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Serum dihydroceramides correlate with insulin sensitivity in
humans and decrease insulin sensitivity in vitro
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Abstract Serum ceramides, especially C16:0 and
C18:0 species, are linked to CVD risk and insulin
resistance, but details of this association are not well
understood. We performed this study to quantify a
broad range of serum sphingolipids in individuals
spanning the physiologic range of insulin sensitivity
and to determine if dihydroceramides cause insulin
resistance in vitro. As expected, we found that serum
triglycerides were significantly greater in individuals
with obesity and T2D compared with athletes and
lean individuals. Serum ceramides were not signifi-
cantly different within groups but, using all ceramide
data relative to insulin sensitivity as a continuous
variable, we observed significant inverse relation-
ships between C18:0, C20:0, and C22:0 species and in-
sulin sensitivity. Interestingly, we found that total
serum dihydroceramides and individual species were
significantly greater in individuals with obesity and
T2D compared with athletes and lean individuals,
with C18:0 species showing the strongest inverse
relationship to insulin sensitivity. Finally, we
administered a physiological mix of dihydrocer-
amides to primary myotubes and found decreased
insulin sensitivity in vitro without changing the
overall intracellular sphingolipid content, suggesting
a direct effect on insulin resistance. These data
extend what is known regarding serum sphingolipids
and insulin resistance and show the importance of
serum dihydroceramides to predict and promote in-
sulin resistance in humans.
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Circulating ceramides, especially specific saturated
ceramide species, and other sphingolipids are linked to
CVD risk and insulin resistance (1–10). In fact, circu-
lating ceramide and sphingolipid contents predict
development of CVD better than some common risk
factors such as plasma cholesterol, LDLs, and
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triglycerides (6, 9, 11, 12). As a result, it was recently
proposed that plasma ceramide could be the new
cholesterol for assessing risk of CVD (11). Beyond the
cross-sectional studies referenced above, there are
several lines of evidence supporting the link between
ceramides, CVD, and insulin resistance. Plasma cer-
amide content decreases after insulin-sensitizing gastric
bypass surgery and weight loss interventions (13–15).
Animal studies show that ceramides accumulate in
atherosclerotic lesions, which may explain the
increased risk associated with plasma content (16).
However, the relationship of circulating sphingolipids
to insulin resistance is not absolute, as insulin-
sensitizing treatments do not always change plasma
sphingolipid content (17). Combined, most data from
epidemiology studies, as well as human interventions
and animal models, support the concept that circulating
ceramides and sphingolipids are related to insulin
resistance and CVD risk.

Ceramides circulate primarily bound to lipoproteins
and are secreted predominately by the liver. Circulating
ceramides are mainly increased in LDL in individuals
with obesity (15). Obese rodents have increased hepatic
ceramide secretion, which may explain increased
plasma ceramide content in individuals with obesity
(15). In one mechanistic study, an LDL-ceramide
mixture was infused in mice to recapitulate increased
plasma ceramide content in obesity, which caused
membrane ceramide accumulation, decreased insulin
signaling, and a decrease in insulin sensitivity specif-
ically in skeletal muscle, providing evidence for a direct
effect of circulating ceramides on tissues (15). Similarly,
LDL-ceramide administration to myotubes caused cer-
amide accumulation, decreased insulin sensitivity, and
signaling independent of inflammation. These data
indicate that plasma ceramides are not simply markers
of insulin resistance but play mechanistic roles in
decreasing insulin sensitivity.

Ceramides are only one member of the sphingolipid
family, and other sphingolipids may also be related to
insulin resistance and CVD risk. Lactosylceramides and
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glucosylceramides are sphingolipids that also accumu-
late in atherosclerotic plaques and therefore may be
involved in the CVD process (18). Sphingomyelins are
the most abundant sphingolipids circulating in lipo-
proteins and, while they are positively related to obesity
and waist circumference, they are not correlated to
insulin sensitivity in cross-sectional human studies (5,
19). Dihydroceramides are immediate precursors to
ceramide synthesis and are negatively related to insulin
sensitivity (20, 21) and insulin secretion (21), are posi-
tively related to waist circumference (22), are elevated
in plasma of individuals with prediabetes and T2D
compared with controls (23), and predict development
of diabetes 9 years before onset (21). Despite strong
evidence linking plasma dihydroceramides to
decreased insulin sensitivity, mechanistic studies to
determine if circulating dihydroceramides cause insu-
lin resistance are lacking.

To address this knowledge gap, we performed the
current study to assess serum sphingolipids in humans
across the metabolic spectrum as well as determine if
dihydroceramides induce insulin resistance in vitro.
MATERIALS AND METHODS

Subjects
Sixteen lean endurance trained athletes (Ath), 14 lean

sedentary controls (Lean), 15 sedentary individuals with
obesity (Ob), and 12 sedentary individuals with obesity and
T2D were recruited for this study.

Subjects gave written informed consent and were
excluded if they had a BMI <20 kg/m2 or >25 kg/m2 for
Lean and Ath and BMI <30 or >40 kg/m2 for Ob and T2D,
or had fasting triglycerides >150 mg/dl, liver, kidney, thy-
roid, or lung disease. Sedentary subjects were engaged in
planned physical activity <2 h/week. Endurance athletes
were master athletes training for cycling and triathlon
competitions. Individuals with T2D were excluded from the
study if they used insulin and/or thiazolidinediones. All
other medications were permitted but washed out for 2
weeks prior to metabolic testing. These medications included
metformin (n = 4), sitagliptin (n = 2), sitagliptin/metformin
(n = 2), glimepiride (n = 1), glyburide (n = 1), glipizide (n = 1),
and liraglutide (n = 2). Participants with obesity, lean con-
trols, and athletes were not taking medications. Subjects were
weight stable in the 6 months prior to the study and were
asked to refrain from planned physical activity for 48 h
before the metabolic study.

This study was approved by the Colorado Multiple Insti-
tutional Review Board at the University of Colorado Anschutz
Medical Campus, protocol #10-0443 and abides by the Decla-
ration of Helsinki principles.
Preliminary testing
Subjects reported to the Clinical Translational Research

Center for screening procedures following a 12-h overnight
fast, where they were given a health and physical examina-
tion, followed by a fasting blood draw. Volunteers underwent
a standard 75 g oral glucose tolerance test to verify glucose
tolerance. Body composition was determined using
2 J. Lipid Res. (2022) 63(10) 100270
dual-energy X-ray absorptiometry analysis (Lunar DPX-IQ;
Lunar Corporation, Madison, WI).
Insulin clamp study
Volunteers spend the night on the Clinical Translational

Research Center to ensure compliance with the overnight fast.
After a 12-h overnight fast, an antecubital vein in one arm was
cannulated for infusions of glucose stable isotopes, insulin,
and spiked dextrose, and a retrograde dorsal hand vein in the
contralateral side was catheterized for blood sampling via the
heated hand technique. A primed continuous infusion of
[6,6-2H2]glucose (Cambridge Isotope Laboratories, Tewksbury,
MA) was initiated at 0.04 mg/kg/min and continued
throughout a 2-h basal lead in period and the insulin clamp.
Blood samples for determination of baseline hormone, sub-
strate concentrations, and serum preparation were drawn
during the final 30 min of the 2-h tracer equilibration before
the clamp. A hyperinsulinemic euglycemic clamp was then
initiated and continued for the next 3 h using the method of
DeFronzo et al. (24). Briefly, a primed continuous infusion of
insulin was administered at 40 mU/m2/min for 3 h. A vari-
able infusion of 20% dextrose was infused to maintain blood
glucose ∼90 mg/dl. The dextrose infusion used to maintain
euglycemia was labeled with [6,6-2H2]glucose to maintain
stable enrichment of plasma glucose (25). Arterialized blood
was sampled every 5 min for bedside determination of
glucose concentration (Analox, Lunenberg, MA) and the
dextrose infusion adjusted as necessary. Glucose rate of
disappearance (Rd) during the insulin clamp was calculated
using equations described by Finegood et al. (25) and
normalized to body weight.
Serum lipidomics analysis
LC-ESI-MS/MS analysis of serum for most sphingolipids

was performed quantitatively using an AB Sciex quadrupole
mass spectrometer 6500 (Sciex, Framingham, MA) equipped
with an ESI probe and interfaced with the Agilent 1290 in-
finity LC system (Agilent, Palo Alto, CA). Sphingolipids were
separated with a Poroshell 120 EC-C8 column, 2.1 × 50 mm,
2.7 μm (Agilent). Lipids from serum were extracted using 1-
phase extraction (methanol-dichloromethane), after internal
standard addition. Quantification was performed using the
ratio of analyte to internal standards relative to sphingolipid
calibration curves.

Serum triglycerides, cholesteryl esters, phospholipids, lyso-
phospholipids, and sphingomyelins were extracted via a
modified Folch extraction after internal standard addition.
Analysis was conducted via flow injection ESI-MS/MS into a
5600 TripleTOF mass spectrometer (Sciex). Mass spectra were
acquired in two stages. In the first stage, the TOF spectra were
scanned with no fragmentation from 100 to 1,200 Da. The
second stage consisted of TOF product ion scans of 611 pre-
cursor masses from 349.2 to 959.8. Lipids were identified in
the second stage by precursor and product ion pairs predicted
by the analyte species and lipid class. Results are reported as
ratios of analyte area to internal standard area.
Cell culture
Primary human skeletal muscle cells were seeded in 24-well

plates coated with 5 μg/cm2 collagen I from rat tail (Corning,
Inc, Corning, NY) and grown in DMEM supplemented with
fetuin (0.25 mg/ml), BSA (0.5 mg/ml), gentamicin
(0.025 mg/ml), amphotericin B (0.125 μg/ml), recombinant



human epidermal growth factor (0.01 μg/ml), dexamethasone
(0.39 μg/ml), 1× GlutaMAX, 10% fetal bovine serum, and 2%
penicillin/streptomycin, at 37◦C in 5% CO2. When cells
reached about 90% confluence, they were differentiated into
myotubes by switching the media to DMEM containing 2%
serum. After 7 days of differentiation, cells were treated with
dihydroceramide-containing liposomes, and insulin-
stimulated glycogen synthesis assay was performed.

Phospholipid/dihydroceramide liposome
preparation

To mimic in vivo conditions, dihydroceramides were
delivered to human primary muscle cells via liposomes, arti-
ficial spherical vesicles composed of a phospholipid bilayer.
We prepared liposomes containing C18:0, C24:0, and C24:1
dihydroceramides by mixing POPC and individual dihy-
droceramide standards at a ratio of 8:1 (2.5 mg of POPC and
312 μg of individual dihydroceramides, in 80/20 methylene
chloride/methanol). Individual dihydroceramide liposomes
were mixed at the appropriate concentrations before
administration to cells. Control liposomes were prepared by
mixing 2.5 mg of POPC with 320 μl of 80/20 methylene
chloride/methanol. Each POPC/dihydroceramide mixture
was evaporated while mixing under a stream of nitrogen to
form a thin film and then rehydrated with PBS. The solution
was left at 4◦C overnight and then sonicated twice at 37◦C for
15 min. Liposome vesicles were formed using a Mini-Extruder
apparatus (Avanti Polar Lipids, Alabaster, AL), by extruding
the lipid solution five times through a 0.2 μm Nuclepore
polycarbonate track-etched hydrophilic membrane (Cytiva
Whatman, Marlborough, MA) and five more times through a
0.1 μmmembrane, keeping the solutions and extruder at 37◦C.
The final dihydroceramide concentration of the individual
liposome preparations was confirmed by LC-MS/MS.

Cell treatment and glycogen synthesis assay
Cells were serum starved for 3.5 h in plain DMEM prior to

the glycogen synthesis assay and treated with liposomes dur-
ing the serum-starve period. Cells were treated with a mixture
of C18:0, C24:0, or C24:1 dihydroceramide liposomes at a
concentration similar to the one observed in serum from in-
dividuals with obesity or T2D (10 ng/ml for C18:0 dihy-
droceramide, 50 ng/ml for C24:0 dihydroceramide, and
180 ng/ml for C24:1 dihydroceramide). Liposome vesicles
made without dihydroceramides (liposome control) were
added at the same concentration as treated cells. Additional
experiments were conducted treating the cells with the indi-
vidual dihydroceramide liposomes, each at the same concen-
tration used in the mixture.

Glycogen synthesis assay was performed according to pre-
viously published protocols (26), with some modifications.
Briefly, cells were incubated for 1 h at 37◦C with 2 μCi/ml
D-[U-14C]-glucose (Cambridge Isotope Laboratories) with or
without 100 nM insulin. After four washes with ice-cold Dul-
becco's PBS, cells were collected in 150 μl of 1 M KOH and
heated at 100◦C for 10 min. About 15 μl aliquots were saved for
Micro BCA protein assay (Thermo Scientific, Rockford, IL).
After addition of 60 μl of a 25 mg/ml glycogen solution in
water and 40 μl of saturated Na2SO4, glycogen was precipi-
tated by adding 900 μl of ice-cold ethanol and incubating the
samples overnight at −80◦C. After centrifugation at
13,000 rpm for 10 min, the pellets were resuspended in 50 μl of
water. After addition of 1 ml of ice-cold 70% ethanol, samples
were left for at least 3 h at −80◦C and centrifuged again at
13,000 rpm for 10 min. The final pellets were resuspended in
100 μl of water, transferred into scintillation vials containing
5 ml of scintillation fluid (CytoScint ES; MP Biomedicals, So-
lon, OH), and counted for radioactivity on a LS 6000TA
scintillation counter (Beckman, Pasadena, CA).

Ceramide LC-MS/MS analysis of primary skeletal
muscle cells treated with dihydroceramide
liposomes

Cells were grown and differentiated in collagen-coated
6-well plates and treated with control and mixed dihy-
droceramide liposomes 3.5 h. Wells were washed three times
with ice-cold PBS and scraped in 500 μl of water. Cells were
homogenized for 2 min at 25 Hz using a bead mill homoge-
nizer (TissueLyser; Qiagen, Hilden, Germany). After
removing 20 μl for protein measurements to normalize the
results, equal volumes of homogenate were brought to 750 μl
total volume with water and 900 μl of methanol were added.
Internal standards (C12:0 ceramide, C12:0 dihydroceramide,
C12:0 glucosylceramide, and C17:0 lactosylceramide; Avanti
Polar Lipids) were added, and lipid extraction was performed
by addition of 3 ml of methyl-tert-butyl-ether, according to
Matyash et al. (27). Ceramides, dihydroceramides, gluco-
sylceramides, lactosylceramides, sphingosine, and sphingo-
myelins were analyzed and quantitated by LC-MS/MS using a
2000 QTrap mass spectrometer (Sciex), as previously
described by our laboratory (28).

Immunoblot analysis
Proteins were separated by SDS-PAGE and transferred to a

PVDF membrane. Membranes were incubated for 1 h in
Intercept Blocking Solution (LI-COR, Lincoln, NE) and then
incubated with the primary antibody overnight at 4◦C in
Intercept Antibody Diluent (LI-COR). Membranes were
washed in TBS with 0.1% Tween-20 and incubated with IRDye
secondary antibody (LI-COR) in Intercept Antibody Diluent
for 1 h at room temperature without light exposure. The
signal was detected using an Odyssey CLx Infrared Imaging
System (LI-COR) and analyzed using Image Studio software
(LI-COR). All antibodies were purchased from Cell Signaling
Technology (Danvers, MA), except for anti-phospho-IRS1
(Tyr612) (MilliporeSigma, Burlington, MA).

Statistical analysis
Data are presented as mean ± SEM. Differences between

groups and treatments were analyzed using a one-way
ANOVA (SPSS, Chicago, IL). Significant differences in indi-
vidual lipid species between groups were adjusted for multi-
ple comparisons using the Benjamini-Hochberg procedure.
When significant differences were detected, groups were
compared using two-tailed Student’s t-tests. Significant re-
lationships between serum lipids and insulin sensitivity were
determined using Pearson’s correlation coefficient and were
adjusted for multiple comparisons using the Benjamini-
Hochberg procedure. A P value of less than 0.05 was consid-
ered significant.

RESULTS

Demographics for the individuals in this study have
already been published (29). Briefly, 16 athletes
(6W/10M), 14 lean controls (6W/8M), 15 individuals
Serum lipids and insulin sensitivity 3



with obesity (7W/8M), and 12 individuals with T2D
(5W/7M) volunteered to participate in the study. A
sample from one individual with obesity was not
analyzed for shotgun lipidomics because of technical
problems resulting in a sample size of 14 for individuals
with obesity for triglyceride, cholesteryl ester, and
phospholipid data. There were no differences in mean
age between groups (Ath: 42.5 ± 1.3, Lean: 42.6 ± 1.9, Ob:
42.0 ± 1.5, and T2D: 45.3 ± 1.7 years, P = 0.46). As ex-
pected, BMI (Ath: 23.1 ± 0.5, Lean: 22.4 ± 0.7, Ob: 35.4 ±
1.1, and T2D: 34.8 ± 1.8 kg/m2; P < 0.0001) and body fat
percentage (Ath: 16.8 ± 1.4, Lean: 22.8 ± 2.4, Ob: 36.7 ±
2.0, and T2D: 35.9 ± 2.6%; P < 0.0001) were significantly
greater in Ob and T2D individuals compared with Lean
and Ath. Resting systolic blood pressure was signifi-
cantly greater in T2D compared with Ath and Lean
(Ath: 115 ± 2.8, Lean: 113 ± 3.2, Ob: 121 ± 3.8, and T2D:
126 ± 2.5 mm Hg; P = 0.035), whereas there were no
significant differences in diastolic blood pressure be-
tween groups (Ath: 73 ± 3.1, Lean: 71 ± 2.4, Ob: 79 ± 2.7,
and T2D: 80 ± 3.5 mm Hg). Fasting glucose was signif-
icantly greater in the T2D group compared with others
(Ath: 88.1 ± 2.4, Lean: 90.2 ± 1.6, Ob: 93.3 ± 2.1, and T2D:
173.7 ± 12.8 mg/dl; P < 0.0001), whereas insulin con-
centration was significantly greater in Ob and T2D
compared with Ath and Lean (Ath: 6.7 ± 0.7, Lean: 8.8 ±
01.3, Ob: 18.1 ± 2.1, and T2D: 21.5 ± 2.7 kg/m2; P < 0.0001).
Insulin sensitivity measured by insulin-stimulated
glucose Rd was significantly different between each
group (Ath: 12.4 ± 0.6, Lean: 8.8 ± 0.7, Ob: 5.1 ± 0.6, and
T2D: 2.4 ± 0.4 mg/kg/min; P < 0.0001).

Individuals with obesity and T2D had significantly
greater serum triglycerides compared with Lean and
Ath (Fig. 1). Triglyceride data from one individual with
TAG
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Figure 1. Serum triglyceride content in individuals spanning
different ranges of insulin sensitivities. Serum triglycerides
(triacylglycerol [TAG]) in endurance trained athletes, lean
sedentary controls, and individuals with obesity without and
with T2D. Values are means ± SEM and expressed as ratio be-
tween the analyte and the internal standard areas in 1 ml of
serum. Values are means ± SEM. ¥ = significantly different
than lean P < 0.05, # = significantly different than athletes
P < 0.05.
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T2D were removed from this analysis with outlier
values that were seven times the mean and 7.8 standard
deviations away from the mean. There was a significant
inverse relationship between insulin sensitivity
measured by insulin-stimulated glucose Rd and total
serum triglyceride content (r = −0.37; P = 0.006).

After correcting for multiple comparisons, there
were no significant differences in total serum ceramide
content between groups (Fig. 2A). However, using all
serum ceramide data relative to insulin sensitivity as a
continuous variable, we found that C18:0, C20:0, and
C22:0 ceramide species were significantly related to
insulin sensitivity after correction for multiple com-
parisons (Fig. 2B–D). The ratio of C16:0, C18:0, and C20:0
serum ceramides to C24:0 content has been linked to
CVD risk (9); therefore, we evaluated these ratios to
insulin sensitivity and found that none was significantly
different between groups, but C18:0/C24:0 serum cer-
amide ratio was significantly inversely related to insulin
sensitivity (r = −0.33; P = 0.01).

There were no differences in serum cholesteryl es-
ters, phospholipids and lysophospholipids, sphinganine,
sphingosine, sulfatides, hexosyl- and lactosyl-ceramides,
gangliosides and sphingomyelins between groups, and
no relationships to insulin sensitivity (supplemental
Figs. S1–S5).

Total serum dihydroceramides were significantly
greater in Ob and T2D compared with Lean and Ath
(P = 0.0004; Fig. 3A). Total serum dihydroceramide was
also significantly related to insulin sensitivity (Fig. 3B).
This relationship was also significant for individual
dihydroceramide species including C18:0, C20:0, C22:0,
C24:0, and C24:1, as shown in Fig. 3C–G.

To evaluate if dihydroceramides could cause insu-
lin resistance in vitro, we performed an insulin-
stimulated glycogen synthesis assay in human pri-
mary myotubes treated with a mixture of dihy-
droceramides at a similar concentration observed in
the serum of individuals with obesity, with and
without T2D. We selected three of the dihydrocer-
amide species that showed significant higher serum
levels in individuals with obesity and T2D and used
concentrations that reflected the average between the
two groups in our in vitro experiments. We prepared
phospholipid liposome vesicles containing the dihy-
droceramide mix to mimic in vivo dihydroceramide
delivery to muscle and avoid precipitation in the
extracellular hydrophilic environment. When pri-
mary skeletal muscle cells were treated with POPC
liposomes containing a mixture of C18:0, C24:0, and
C24:1 dihydroceramides, we observed a significant
decrease in insulin-stimulated glycogen synthesis (34
± 2%; P = 0.0005) compared with cells pretreated with
POPC-only control liposomes (Fig. 4A). When we
administered C18:0, C24:0, and C24:1 dihydroceramide
liposomes individually, we observed a significant
reduction in glycogen synthesis, compared with con-
trol, for all the individual species tested (C18:0, 35.8 ±
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Figure 2. Serum ceramides and relationships to insulin sensitivity. Serum ceramide content (A) and relationship of C18:0 (B), C20:0
(C), and C22:0 (D) ceramide species to insulin sensitivity in endurance trained athletes, lean sedentary controls, and individuals with
obesity without and with T2D. Values are means ± SEM.
5.5%, P = 0.003; C24:0, 49 ± 9%, P = 0.005; C24:1, 43.3 ±
7.3%, P = 0.004) (Fig. 4B).

To evaluate the potential effect of extracellular
dihydroceramide administration on intracellular
sphingolipid levels, we measured ceramide, dihy-
droceramide, glucosylceramide, lactosylceramide,
sphingosine, and sphingomyelin concentrations in un-
treated skeletal muscle cells or cells treated with control
or dihydroceramide liposomes. As shown in Fig. 4C,
extracellular delivery of dihydroceramide liposomes
did not cause significant changes in intracellular level
of these sphingolipids. These results suggest that, under
these in vitro experimental conditions, the observed
effects on cell insulin sensitivity are caused by extra-
cellular dihydroceramides and are not affected by
changes in other intracellular sphingolipids, such as
ceramides, that are known to affect insulin resistance
and would therefore make these data hard to interpret.

Treatment of human primary myotubes with a
mixture of dihydroceramide liposomes, at the same
experimental conditions that caused a significant
decrease in insulin-stimulated glycogen accumulation,
did not result in any significant changes in key nodes of
insulin-stimulated insulin signaling including phos-
phorylation of IRS1(Tyr612), AKT(Ser473), and GSK-
3β(Ser9) in response to insulin (Fig. 5A, B). We also
wanted to measure common inflammatory response
pathways that are known to attenuate insulin sensitivity
in skeletal muscle in order to evaluate changes in cell
signaling that could explain the insulin resistance
observed. However, we did not observe significant dif-
ferences in phosphorylation of proinflammatory tran-
scription factor NF-κB p65, p38 MAPK, and p44/42
MAPK (ERK1/2) (Fig. 5C). Representative gels for in-
sulin signaling and inflammatory response in vitro are
shown in Fig. 5D, E. The full gels from which the im-
ages of Fig. 5D, E were spliced for presentation pur-
poses can be found in supplemental Figs. S6 and S7,
respectively. These results suggest that, in these exper-
imental conditions, the effects on insulin sensitivity
observed in myotubes after extracellular DHCer
administration are not caused by alterations in insulin
signaling or an inflammatory response in vitro.

DISCUSSION

The main findings from this study are that plasma
dihydroceramide content is significantly greater in in-
dividuals with obesity with and without T2D, plasma
ceramide and dihydroceramide content are negatively
related to insulin sensitivity, and that dihydroceramide
administration to myotubes decreased insulin sensi-
tivity in vitro, consistent with a causal role in promoting
whole-body insulin resistance. These data agree with
the growing body of literature showing that plasma
sphingolipids are important factors influencing the risk
Serum lipids and insulin sensitivity 5
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Figure 3. Serum dihydroceramides and relationships to insulin sensitivity. Serum dihydroceramide content (A) and relationship of
total dihydroceramide content to insulin sensitivity (B) in endurance trained athletes, lean sedentary controls, and individuals with
obesity without and with T2D. Relationships of individual dihydroceramide species to insulin sensitivity are shown for C18:0 (C),
C20:0 (D), C22:0 (E), C24:0 (F), and C24:1 (G). Values are means ± SEM. ¥ = significantly different than lean P < 0.05, # = significantly
different than athletes P < 0.05.
of insulin resistance and CVD. Our results suggest that
interventions designed to decrease plasma dihydrocer-
amide content may help combat obesity-induced insu-
lin resistance.

Our results agree with data in the literature showing
a relationship between serum ceramide concentration
and insulin resistance in humans (1, 2, 5, 13, 15, 23).
Plasma ceramide content decreases after bariatric sur-
gery, the extent of which predicts the increase in in-
sulin sensitivity (13). There is a growing consensus that
specific serum ceramide species may play more dele-
terious roles in insulin resistance, specifically C16:0 and
C18:0 species (2, 5, 12). Our data support this concept of
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the importance of species as we found that C18:0, C20:0,
and C22:0 serum ceramides were inversely related to
insulin sensitivity with the strongest relationship seen
for C18:0 ceramide. These data corroborate findings
from previous findings from our laboratory and others
(2, 5). Explanations for why specific ceramide species
are more negative than others are not known. However,
it is possible that specific plasma ceramide species
impact insulin sensitivity via incorporation into muscle
ceramide species (15), where specific species are thought
to be more potent in inducing insulin resistance (29–33).

Previous studies found that C16:0, C18:0, and C20:0
serum ceramide as an absolute concentration or
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Figure 4. Effect of dihydroceramide-containing liposome
administration on insulin sensitivity and cellular sphingolipid
accumulation in human primary myotubes in vitro. Cells were
treated for 3.5 h with POPC liposomes containing vehicle con-
trol (control) or a mixture of C18:0, C24:0, and C24:1 dihy-
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at the same concentration as the DHCer mix treatment (B).
Effect of dihydroceramide administration on cellular sphin-
golipid content (C). Values are means ± SEM. § = significantly
different than control, P < 0.05.
relative to C24:0 significantly predicted CVD, which in
some cases was a better predictor than LDL-cholesterol
(6, 9, 12). For example, the C18:0 ceramide content in
plasma was associated with a 31% increase in major
adverse cardiovascular events in the FinRisk study (6).
Inclusion of C18:0 ceramide provided increased pre-
dictive power for cardiovascular risk above that for
LDL or HDL only. Mechanisms responsible for
increased CVD risk with C18:0 ceramide are not known.
However, the observation that atherosclerotic lesions
that contain LDL are enriched in ceramide relative to
plasma LDL and promote LDL aggregation (16) may
provide some insight.

There are other serum sphingolipids that have been
associated with insulin resistance in humans including
sphinganines, glucosylceramides, lactosylceramides,
gangliosides, and sphingomyelins. Administration of
sphinganine, the precursor for dihydroceramide syn-
thesis, can decrease skeletal muscle insulin sensitivity
(34). Decreased glucosylceramide synthesis has been
linked to decreased atherosclerosis in mice (35) and
increased insulin sensitivity in vitro (36). Lactosylcer-
amide species have also been linked to increased CVD
risk (18), and decreased ganglioside formation has also
been associated with increased insulin sensitivity and
reduced risk factors for CVD (37, 38). Previous studies
also showed that plasma sphingomyelin was related to
CVD risk as well as subclinical CVD markers in humans
(7, 39). Nevertheless, our data show no difference in
plasma sphinganine, hexosylceramide, lactosylcer-
amide, ganglioside, and sphingomyelin content across
the spectrum of insulin sensitivity in humans. Taking
our data together with previous publications, it is
possible that, at least in humans, these sphingolipids are
not likely to impact CVD risk through alterations in
insulin sensitivity but rather may impact the composi-
tion of ceramides deposited in atherosclerotic lesions
(16, 18) or influence plaque vulnerability (9).

The main observation from this study is the strong
relationship between serum dihydroceramide content
and insulin sensitivity in humans spanning the range of
metabolic health. These data agree with the literature,
which shows that total plasma dihydroceramide corre-
lates with waist circumference (22) and was the stron-
gest predictor in the plasma lipidome for the
development of T2D 5 years before diagnosis (21). Total
plasma dihydroceramide concentration was most
different between individuals at time of diagnosis of
T2D (21), as well as in cross-sectional studies comparing
individuals with and without T2D (20), and nonhuman
primates with prediabetes and T2D compared with
controls (40). Therefore, our results recapitulate the
strong relationship between circulating dihydrocer-
amides and decreased insulin sensitivity. Beyond alter-
ations in insulin sensitivity, dihydroceramides
accumulate in atherosclerotic plaques and relate to
plaque instability (41), and serum dihydroceramides are
also linked to increased CVD risk (42). Thus, the liter-
ature supports that plasma dihydroceramide may be a
marker of metabolic disease, CVD, and insulin resis-
tance, but no studies have shown that plasma dihy-
droceramides cause insulin resistance.

We developed an in vitro protocol to deliver dihy-
droceramides to differentiated myotubes. Using
phospholipid liposomes to mimic delivery in vivo, we
administered three of the most abundant dihydrocer-
amide species detected in serum to primary myotubes.
Our in vitro data provide the first direct evidence that
dihydroceramide administration to cells decreases in-
sulin sensitivity. These results are not simply corre-
lated, as our in vitro data show that administration of a
mixture of dihydroceramides using liposomes caused
a significant decrease in insulin sensitivity in human
myotubes. The C18:0, C24:0, and C24:1 dihydrocer-
amide species decreased insulin sensitivity to a similar
extent, suggesting that the three most abundant
plasma dihydroceramide species share similar potency
with respect to promoting insulin resistance. Further-
more, in these experimental conditions, we could not
observe any significant changes in intracellular level
of ceramides, dihydroceramides, glucosylceramides,
Serum lipids and insulin sensitivity 7
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lactosylceramides, sphingosines, or sphingomyelins
suggesting that the effects on cell insulin sensitivity are
not because of dihydroceramide intracellular accu-
mulation or conversion to ceramides. Through the
activity of ceramidases, ceramides can be converted to
sphingosines that can also promote insulin resistance
(34). However, dihydroceramide administration to
myotubes did not change sphingosine concentration,
suggesting that alterations in ceramidase activity
cannot explain the insulin resistance observed.
Therefore, serum dihydroceramides appear to pro-
mote myotube insulin resistance. These data are
consistent with the literature as well as with a growing
amount of evidence showing that dihydroceramides
are not an inert precursor to ceramide but rather
potent signaling molecules that are related to devel-
opment of prediabetes and T2D (20, 21, 23, 40).

Mechanisms explaining how plasma dihydrocer-
amides decrease insulin sensitivity are currently un-
clear. Our data show that insulin signaling and
inflammatory response are not altered when cells are
treated with dihydroceramides at concentrations that
8 J. Lipid Res. (2022) 63(10) 100270
cause a decrease in myotube insulin sensitivity in vitro.
Our lipidomic data on myotubes exposed to extracel-
lular dihydroceramides suggest that the effects on
myotube insulin sensitivity are because of neither
dihydroceramide uptake and conversion into ceram-
ides via dihydroceramide desaturase (DES1) nor accu-
mulation of dihydroceramide itself in muscle cells.
Therefore, our data are consistent with a mechanism by
which plasma dihydroceramides impact muscle cell
insulin sensitivity via a receptor-based interaction.

Combined, our data show that recapitulation of
physiological dihydroceramide delivery to cells can
induce insulin resistance in myotubes in vitro and help
explain the consistent findings in the literature that
circulating dihydroceramides can predict the develop-
ment of T2D. Thus, our data suggest a signaling role for
serum dihydroceramides in inducing insulin resistance.

While the current article is focused on serum
sphingolipids and insulin resistance, they are certainly
not the only circulating lipid signals that can impact
insulin sensitivity. Many other circulating lipids that
have been implicated in promoting insulin resistance



have not been measured in the current study. These
include, but are not limited to, serum diacylglycerols,
acylcarnitines, free fatty acids, eicosanoids, and
oxidized phospholipids (43–48).

To summarize, results from this study suggest that
serum dihydroceramide concentration is significantly
greater in individuals with obesity with and without
T2D compared with lean individuals. Serum ceramide
and dihydroceramide contents are negatively related
to insulin sensitivity, and dihydroceramide adminis-
tration to myotubes mimicking physiological serum
delivery decreases insulin sensitivity in vitro. These
data are consistent with a causal role of circulating
dihydroceramides in promoting whole-body insulin
resistance and help explain the large body of data
suggesting that circulating dihydroceramide content
can predict the development of diabetes. Therefore,
these data suggest that interventions that decrease
circulating dihydroceramide content may improve
insulin sensitivity and decrease the risk of developing
T2D.
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