.0153
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patterns in fungal community structure observed in beech 
and spruce canopies, highlighting the importance of con-
sidering tree-specific traits when evaluating how environ-
mental gradients shape canopy mycobiomes.

Elevation also corresponded to variation in canopy fun-
gal community composition in both beech and spruce cano-
pies, as evidenced by the changes in the relative abundance 
of different fungal families along the elevational gradient. 
This could be due to that canopy fungi have specialized 
growth requirements that often depend on the presence and 
condition of their host plants or associated flora along the 
elevational gradient. For example in beech stands, among 
the fungal families whose relative abundance increased 
with elevation, several were known plant pathogenic fun-
gal families (e.g., Sclerotiniaceae (Badet et al. 2015; Ma 
et al. 2019; Navaud et al. 2018) and Taphrinaceae (Tsai 
et al. 2014)). This may be explained by the susceptibility of 
beech— a deciduous broadleaf species—to potential envi-
ronmental stress at higher elevations, which can compromise 
host defenses and facilitate pathogen colonization (Cordier 
et al. 2012). However, the underlying mechanisms of fungal 
plant pathogen altitudinal distribution may be more nuanced, 
requiring further investigation. Similarly, elevational distri-
bution patterns were also observed among certain epifoliar 
and lichenized fungal families in spruce stands. For instance, 
Epibryaceae, known to be an epifoliar fungi typically exist 
as bryophyte parasites (Marasinghe et al. 2023), exhibited 
higher relative abundance at higher elevations. This poten-
tially suggests that these fungi thrive in the cooler, more 
humid conditions found at these altitudes, or the abundance 
of bryophyte hosts at higher elevations. Conversely, Roc-
cellaceae, a primarily lichenized fungal family (Tehler and 
Irestedt 2007), were more prevalent at lower elevations in 
spruce canopies. The environmental conditions at lower 
elevations, which may include warmer temperatures and 
different moisture levels, seem to favor the growth of these 
lichenized fungi, potentially due to the abundance of their 
lichen symbionts. Since many canopy fungal taxa exhibiting 
elevational distribution patterns are known to form close 
associations with host plants or their epiphytic partners, this 
highlights the unique dependency of canopy fungi on the 
distribution of their host and partner plants. In contrast to 
soil fungi—where elevational effects are primarily attributed 
to variations in abiotic soil properties (Li et al. 2022)—can-
opy mycobiomes are shaped by both geophysical gradients 
and the distribution of closely associated flora. These find-
ings reinforce that geophysical conditions, as foundational 
forces in forests, shape not only the distributions of plants 
(Asner et al. 2016; Mod et al. 2016) and animals (Porter 
et al. 2002), but also the canopy mycobiome, advancing our 
understanding of forest biodiversity and species distribution.

Notably, other investigated geophysical variables—solar 
radiation, topographic position, and topographic wetness 

index—did not exhibit significant relationships with canopy 
fungal diversity or composition at the landscape scale in our 
study. This may be due to their relatively weak effects or 
because they operate at different spatial scales.

Leaf water content links forest stress to forest 
canopy mycobiome diversity and composition

Leaf water content significantly influenced the canopy myc-
obiome in both beech and spruce stands in Bavarian Forest 
National Park. Reduced fungal diversity was observed in 
drier spruce canopies but not beech canopies. This suggests 
that the effect of leaf water content on fungal diversity may 
be host-specific. In spruce, lower needle water content likely 
lead to altered leaf surface properties—such as reduced wet-
tability and moisture retention (Krupková et al. 2019)—that 
reduce nutrients availability and constrain the colonization 
of moisture-sensitive fungal species, leading to lower diver-
sity. Conversely, the relatively permeable surfaces of beech 
leaves, particularly in the upper canopy (Bahamonde et al. 
2018), may support a diverse fungal community even under 
drier conditions by still allowing nutrients acquisition from 
the leaf substrates. This observed differential response point 
to the potential role of leaf surface characteristics in shaping 
fungal community assembly.

Variation in community composition correlated with 
canopy water content was observed in both beech and 
spruce stands, underscoring the close associations between 
canopy fungi and their host trees. In particular, canopies 
with reduced leaf water content were enriched in several 
plant-pathogenic fungal families—such as Teratospha-
eriaceae (Prihatini et  al. 2015; Pérez et  al. 2009) and 
Taphrinaceae (Tsai et al. 2014)—suggesting that drier 
canopy conditions may favor the proliferation of patho-
genic fungi. This observation supports the potential role 
of canopy water content as a mediator of tree stress and 
increased susceptibility to pathogen colonization (Vannini 
and Valentini 1994). Canopy water content is recognized 
as a critical indicator of tree vitality (Konings et al. 2021) 
and serves as a proxy for water stress (Lyons et al. 2021). 
And trees with reduced water availability likely shift to a 
conservative growth strategy, reallocating resources away 
from growth and defense toward maintenance, which can 
compromise their resistance to pathogen invasion (Gomez-
Gallego et al. 2022). However, it is important to note that 
canopy water content does not necessarily scale linearly 
with overall water availability or drought stress, as trees 
employ distinct adaptive strategies (Rötzer et al. 2017). 
For example, beech is known to exhibit drought harden-
ing, maintaining or even increasing its leaf water content 
during the initial stages of drought (Yang et al. 2022), 
whereas spruce, characterized by reduced plasticity in 
water management and a lower internal water reserve, may 
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experience more pronounced reductions in water content 
under similar conditions (Pretzsch et al. 2020; Vornam 
et al. 2003). Consequently, the underlying mechanism of 
the observed relationship between canopy water content 
and fungal community composition should be interpreted 
in a context-dependent manner, considering tree growth 
strategies and environmental conditions.

Two other host factors—canopy chlorophyll and phos-
phorus were also important drivers of the canopy mycobi-
ome composition of spruce and beech stands, respectively. 
While chlorophyll is generally a universal indicator of 
photosynthetic activity and tree health (Guidi et al. 2007; 
El Omari et al. 2001), in spruce it may be particularly 
informative of needle physiology—affecting the produc-
tion of photosynthates and defensive compounds (Agath-
okleous et al. 2020)—which in turn modulates the micro-
environment on the needle surface and influences fungal 
colonization. In contrast, the broad leaves of beech have 
higher nutrient content (Wright et al. 2004), so variations 
in phosphorus availability can directly alter the nutrient 
profile of the leaves, thereby modulating canopy fungal 
community composition (Sun et al. 2023).

Enhancing forest monitoring with eDNA 
from the top canopy

Environmental challenges like droughts can significantly 
alter the forest canopy mycobiome by influencing tree 
vitality (Peñuelas et al. 2012). Beech and spruce stands 
in BFNP face a suite of stressors, such as a warmer and 
drier climate (Martinez del Castillo et al. 2022; Einzmann 
et al. 2021). Additionally, the spruce dominated stands are 
prone to bark beetle outbreaks (König et al. 2023). These 
environmental stressors compromise tree vitality, which is 
evident through indicators like loss of leaf water potential, 
defoliation, and crown dieback (Walthert et al. 2021). Fur-
ther exploring the relationships between these tree vitality 
indicators and the canopy mycobiome can enhance our 
understanding of how environmental stressors impact for-
est ecosystems.

Our study offers insights into this rare biome by exploring 
the role of geophysical conditions and host traits. Given that 
many geophysical and vegetation traits can be derived from 
remote sensing data (Skidmore et al. 2021, 2022), integrat-
ing eDNA analyses as employed in this study with remote 
sensing holds promise for advancing our understanding of 
forest canopy microbial biodiversity and species distribution, 
bridging the gap in monitoring Earth’s major ecosystems 
through an eDNA approach (Cambon et al. 2023). Over-
all, our work contributes to a more nuanced perspective on 
the spatial organization of top canopy mycobiomes, thereby 
deepening our understanding of this critical forest biome.

Conclusions

We examined how geophysical conditions (elevation, solar 
radiation, topographic position and wetness) and host traits 
(canopy water content, canopy chlorophyll, canopy phospho-
rus, and leaf area index) explain intraspecific variation in the 
canopy mycobiome of Fagus sylvatica (European beech) and 
Picea abies (Norway spruce) stands in the Bavarian Forest 
National Park, Germany. Our results showed that elevation 
and canopy water content were important drivers of fun-
gal diversity and community composition for both species. 
While two other host factors—canopy chlorophyll and phos-
phorus were also important drivers of the canopy mycobi-
ome composition of spruce and beech stands, respectively.

Investigated geophysical variables other than elevation—
solar radiation, topographic position, topographic wetness 
index—did not exhibit significant relationships with can-
opy fungal diversity or composition at our landscape scale. 
While these factors may be influential in other contexts or 
at different scales, our results suggest they were not the pri-
mary drivers of forest canopy mycobiome in our study area.

Overall, our findings illustrate how altitudinal variation 
and host-associated factors shape the canopy mycobiome, 
shedding light on the spatial patterns of fungal communities 
in forest canopies. Given that many geophysical conditions 
and vegetation traits can be retrieved using remote sensing, 
integrating eDNA analyses, as employed in this study, with 
remote sensing holds promise for scaling the study of can-
opy microbial biodiversity and species distributions across 
broader spatial scales. Future research could further investi-
gate how these key variables interact with additional biotic 
and abiotic factors to refine our understanding of canopy 
mycobiome assembly and maintenance in temperate forest 
ecosystems.
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